====== CE-003 Turma O - Segundo semestre de 2011 ======
No quadro abaixo será anotado o conteúdo dado em cada aula do curso. \\
São indicados os Capítulos e Sessões correspondentes nas referências bibliográficas do curso,
bem como **exercícios sugeridos destes livros**.
Abaixo da tabela há ainda **Atividades Complementares**.
\\
**Referências**\\
* **B & M**: BUSSAB, W.O. & MORETTIN, P.A. Estatística Básica. 5a Edição, Editora Saraiva
* **M & L**: MAGALHÃES, M.N.; LIMA, A.C.P. [[http://www.ime.usp.br/~noproest|Noções de Probabilidade e Estatística]]. IME/SP. Editora EDUSP.
* **WEB** [[http://onlinestatbook.com/2/index.html|Online Statistics: An Interactive Multimedia Course of Study]]: Material online sobre estatística
\\
**Observação sobre exercícios recomendados** os exercícios indicados são compatíveis com o nível e conteúdo do curso. \\
Se não puder fazer todos, escolha alguns entre os indicados.
\\
===== Conteúdos das Aulas =====
^ ^^ B & M ^^ M & L ^^ Online ^
^ Data ^ Conteúdo ^ Leitura ^ Exercícios ^ Leitura ^ Exercícios ^ Tópico ^
| PARTE I: ESTATÍSTICA DESCRITIVA E ANÁLISE EXPLORATÓRIA DE DADOS ^^^^^^^
| 12/09 |Informações sobre o curso. \\ Introdução a organização e análise descritiva de dados. \\ Tipos de variáveis (qualitativas nominais e ordinais, quantitativas discretas e contínuas). \\ Demonstração computacional e introdução ao uso do R. |Cap 1 e 2 | -- |Cap 1 | --- |No [[http://onlinestatbook.com/2/index.html|material online]] ver: \\ I . Introduction|
| 14/09 |Introdução a organização e análise descritiva de dados (continuação). \\ Variáveis qualitativas: tabelas de frequências, gráficos; variáveis quantitativas: tabelas, gráficos e medidas estatísticas. Box-plot e ramo e folhas. Dados em classes. Média, quartis, mediana. \\ Interpretação de resultados. \\ Demonstração computacional e introdução ao uso do R. |Cap 1 e 2 |Cap 2: 2, 4-7, 9-11 |Cap 1 |Sec 1.4 | [[http://leg.ufpr.br/~paulojus/embrapa/Rembrapa/Rembrapase8.html#x10-560008|Ilustração de uma análise de dados]] |
| 19/09 |Descrição de variáveis através de medidas estatísticas. Gráficos tabelas e medidas adequadas para cada tipo de variável. Medidas de posição, média, moda, mediana, quartis e quantis. Cálculo de medidas para dados brutos e agrupados. |Cap 2 e 3 |Cap 2: 13-14, Cap 3: 2, 4 e 6 |Cap 1 |Sec 1.4 |No [[http://onlinestatbook.com/2/index.html|material online]] ver: \\ II. Graphing distributions |
| 21/09 |Descrição de variáveis através de medidas estatísticas. \\ Medidas de dispersão: amplitude, amplitude interquartílica, desvio padrão, desvio médio, coeficiente de variação, escores, escore padronizado. \\ Distribuição acumulada empírica e definição genérica de quantis |Cap 3 |Cap 3: 1, 3, 14, 16, 19, 20 |Cap 4 |Sec 4.2: 1 a 3, Sec 4.3: 1 a 6 |No [[http://onlinestatbook.com/2/index.html|material online]] ver: \\ III. Summarizing distributions |
| 26/09 |Exercícios e exemplos de interpretação de resultados. Análise bivariada: variável qualitativa e quantitativa. |Cap 3, Cap 4, Sec 4.6 |Cap 3: 14, 16, 20, 21, 22, 23, 24, 25, **29, 34, 35** \\ Cap 4: 29 |Cap 1 e 4 |Sec 4.4 1 a 13 | |
| 28/09 |Análise bidimensional: qual. vs qual., qual. vs quant. e quant. //vs// quant.. \\ Transformação de variáveis (BoxCox). \\ Coeficientes de correlação e associação (Pearson Spearman, Chi-quadrado, Contingência). \\ Redução de dimensionalidade através de componentes principais. |Cap 3, 3.6 \\ Cap 4 |Cap 4: 1 a 13 |Cap 5 |ec 5.3: 5 a 10 |No [[http://onlinestatbook.com/2/index.html|material online]] ver: \\ IV: Describing bivariate data |
| FIM DA PARTE I ^^^^^^^
| PARTE II: PROBABILIDADES ^^^^^^^
| 03/10 |Introdução a probabilidades: conceitos básicos, definições de probabilidade (classica, frequentista, subjetiva), espaço amostral, eventos equi e não-equiprováveis, espaços amostrais: finitos, infinitos, discretos e contínuos. Probabilidade de eventos contínuos e áreas sobre curvas. Aplicações de probabilidades |Cap 5: 5.1 e 5.2 |Cap 5: 1 a 14 |Cap 2: Sec 2.1 |Sec 2.1: 1 a 5 |[[#03/10|ver abaixo]] sugestão de vídeo |
| 05/10 |Probabilidades. Definições e conceitos básicos. Propriedades. Probabilidade da união intersecção, condicional. Eventos mutuamente exclusivos e eventos independentes. |Cap 5: 5.1, 5.2 e 5.3 |Cap 5: 1 a 22 | | |[[#05/10|ver abaixo]] sugestão de vídeo |
| 10/10 |Probabilidades. discussão de exemplos e conceitos apresentados no vídeo de Peter Donnely. Avaliação por simulação, experimentos Monte Carlo. Teorema de Bayes |Cap 5: 5.4 e 5.4 |Cap 5: 23 a 25; 26 a 36 | | | |
| 12/10 |Exercícios sobre probabilidades. |Cap 5 |Cap 5: 37 a 45 | | | |
| 17/10 |revisão e exercícios. |Cap 5 |Cap 5: 46 a 48, 57, 64 | | | |
| 19/10 |1a prova | | | | | |
| 24/10 |-- | | | | | |
| 26/10 |-- | | | | | |
| 31/10 |variáveis aleatórias: conceitos e propriedades. V.A. Discretas e Contínuas. Variáveis aleatórias discretas: Função de probabilidade, função de probabilidade acumulada (distribuição), valor esperado (esperança) e variância. Variáveis aleatórias contínuas: função de densidade de probabilidades, função de probabilidades (acumulada). |Cap 6, 6.1 a 6.5, Cap 7: 7.1 a 7.3 |Cap 6: 1 a 6, 7 a 12 |Cap 7: 1 a 6 |Cap 3: 3.1 |Sec 3.1: 1 a 6 | |
| 02/11 |feriado | | | | | |
| 07/11 |variáveis aleatórias: revisão de conceitos. Distribuições discretas: uniforme, binomial, geométrica, binomial negativa e hipergeométrica. |Cap 6: 6.6 |Cap 6: 13 a 28 |Cap 3, 3.2 e 3.3 |Sec 3.2: 1 a 7, 3.3: 1 a 6 |Procurar por //falácia do jogador// (//Gambler's fallacy//) sobre discussão em sala |
| 09/11 |v.a.discretas. Distribuição e Processo de Poisson. Quantis. Exemplos e exercícios sobre distribuições de probabilidades |Cap 6, Sec 6.7 e 6.7 |Cap 6: 29 a 34, 37 a 40, 42, 44, 48, 49, 56 |ver em B&M |Sec 3.4: 1 a 27 |ver complementos abaixo |
| 14/11 |exercícios sobre v.a.discretas | | | | | |
| 16/11 |v.a.contínuas - definições, função de densidade e acumulada, cálculo de probabilidades, esperança e variância. Funções de v.a. contínuas: uniforme e exponencial |Cap 7 |Cap 7: 1 a 12 13, 21, 28, 31, |Cap 6, |Sec 6.1: 1 a 5, Sec 6.2: 1 a 6, Sec 6.3: 1 a 24 | |
| 21/11 |exercícios e revisão | | | | | |
| 23/11 |2a prova | | | | | |
| 28/11 |Distribuições contínuas: Weibull, Gamma (7.7.1), Beta, e Normal (7.4.2). Exercícios e exemplos da distribuição normal |Cap 7 |Cap 7: 13 a 20 |Cap 6, Def 6.6 |Sec 6.2: 7, 8, 9, Sec 6.3: 25 a 33 |[[#28/11|ver abaixo]] |
| 30/11 |Exercícios distribuição normal. Outras distribuições contínuas. Chi2, t e F | | | | | |
| PARTE II: INFERÊNCIA ESTATÍSTICA ^^^^^^^
| 05/12 |Fundamentos de inferência estatística: população, amostra, tipos de amostra, amostra aleatória simples, estatísticas, estimadores e estimativas. Distribuição amostral |Cap 10. Sec 10.1 a 10.9 |1, 3, 4 a 13 |Cap 7, 7.1 a 7.3 |Sec 7.1: 1 a 2, Sec 7.2: 1 a 5, Sec 7.3: 1 a 7 | |
| 07/12 |Cap 10, Sec 10.10 e 10.11. Exercícios. Cap 11: 11.1, 11.3, 11.5. Estimação: métodos de estimação: momentos e máxima verossimilhança |Cap 10:14, 17, 18, 21 a 28, Cap 11: 10 a 13 |Ver B&M |Cap 7. Sec 7.5: 1, 9 a 29, 31 a 34 | | |
| 12/12 |Cap 11: 11.2, 11.4, 11.6 e 11.7: métodos de mínimos quadrados, propriedades dos estimadores (não tendenciosidade, consistência e eficiência) e intervalos de confiança |Cap 11: 1, 2, 5, 6 a 9, 14 a 21 |Cap 7 e ver B&M |Sec 7.4: 1 a 5 | | |
| 14/12 |IC (revisao exercícios) e Teste de hipóteses |Cap 11: 11.6, Cap 12: 12.1 a 12.6, 12.8 |Cap 11: 22 a 30, 46; Cap 12: 6 a 13, 16, 1725, 27, 30, 31, 34, 35 |Cap 7, 7.4, Cap 8: 8.1 a 8.4 |Sec 8.1: 1 a 5, Sec 8.2: 1 a 6, Sec 8.3: 1 a 6 | |
| 19/12 | | | | | | |
| 21/12 |3a prova | | | | | |
===== Complementos =====
=== 12/09 a 29/09 ===
* Dados de alunos de duas turmas da disciplina CE003
* {{:disciplinas:ce003:ce003-201101.csv|arquivo de dados}}
* {{:disciplinas:ce003o-2011-02:descritiva.r|arquivo de comandos em R}} (este arquivo está sendo atualizada a cada aula da parte de estatística descritivas
* {{:disciplinas:ce003r-2011-02:mtcars.r|Dados e comandos}} sobre características técnicas de automóveis (conjuntos ''mtcars'')
* **Atividade:**
* reproduzir e inspecionar os comandos do arquivo. Interpretar e discutir os resultados
* fazer/complementar a análise dos dados com o R ou qq outro programa de sua preferência. Voce pode usar a [[http://leg.ufpr.br/~paulojus/embrapa/Rembrapa/Rembrapase8.html#x10-560008|Ilustração de uma análise de dados]] como modelo.
* Interpretar e discutir os resultados.
=== 03/10 ===
* [[http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.html|Hans Rosling]] no TED Talks mostra como os dados podem nos ajudar a compreender e destruir mitos sobre a realidade. \\ Identifique, anote e traga **ao menos cinco pontos importantes** na apresentação para discussão.
* [[http://www.ted.com/speakers/hans_rosling.html|Informações e links para outros vídeos]] de Hans Roslings
* Pesquise sobre o //paradoxo dos aniversários// discutido em aula, verificando como são feitos os cálculos. Responda:
* com 50 pessoas, qual a probabilidade de haver alguma coincidência de aniversário?
* e com 100 pessoas?
* quantas pessoas seriam necessárias para que a probabilidade de coincidência fosse de ao menos 90%?
* e para 50% ?
* faça um gráfico da probabilidade em relação ao número de pessoas.
=== 05/10 ===
* [[http://www.ted.com/talks/peter_donnelly_shows_how_stats_fool_juries.html|Peter Donnelly]] no TED Talks - como estatística e probabilidade podem ser usadas e ... abusadas
* **note que você pode habilitar legendas em inglês, português ou outras línguas, se desejar **
* ** procure anotar as principais mensagens de cada apresentação **
* **se você tivesse que destacar a descrever 2 (dois) pontos principais ou surpreendentes em cada apresentação, quais seriam?**
=== 10/11 ===
Códigos em R para cálculos de probabilidade com exemplos vistos na aula.
## DISTRIBUIÇÃO BINOMIAL
## X ~ B(n=20, p=0,12)
## P[X = 3]:
dbinom(3, size=20, prob=0.12)
## P[X <= 3]:
pbinom(3, size=20, prob=0.12)
## P[X >= 3]
1 - pbinom(2, s=20, p=0.12)
# ou....
pbinom(2, s=20, p=0.12, lower=FALSE)
##
## DISTRIBUIÇÃO BINOMIAL NEGATIVA (Pascal)
## X ~ BN(r=3, p=0,12)
## P[X = 20]:
dnbinom(3, size=20, prob=0.12)
## P[X <= 20]:
pnbinom(20, size=3, prob=0.12)
##
## HIPERGEOMÉTRICA
## (parametrizacao no R é diferente da vista em aula)
## Aula: Populacao: N = 200, r = 24, Amostra: n = 20
## X ~ HG(N=200, r=25, n=20)
## R : Populacao: m = 24, n = 176, Amostra: k = 20
## X ~ HG(m=24, n=176, k=20)
##
## P[X = 3]:
dhyper(3, m=24, n=176, k=20)
## P[X >= 20]:
1 - phyper(2, m=24, n=176, k=20)
## ou
phyper(2, m=24, n=176, k=20, lower=FALSE)
=== 28/11 ===
**Usar os programas (wx)maxima e R para resolver os exercícios a seguir**
- Fazer gráficos das diversas distribuições de probabilidades vistas nas aulas, variando os valores dos parâmetros e verificando como fica o comportamento da função.
- Estudar a distribuição de Weibull, fazer gráficos para diferentes valores dos parâmetros.
- Seja uma variável aleatória com distribuição Weibul W(\alpha=2, \beta=20)
- Obtenha a expressão e o gráfico da função de densidade f(x) e de distribuição (acumulada) F(x).
- Calcule as probabilidades:
* P[X > 40]
* P[X < 50]
* P[10 < X < 45]
* P[X < 5 ou X > 40]
- Calcule os quantis
* q tal que P[X > q] = 0.90
* q tal que P[X < q] = 0.10
* q_1 e q_2 tal que P[q_1 < X < q_2] = 0.50, com 0,25 de probabilidade abaixo de q_1 e acima q_2.
- Seja uma variável aleatória com distribuição Gamma G(\alpha=3, \beta=10)
- Obtenha o gráfico da função de densidade f(x) e de distribuição (acumulada) F(x).
- Verifique como obter as probabilidades:
* P[X > 50]
* P[X < 10]
* P[20 < X < 80]
* P[X < 5 ou X > 90]
- Verifique como obter os quantis
* q tal que P[X > q] = 0.90
* q tal que P[X < q] = 0.10
* q_1 e q_2 tal que P[q_1 < X < q_2] = 0.50, com probabilidades abaixo de q_1 e acima q_2 de 0,25.
- Verifique como obter os quartis da distribuição
- Verificar as expressões das distribuições t, chi^2 e F (ver sessão 7.7 em Bussab e Morettin) e como obter probabilidades q quantis utilizando as tabelas. \\
- Seja X uma variável aleatória com distribuição t_(8) (tStudent com \nu=8 graus de liberdade). Obtenha usando a tabela da distribuição:
- P[X > 1.5]
- P[-2 < X < 2]
- k tal que P[|X| < k ] = 0.80
- k tal que P[X < k ] = 0.10
- os quartis da distribuição
- Seja X uma variável aleatória com distribuição \chi_(12) (qui-quadrado com \nu=12 graus de liberdade). Obtenha usando a tabela da distribuição:
- P[X > 20]
- P[X < 5]
- P[10 < X < 25]
- k tal que P[|X| < k ] = 0.80
- k tal que P[X < k ] = 0.10
- os quartis da distribuição