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Preface

Geostatistics refers to the sub-branch of spatial statistics in which the data
consist of a finite sample of measured values relating to an underlying spa-
tially continuous phenomenon. Examples include: heights above sea-level in a
topographical survey; pollution measurements from a finite network of monitor-
ing stations; determinations of soil properties from core samples; insect counts
from traps at selected locations. The subject has an interesting history. Orig-
inally, the term geostatistics was coined by Georges Matheron and colleagues
at Fontainebleau, France, to describe their work addressing problems of spatial
prediction arising in the mining industry. See, for example, Matheron (1963,
1971). The ideas of the Fontainebleau school were developed largely indepen-
dently of the mainstream of spatial statistics, with a distinctive terminology and
style which tended to conceal the strong connections with parallel developments
in spatial statistics. These parallel developments included work by Kolmogorov
(1941), Matérn (1960, reprinted as Matérn, 1986), Whittle (1954, 1962, 1963),
Bartlett (1964, 1967) and others. For example, the core geostatistical method
known as simple kriging is equivalent to minimum mean square error prediction
under a linear Gaussian model with known parameter values. Papers by Wat-
son (1971,1972) and the book by Ripley (1981) made this connection explicit.
Cressie (1993) considered geostatistics to be one of three main branches of spa-
tial statistics, the others being discrete spatial variation (covering distributions
on lattices and Markov random fields) and spatial point processes. Geostatisti-
cal methods are now used in many areas of application, far beyond the mining
context in which they were originally developed.

Despite this apparent integration with spatial statistics, much geostatistical
practice still reflects its independent origins, and from a mainstream statisti-
cal perspective this has some undesirable consequences. In particular, explicit
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stochastic models are not always declared and ad hoc methods of inference are
often used, rather than the likelihood-based methods of inference which are
central to modern statistics. The potential advantages of using likelihood-based
methods of inference are two-fold: they generally lead to more efficient estima-
tion of unknown model parameters; and they allow for the proper assessment
of the uncertainty in spatial predictions, including an allowance for the effects
of uncertainty in the estimation of model parameters.

Diggle, Tawn & Moyeed (1998) coined the phrase model-based geostatistics

to describe an approach to geostatistical problems based on the application of
formal statistical methods under an explicitly assumed stochastic model. This
book takes the same point of view.

We aim to produce an applied statistical counterpart to Stein (1999), who
gives a rigorous mathematical theory of kriging. Our intended readership in-
cludes postgraduate statistics students and scientific researchers whose work
involves the analysis of geostatistical data. The necessary statistical background
is summarised in an Appendix, and we give suggestions of further background
reading for readers meeting this material for the first time.

Throughout the book, we illustrate the statistical methods by applying
them in the analysis of real data-sets. Most of the data-sets which we use
are publically available and can be obtained from the book’s web-page,
http://www.maths.lancs.ac.uk/∼diggle/mbg.

Most of the book’s chapters end with a section on computation, in which we
show how the R software (R Development Core Team 2005) and contributed
packages geoR and geoRglm can be used to implement the geostatistical meth-
ods described in the corresponding chapters. This software is freely available
from the R Project web-page (http://www.r-project.org).

The first two chapters of the book provide an introduction and overview.
Chapters 3 and 4 then describe geostatistical models whilst chapters 5 to 8 cover
associated methods of inference. The material is mostly presented for univariate
problems, i.e. those for which the measured response at any location consists of a
single value, but Chapter 3 includes a discussion of some multivariate extensions
to geostatistical models and associated statistical methods.

The connections between classical and model-based gostatistics are closest
when, in our terms, the assumed model is the linear Gaussian model. Readers
who wish to confine their attention to this class of models on a first reading
may skip Sections 3.11, 3.12, Chapter 4, Sections 5.5, 7.5, 7.6 and Chapter 8.

Many friends and colleagues have helped us in various ways: by improving
our understanding of geostatistical theory and methods; by working with us on
a range of collaborative projects; by allowing us to use their data-sets; and by
offering constructive criticism of early drafts. We particularly wish to thank Ole
Christensen, with whom we have enjoyed many helpful discussions. Ole is also
the lead author of the geoRglm package.

Peter J Diggle, Paulo J Ribeiro Jr, March 2006.
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1
Introduction

1.1 Motivating examples

The term spatial statistics is used to describe a wide range of statistical mod-
els and methods intended for the analysis of spatially referenced data. Cressie
(1993) provides a general overview. Within spatial statistics, the term geostatis-

tics refers to models and methods for data with the following characteristics.
Firstly, values Yi : i = 1, . . . , n are observed at a discrete set of sampling lo-
cations xi within some spatial region A. Secondly, each observed value Yi is
either a direct measurement of, or is statistically related to, the value of an un-
derlying continuous spatial phenomenon, S(x), at the corresponding sampling
location xi. This rather abstract formulation can be translated to a variety of
more tangible scientific settings, as the following examples demonstrate.

Example 1.1. Surface elevations

The data for this example are taken from Davis (1972). They give the measured
surface elevations yi at each of 52 locations xi within a square, A, with side-
length 6.7 units. The unit of distance is 50 feet (≈15.24 meters), whereas one
unit in y represents 10 feet (≈3.05 meters) of elevation.

Figure 1.1 is a circle plot of the data. Each datum (xi, yi) is represented by a
circle with centre at xi and radius proportional to yi. The observed elevations
range between 690 and 960 units. For the plot, we have subtracted 600 from
each observed elevation, to heighten the visual contrast between low and high
values. Note in particular the cluster of low values near the top-centre of the
plot.
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Figure 1.1. Circle plot of the surface elevation data. For the coordinates, the unit
of distance is 50 feet. The observed elevations range from 690 to 960 units, where
1 unit represents 10 feet of elevation. Circles are plotted with centres at the sampling
locations and radii determined by a linear transformation of the observed elevations
(see Section 1.6).

The objective in analysing these data is to construct a continuous elevation
map for the whole of the square region A. Let S(x) denote the true elevation at
an arbitrary location x. Since surface elevation can be measured with negligible
error, in this example each yi is approximately equal to S(xi). Hence, a rea-
sonable requirement would be that the map resulting from the analysis should
interpolate the data. Our notation, distinguishing between a measurement pro-
cess Y and an underlying true surface S, is intended to emphasise that this is
not always the case.

Example 1.2. Residual contamination from nuclear weapons testing

The data for this example were collected from Rongelap Island, the principal
island of Rongelap Atoll in the South Pacific, which forms part of the Marshall
Islands. The data were previously analysed in Diggle et al. (1998), and have the
format (xi, yi, ti) : i = 1, . . . , 157, where xi identifies a spatial location, yi is a
photon emission count attributable to radioactive caesium, and ti is the time
(in seconds) over which yi was accumulated.

These data were collected as part of a more wide-ranging, multi-disciplinary
investigation into the extent of residual contamination from the USA nuclear
weapons testing programme, which generated heavy fall-out over the island
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in the 1950’s. Rongelap island has been uninhabited since 1985, when the in-
habitants left on their own initiative after years of mounting concern about
the possible adverse health effects of the residual contamination. Each ratio
yi/ti gives a crude estimate of the residual contamination at the corresponding
location xi but, in contrast to Example 1.1, these estimates are subject to non-
negligible statistical error. For further discussion of the practical background to
these data, see Diggle, Harper & Simon (1997).

Figure 1.2 gives a circle plot of the data, using as response variable at each
sampling location xi the observed emission count per unit time, yi/ti. Spatial
coordinates are in metres, hence the east-west extent of the island is approxi-
mately 6.5 kilometres. The sampling design consists of a primary grid covering
the island at a spacing of approximately 200 metres together with four sec-
ondary 5 by 5 sub-grids at a spacing of 50 metres. The role of the secondary
sub-grids is to provide information about short-range spatial effects, which have
an important bearing on the detailed specification and performance of spatial
prediction methods.

The clustered nature of the sampling design makes it difficult to construct
a circle plot of the complete data-set which is easily interpretable on the scale
of the printed page. The inset to Figure 1.2 therefore gives an enlarged circle
plot for the western extremity of the island. Note that the variability in the
emission counts per unit time within each sub-grid is somewhat less than the
overall variability across the whole island, which is as we would expect if the
underlying variation in the levels of contamination is spatially structured.

In devising a statistical model for the data, we need to distinguish between
two sources of variation: spatial variation in the underlying true contamination
surface, T (x) say; and statistical variation in the observed photon emission
counts, yi, given the surface T (x). In particular, the physics of photon emissions
suggests that a Poisson distribution would provide a reasonable model for the
conditional distribution of each yi given the corresponding value T (xi). The
gamma camera which records the photon emissions integrates information over
a circular area whose effective diameter is substantially smaller than the smallest
distance (50 metres) between any two locations xi. It is therefore reasonable
to assume that the yi are conditionally independent given the whole of the
underlying surface T (x). In contrast, there is no scientific theory to justify any
specific model for T (x), which represents the long-term cumulative effect of
variation in the initial deposition, soil properties, human activity and a variety
of natural environmental processes. We return to this point in Section 1.2.

One scientific objective in analysing the Rongelap data is to obtain an esti-
mated map of residual contamination. However, in contrast to Example 1.1, we
would argue that in this example the map should not interpolate the observed
ratios yi/ti because each such ratio is a noisy estimate of the corresponding
value of T (xi). Also, because of the health implications of the pattern of con-
tamination across the island, particular properties of the map are of specific
interest, for example the location and value of the maximum of T (x), or areas
within which T (x) exceeds a prescribed threshold.
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Figure 1.2. Circle plot for data from Rongelap island. Circles are plotted with centres
at the sampling locations and radii proportional to observed emission counts per unit
time. The unit of distance is 1 metre. The inset shows an enlargement of the western
extremity of the island.

Example 1.3. Childhood malaria in The Gambia

These data are derived from a field-survey into the prevalence of malaria para-
sites in blood-samples taken from children living in village communities in The
Gambia, West Africa. For practical reasons, the sampled villages were concen-
trated into five regions rather than being sampled uniformly across the whole
country. Figure 1.3 is a map of The Gambia showing the locations of the sampled
villages. The clustered nature of the sampling design is clear.

Within each village, a random sample of children was selected. For each child,
a binary response was then obtained, indicating the presence or absence of
malaria parasites in a blood-sample. Covariate information on each child in-
cluded their age, sex, an indication of whether they regularly slept under a
mosquito net and, if so, whether or not the net was treated with insecticide.
Information provided for each village, in addition to its geographical location,
included a measure of the green-ness of the surrounding vegetation derived from
satellite data, and an indication of whether or not the village belonged to the
primary health care structure of The Gambia Ministry for Health.

The data-format for this example is therefore (xi, yij , di, dij) where the
subscripts i and j identify villages, and individual children within villages, re-
spectively, whilst di and dij similarly represent explanatory variables recorded
at the village level, and at the individual level, as described below. Note that if
only village-level explanatory variables are used in the analysis, we might choose
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Figure 1.3. Sampling locations for the Gambia childhood malaria survey. The inset
plots are enlarged maps of the western, central and eastern regions of The Gambia.

to analyse the data only at the village level, in which case the data-format could
be reduced to (xi, ni, yi, di) where ni is the number of children sampled in the
ith village, and yi =

∑ni

j=1 yij the number who test positive
Figure 1.4 is a scatterplot of the observed prevalences, yi/ni, against the

corresponding green-ness values, ui. This shows a weak positive correlation.
The primary objective in analysing these data is to develop a predictive model

for variation in malarial prevalence as a function of the available explanatory
variables. A natural starting point is therefore to fit a logistic regression model to
the binary responses yij . However, in so doing we should take account of possi-
ble unexplained variation within or between villages. In particular, unexplained
spatial variation between villages may give clues about as-yet unmeasured
environmental risk factors for malarial infection.

Example 1.4. Soil data

These data have the format (xi, yi1, yi2, di1, di2), where xi identifies the location
of a soil sample, the two y-variables give the calcium and magnesium content
whilst the two d-covariates give the elevation and sub-area code of each sample.

The soil samples were taken from the 0-20cm depth layer at each of 178
locations. Calcium and magnesium content were measured in mmolc/dm

3 and
the elevation in metres. The study region was divided into three sub-regions
which have experienced different soil management regimes. The first, in the
upper-left corner, is typically flooded during each rainy season and is no longer
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Figure 1.4. Observed prevalences against green-ness for villages in the Gambia
childhood malaria survey.

used as an experimental area because of its varying elevation. The calcium
and magnesium levels in this region therefore represent the pattern of natural
spatial variation in background content. The second, corresponding to the lower
half of the study region, and the third, in the upper-right corner, have received
fertilisers in the past: the second is typically occupied by rice fields, whilst the
third is frequently used as an experimental area. Also, the second sub-region
was the most recent of the three to which calcium was added to neutralise the
effect of aluminium in the soil, which partially explains the generally higher
measured calcium values within this sub-region.

The sampling design is an incomplete regular lattice at a spacing of approxi-
mately 50 metres. The data were collected by researchers from PESAGRO and
EMBRAPA-Solos, Rio de Janeiro, Brasil (Capeche 1997).

The two panels of Figure 1.5 show circle plots of the calcium (left panel) and
magnesium (right panel) data separately, whilst Figure 1.6 shows a scatterplot
of calcium against magnesium, ignoring the spatial dimension. This shows a
moderate positive correlation between the two variables; the value of the sample
correlation between the 178 values of calcium and magnesium content is r =
0.33.

Figure 1.7 shows the relationship between the potential covariates and the
calcium content. There is a clear trend in the north-south direction, with gener-
ally higher values to the south. The relationships between calcium content and
either east-west location or elevation are less clear. However, we have included
on each of the three scatterplots a lowess smooth curve (Cleveland 1981) which,
in the case of elevation, suggests that there may be a relationship with calcium
beyond an elevation threshold. Finally, the boxplots in the bottom right panel
of Figure 1.7 suggest that the means of the distributions of calcium content are
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Figure 1.5. Circle plots of calcium and magnesium content with dashed lines delimiting
sub-regions with different soil management practices.
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Figure 1.6. Scatterplot of calcium content against magnesium content in the 0-20cm
soil layer.

different in the different sub-regions. In any formal modelling of these data, it
would also be sensible to examine covariate effects after allowing for a differ-
ent mean response in each of the three sub-regions, in view of their different
management histories.

One objective for these data is to construct maps of the spatial variation in
calcium or magnesium content. Because these characteristics are determined
from small soil cores, and repeated sampling at effectively the same location
would yield different measurements, the constructed maps should not necessar-
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Figure 1.7. (a, b, c) Scatterplots of calcium content against: (a) E −W coordinate,
(b) N − S coordinate, (c) elevation. Lines are lowess curves. (d) Box-plots of calcium
content in each of the three sub-regions.

ily interpolate the data. Another goal is to investigate relationships between
calcium or magnesium content and the two covariates. The full data-set also
includes the values of the calcium and magnesium content in the 20-40cm depth
layer.

We shall introduce additional examples in due course. However, these four
are sufficient to motivate some basic terminology and notation, and to indicate
the kinds of problems which geostatistical methods are intended to address.
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1.2 Terminology and notation

The basic format for univariate geostatistical data is

(xi, yi) : i = 1, . . . , n,

where xi identifies a spatial location (typically in two-dimensional space, al-
though one-dimensional and three-dimensional examples also occur) and yi is a
scalar value associated with the location xi. We call y the measurement variable

or response. A defining characteristic of geostatistics is that the measurement
variable is, at least in principle, defined throughout a continuous study-region,
A say. Furthermore, we shall assume that the sampling design for the loca-
tions xi is either deterministic (for example, the xi may form a grid over the
study-region), or stochastically independent of the process which generates the
measurements yi. Each yi is a realisation of a random variable Yi whose distri-
bution is dependent on the value at the location xi of an underlying spatially
continuous stochastic process S(x) which is not directly observable. In par-
ticular cases, such as in our Example 1.1, we might reasonably assume that
Yi = S(xi), but in general it is important to preserve a distinction between the
observable quantities Yi and the unobservable, or latent process S(x).

The basic form of a geostatistical model therefore incorporates at least two
elements: a real-valued stochastic process {S(x) : x ∈ A}, which is typically
considered to be a partial realisation of a stochastic process {S(x) : x ∈ IR2} on
the whole plane; and a multivariate distribution for the random variable Y =
(Y1, . . . , Yn) conditional on S(·). We call S(x) the signal and Yi the response.
Often, Yi can be thought of as a noisy version of S(xi) and the Yi can be
assumed to be conditionally independent given S(·).

1.2.1 Support

Examples 1.2 and 1.4 illustrate a general issue with geostatistical data, con-
cerning the support of each measured response. Formally, we associate each yi
with a point location xi. However, in many cases yi derives from a finite area
for which xi is a convenient reference point. In Example 1.4, the support is
clearly identifiable as the circular cross-section of the soil core used to obtain
each sample, and xi denotes the centre of the cross-section. In Example 1.2, def-
inition of the support is more difficult. The gamma camera integrates positron
emissions over a circular neighbourhood of each sample location xi, but rather
than a sharp cut-off at a known distance, the camera traps a smaller proportion
of the actual emissions with increasing distance from the centre of the circle.
This implies that the modelled signal, S(x), should strictly be interpreted as
a weighted integral of an underlying spatially continuous signal, S∗(x) say, so
that

S(x) =

∫

w(r)S∗(x − r)dr.

Under this formulation, S(x) is still a real-valued, spatially continuous process,
i.e. it is well-defined for all x ∈ IR2. Its genesis as an integral does, however, have
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implications for what covariance structure we can strictly assume for the process
S(·), since any smoothness in the behaviour of the weighting function w(·)
constrains the allowable form of covariance structure for S(·). In this particular
example we do not need to model the effect of the weighting function explicitly,
because its effective range is much smaller than the minimum distance of 50
metres between any two points in the design.

The idea that geostatistical measurements have finite, rather than infinites-
imal, support is to be contrasted with problems in which measurements are
derived from a partition of a spatial region into discrete spatial units i =
1, . . . , n, each of which yields a measurement yi. This is often the case, for exam-
ple, in spatial epidemiology, where data on disease prevalence may be recorded
as counts in administrative sub-regions, for example counties or census tracts. In
that context, the modelling options are either to deal explicitly with the effects
of the spatial integration of an underlying spatially continuous process S∗(x) or,
more pragmatically, to specify a model at the level of the discrete spatial units,
i.e. a multivariate distribution for random variables Yi : i = 1, . . . , n. Models of
the second kind have an extensive literature and are widely used in practice to
analyse data arising as a result of spatial aggregation into discrete units. Less
commonly, the actual spatial units are genuinely discrete; an example would be
data on the yields of individual fruit-trees in an orchard.

Evidently, a common feature of geostatistical models and discrete spatial
models is that they both specify the joint distribution of a spatially referenced,
n-dimensional random variable (Y1, . . . , Yn). An important difference is that a
geostatistical model automatically embraces any n, and any associated set of
sampling locations, whereas a discrete spatial model is specific to a particular
set of locations. A classic early reference to the modelling and analysis of data
from discrete spatial units is Besag (1974). See also Cressie (1993, chapters 6
and 7).

1.2.2 Multivariate responses and explanatory variables

As our motivating examples llustrate, in many applications the basic (xi, yi)-
format of geostatistical data will be extended in either or both of two ways.
There may be more than one measurement variable, so defining a multivari-

ate response, yi = {yi1, ..., yid}, or the data may include spatial explanatory
variables, {dk(x) : x ∈ A}, sometimes also called covariates.

The distinction between the two is not always clear-cut. From a modelling
point of view, the difference is that a model for a multivariate response requires
the specification of a vector-valued stochastic process over the study-region A,
whereas spatial explanatory variables are treated as deterministic quantities
with no associated stochastic model. One consequence of this is that a spatial
explanatory variable must, at least in principle, be available at any location
within A if it is to be used to predict responses at unsampled locations x. An
example would be the green-ness index in Example 1.3. The index is calculated
on a 1 km pixel grid and can therefore be used to predict malaria prevalence
without making any assumptions about its spatial variation. Even then, in our
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experience the distinction between a stochastic signal S(x) and a spatial ex-
planatory variable d(x) is largely a reflection of our scientific goals. Again using
Example 1.3 to illustrate the point, the goal in this example is to understand
how environmental factors affect malaria prevalence. Elevation is one of sev-
eral factors which determine the suitability of a particular location to support
breeding mosquitos, and is a candidate for inclusion as an explanatory vari-
able in a stochastic model for prevalence. In contrast, in Example 1.1 the goal
is to interpolate or smooth a spatially sparse set of measured elevations so as
to obtain a spatially continuous elevation map, hence elevation is treated as a
stochastic response.

In most geostatistical work, the adoption of a stochastic model for S(x)
reflects its unknown, unobserved quality rather than a literal belief that the
underlying spatial surface of interest is generated by the laws of probability. In-
deed, in many applications the role of the signal process S(x) is as a surrogate
for unmeasured explanatory variables which influence the response variable. In
modelling S(x) as a stochastic process we are using stochasticity at least in part
as a metaphor for ignorance.

For this reason, when relevant explanatory variables are only available at
the data-locations xi and we wish to use their observed values for spatial
prediction at an unsampled location x, a pragmatic strategy is to treat such
variables as additional responses, and accordingly to formulate a multivariate
model. Example 1.4 illustrates both situations: the calcium and magnesium
contents form a bivariate spatial stochastic process, whereas region and, to a
good approximation, elevation, are available at any location, are not of scientific
interest in themselves, and can therefore be treated as explanatory variables.
In this example, both components of the bivariate response are measured at
each data-location. More generally, measurements on different components of a
multivariate response need not necessarily be made at a common set of locations.

Note that the locations xi potentially play a dual role in geostatistical analy-
sis. Firstly, spatial location is material to the model for the signal process S(x) in
that the stochastic dependence between S(x) and S(x′) is typically modelled as
a function of the locations in question, x and x′. Secondly, each location defines
the values of a pair of explanatory variables corresponding to the two spatial
coordinates. The convention in geostatistics is to use the term trend surface to
mean a spatially varying expectation of the response variable which is specified
as a function of the coordinates of the xi, whereas the term external trend refers
to a spatially varying expectation specified as a function of other explanatory
variables d(x). For example, the elevation data as presented in Example 1.1 do
not include any explanatory variables which could be used in an external trend
model, but as we shall see in Chapter 2 a low-order polynomial trend surface
can explain a substantial proportion of the observed spatial variation in the
data.
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1.2.3 Sampling design

The locations xi at which measurements are made are collectively called the
sampling design for the data. A design is non-uniform if the sampling intensity
varies systematically over the study-region, in the sense that before the actual
actual sampling points are chosen, some parts of the study-region are deliber-
ately sampled more intensively than others. This is as distinct from the sampling
intensity varying by chance; for example, if sample points are located as an in-
dependent random sample from a uniform distribution over the study-region, it
may (indeed, will) happen that some parts of the study-region are more inten-
sively sampled than others but we would still describe this as a uniform design
because of its method of construction.

A design is non-preferential if it is deterministic, or if it is stochastically inde-
pendent of S(·). Conventional geostatistical methods assume, if only implicitly,
that the sampling design is non-preferential, in which case we can legitimately
analyse the data conditional on the design. Provided that sampling is non-
preferential, the choice of design does not impact on the assumed model for the
data, but does affect the precision of inferences which can be made from the
data. Furthermore, different designs are efficient for different kinds of inference.
For example, closely spaced pairs of sample locations are very useful for esti-
mating model parameters, but would be wasteful for spatial prediction using a
known model.

1.3 Scientific objectives

In most applications, the scientific objectives of a geostatistical analysis are
broadly of two kinds: estimation and prediction.

Estimation refers to inference about the parameters of a stochastic model for
the data. These may include parameters of direct scientific interest, for example
those defining a regression relationship between a response and an explanatory
variable, and parameters of indirect interest, for example those defining the
covariance structure of a model for S(x).

Prediction refers to inference about the realisation of the unobserved signal
process S(x). In applications, specific prediction objectives might include pre-
diction of the realised value of S(x) at an arbitrary location x within a region
of interest, A, typically presented as a map of the predicted values of S(x),
or prediction of some property of the complete realisation of S(x) which is of
particular relevance to the problem in hand. For example, in the mining appli-
cations for which geostatistical methods were originally developed, the average
value of S(x) over an area potentially to be mined would be of direct economic
interest, whereas in the Rongelap Island example an identification of those parts
of the island where S(x) exceeds some critical value would be more useful than
the average as an indicator of whether the island is fit for re-habitation. Geosta-
tistical models and methods are particularly suited to scientific problems whose
objectives include prediction, in the sense defined here.
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A third kind of inferential problem, namely hypothesis testing, can also arise in
geostatistical problems, although often only in a secondary sense, for example
in deciding whether or not to include a particular explanatory variable in a
regression model. For the most part, in this book we will tacitly assume that
testing is secondary in importance to estimation and prediction.

1.4 Generalised linear geostatistical models

Classical generalised linear models, introduced by Nelder & Wedderburn (1972),
provide a unifying framework for the analysis of many superficially different
kinds of independently replicated data. Several different ways to extend the
generalised linear model class to dependent data have been proposed, amongst
which perhaps the most widely used are marginal models (Liang & Zeger 1986)
and mixed models (Breslow & Clayton 1993). What we shall call a gener-

alised linear geostatistical model is a generalised linear mixed model of a form
specifically oriented to geostatistical data.

The first ingredient in this class of models is a stationary Gaussian pro-
cess S(x). A stochastic process S(x) is Gaussian if the joint distribution of
S(x1), . . . , S(xn) is multivariate Normal for any integer n and set of locations
xi. The process is stationary if the expectation of S(x) is the same for all x, the
variance of S(x) is the same for all x and the correlation between S(x) and S(x′)
depends only on u = ||x − x′||, the Euclidean distance between x and x′. We
shall use the class of stationary Gaussian processes as a flexible, empirical model
for an irregularly fluctuating, real-valued spatial surface. Typically, the nature
of this surface, which we call the signal, is of scientific interest but the surface
itself cannot be measured directly. The range of applicability of the model can
be extended by the use of mathematical transformations. For example, in the
suggested model for the Rongelap island photon emission data, the Gaussian
process S(x) is the logarithm of the underlying contamination surface T (x). We
discuss the Gaussian model, including non-stationary versions, in more detail
in Chapter 3.

The second ingredient in the generalised linear geostatistical model is a sta-
tistical description of the data-generating mechanism conditional on the signal.
This part of the model follows a classical generalized linear model as described
by McCullagh & Nelder (1989), with S(x) as an offset in the linear predic-
tor. Explicitly, conditional on S(·) the responses Yi : i = 1, . . . , n at locations
xi : i = 1, . . . , n are mutually independent random variables whose conditional
expectations, µi = E[Yi|S(·)], are determined as

h(µi) = S(xi) +

p
∑

k=1

βkdk(xi), (1.1)

where h(·) is a known function, called the link function, the dk(·) are observed
spatial explanatory variables and the βk are unknown spatial regression param-

eters. The terms on the right-hand side of (1.1) are collectively called the linear
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predictor of the model. The conditional distribution of each Yi given S(·) is
called the error distribution.

For each of our introductory examples, there is a natural candidate model
within the generalized linear family.

For Example 1.1, in which the response is real-valued, we might adopt a linear

Gaussian model, in which the link function h(·) is the identity and the error
distribution is Gaussian with variance τ 2. Hence, the true surface elevation at
a location x is given by S(x) and, conditional on the realisation of S(x) at
all locations the measured elevations yi are mutually independent, Normally
distributed with conditional means S(xi) and common conditional variance τ 2.
A possible extension of this model would be to include spatial explanatory
variables to account for a possible non-stationarity of S(·). For example, the
circle plot of the data (Figure 1.1) suggests that elevations tend to decrease
as we move from south to north. We might therefore consider including the
north-south coordinate of the location as an explanatory variable, d1(·) say, so
defining a non-constant plane over the area. The conditional mean of each yi
given S(x) would then be modelled as d1(xi)β + S(xi).

For Example 1.2, in which the response is a photon emission count, the under-
lying physics motivates the Poisson distribution as a suitable error distribution
whilst the log-linear formulation suggested earlier is an empirical device which
constrains the expected count to be non-negative, as required. The photon
emission counts Yi can then be modelled as conditionally independent Poisson-
distributed random variables, given an underlying surface T (·) of true levels of
contamination. Also, the expectation of Yi is directly proportional both to the
value of T (xi) and to the time, ti, over which the observed count is accumu-
lated. Hence, the conditional distribution of Yi should be Poisson with mean
tiT (xi). In the absence of additional scientific information a pragmatic model
for T (x), recognising that it necessarily takes non-negative values, might be
that logT (x) = S(x) is a Gaussian stochastic process with mean µ, variance
σ2 and correlation function ρ(x, x′) = Corr{S(x), S(x′)}. Like any statistical
model, this is an idealisation. A possible refinement to the Poisson assumption
for the emission counts conditional on the signal S(x) would be to recognise
that each yi is a so-called nett count, calculated by subtracting from the raw
count an estimate of that part of the count which is attributable to broad-band
background radiation. With regard to the model for S(x), the assumed constant
mean could be replaced by a spatially varying mean if there were evidence of
systematic variation in contamination across the island.

For Example 1.3, the sampling mechanism leads naturally to a binomial error
distribution at the village-level or, at the child-level, a Bernoulli distribution
with the conditional mean µij representing the probability of a positive re-
sponse from the jth child sampled within the ith village. A logit-linear model,
h(µij) = log{µij/(1 − µij)}, constrains the µij to lie between 0 and 1 as re-
quired, and is one of several standard choices. Others include the probit link,
h(µ) = Φ−1(µ) where Φ(·) denotes the standard Normal distribution func-
tion, or the complementary-log-log, h(µ) = log{− log(µ)}. In practice, the logit
and probit links are hard to distinguish, both corresponding to a symmetric
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S-shaped curve for µ as a function of the linear predictor with the point of
symmetry at µ = 0.5, whereas the complementary-log-log has a qualitatively
different, asymmetric form.

Example 1.4 features a bivariate response, and therefore falls outside the
scope of the (univariate) generalized linear geostatistical model as described
here. However, a separate linear Gaussian model could be used for each of
the two responses, possibly after appropriate transformation, and dependence
between the two response variables could then be introduced by extending the
unobserved Gaussian process S(x) to a bivariate Gaussian process, S(x) =
{S1(x), S2(x)}. This example also includes explanatory variables as shown in
Figure 1.7. These could be added to the model as indicated in equation (1.1),
using the identity link function.

1.5 What is in this book?

This books aims to describe and explain statistical methods for analysing geo-
statistical data. The approach taken is model-based, by which we mean that the
statistical methods are derived by applying general principles of statistical in-
ference based on an explicitly declared stochastic model of the data-generating
mechanism.

In principle, we place no further restriction on the kind of stochastic model
to be specified. Our view is that a model for each particular application should
ideally be constructed by collaboration between statistician and subject-matter
scientist with the aim that the model should incorporate relevant contextual
knowledge whilst simultaneously avoiding unnecessary over-elaboration and
providing an acceptable fit to the observed data. In practice, a very useful
and flexible model-class is the generalized linear geostatistical model, which we
described briefly in Section 1.4. Chapters 3 and 4 develop linear and generalized
linear geostatistical models in more detail. We also include in Chapter 4 some
cautionary examples of spatial modelling problems for which the generalized
linear model is inadequate.

We shall develop both classical and Bayesian approaches to parameter esti-
mation. The important common feature of the two approaches is that they are
based on the likelihood function. However, we also describe simpler, more ad
hoc approaches and indicate why they are sometimes useful.

For problems involving prediction, we shall argue that a Bayesian approach
is natural and convenient because it provides a ready means of allowing un-
certainty in model parameters to be reflected in the widths of our prediction
intervals.

Within the Bayesian paradigm, there is no formal distinction between an un-
observed spatial stochastic process S(x) and an unknown parameter θ. Both are
modelled as random variables. Nevertheless, although we use Bayesian meth-
ods extensively, we think that maintaining the distinction between prediction

of S(x) and estimation of θ is important in practice. As noted in Section 1.3
above, prediction is concerned with learning about the particular realisation of
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the stochastic process S(x) which is assumed to have generated the observed
data yi, whereas estimation is concerned with properties of the process S(·)
which apply to all realisations. Section 2.4 discusses some of the inferential im-
plications of this distinction in the context of a specific, albeit hypothetical,
example.

1.5.1 Organisation of the book

Chapters 3 and 4 of the book discuss geostatistical models, whilst Chapters 5
to 8 discuss associated methods for the analysis of geostatistical data. Embedded
within these chapters is a model-based counterpart to classical, linear geostatis-
tics, in which we assume that the linear Gaussian model is applicable, perhaps
after transformation of the response variable. We do not necessarily believe that
the Gaussian is a correct model, only that it provides a reasonable approxima-
tion. Operationally, its significance is that it gives a theoretical justification for
using linear prediction methods, which under the Gaussian assumption have
the property that they minimise mean squared prediction errors. In Chapter 8
we give a model-based perspective on design issues for geostatistical studies.

Our aim has been to give a thorough description of core topics in model-based
geostatistics. However, in several places we have included shorter descriptions
of some additional topics, together with suggestions for further reading. These
additional topics are ones for which model-based geostatistical methods are,
at the time of writing, incompletely developed. They include constructions for
multivariate Gaussian models, preferential sampling and point process models.

Throughout the book, we intersperse methodological discussion with illustra-
tive examples using real or simulated data. Some of the data-sets which we use
are not freely available. Those which are can be downloaded from the book’s
web-page, http://www.maths.lancs.ac.uk/∼diggle/mbg.

Most chapters, including this one, end with a section on “Computation”. In
each such section we give examples of R code to implement the geostatistical
methods described in the corresponding chapters, and illustrate some of the
optional input parameters for various functions within the contributed R pack-
ages geoR and geoRglm. These illustrations are intended to be less formal in
style than the help-pages which form part of the package documentation. The
web-sites, http://www.est.ufpr.br/geoR and http://www.est.ufpr.br/geoRglm,
also include illustrative sessions using these two packages. Material from the
computation sections is also available from the book’s web-page.

The “Computation” sections assume that the reader is familiar with using
R for elementary statistics and graphics. For readers who are not so familiar,
a good introductory textbook is Dalgaard (2002), whilst general information
about the R project can be found in documentation available in the R-Project
web page, http://www.r-project.org. These sections are also optional, in the
sense that they introduce no new statistical ideas, and the remainder of the
book can be read without reference to this material.
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1.5.2 Statistical pre-requisites

We assume that the reader has a general knowledge of the standard tools for
exploratory data-analysis, regression modelling and statistical inference. With
regard to regression modelling, we use both linear and generalised linear models.
One of many good introductions to linear models is Draper & Smith (1981). The
standard reference to generalised linear models is McCullagh & Nelder (1989).
We make extensive use of likelihood-based methods, for both non-Bayesian and
Bayesian inference. Appendix A gives a short summary of the key ideas. A
good treatment of likelihood-based methods in general is Pawitan (2001), whilst
O’Hagan (1994) specifically discusses the Bayesian method.

Readers will also need some knowledge of elementary probability and stochas-
tic process theory. Introductory books at a suitable level include Ross (1976)
for elementary probability and Cox & Miller (1965) for stochastic processes.

We shall also use a variety of computer-intensive methods, both for simulating
realisations of stochastic processes and more generally in Monte Carlo methods
of inference, including Markov chain Monte Carlo. A good general introduc-
tion to simulation methods is Ripley (1987). Tanner (1996) presents a range of
computational algorithms for likelihood-based and Bayesian inference. Gelman,
Carlin, Stern & Rubin (2003) focus on Bayesian methods for a range of statis-
tical models. Gilks, Richardson & Spiegelhalter (1996) discuss both theoretical
and practical aspects of Markov chain Monte Carlo.

1.6 Computation

The examples in this section, and in later chapters, use the freely avail-
able software R and the contributed R packages geoR and geoRglm. Readers
should consult the R project web page, http://www.r-project.org, for further
information on the software and instructions on its installation.

In the listing of the R code for the examples, the > sign is the R prompt
and the remainder of the line denotes the R command entered by the user in
response to the prompt. R commands are shown in slanted verbatim font

like this. When a single command is spread over two or more lines, the second
and subsequent lines of input are prompted by a + sign, rather than the > sign.
The R system is based on subroutines called functions, which in turn can take
arguments which control their behaviour. Function names are followed by paren-
theses, in the format function(), whereas arguments are written within the
parentheses. Any lines without the > prompt represent outputs from a function
which, by default, are passed back to the screen. They are shown in verbatim

font like this.

1.6.1 Elevation data

In our first example, we give the commands needed to load the geoR package,
and to produce the circle plot of the elevation data, as shown in Figure 1.1.
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The example assumes that the data are stored in a standard three-column text-
file elevation.dat located in the R working directory. The first two columns
on each line give the (x, y)-coordinates of a location whilst the third column
gives the corresponding value of the measured elevation. The version of the data
which can be downloaded from the book web page is already formatted in this
way.

> require(geoR)

> elevation <- read.geodata("elevation.dat")

> points(elevation, cex.min = 1, cex.max = 4)

The first command above uses the built-in R function require() to load the
geoR package. The second command reads the data and converts them to an
object of the class geodata using read.table() and as.geodata() internally.
The last command invokes a method for points() which is provided by the
package geoR. In this way, the generic R function points() is able to use the
geoR function points.geodata() to produce the required plot of the data. The
example includes optional settings for arguments which control the sizes of the
plotted circles. By default, the diameters of the plotted circles are defined by a
linear transformation of the measured elevations onto a scale ranging between
cex.min and cex.max times the default plotting character size.

The output returned when typing args(points.geodata) will show other
arguments which can be used to modify the resulting plot. For example,

> points(elevation, cex.min = 2, cex.max = 2, col = "gray")

will plot the locations as filled circles with gray shades proportional to the
measured elevation values, whereas

> points(elevation, cex.min = 2, cex.max = 2, pt.div = "quint")

will result in points filled with different colours according to the quintiles of the
empirical distribution of measured elevations.

Because the elevation data are also included in the geoR package, they can
be loaded from within R, once the package itself has been loaded, by using the
data() function, and explanatory documentation accessed using the help()

function, as follows.

> data(elevation)

> help(elevation)

There are several data-sets included in the package geoR which can be loaded
with data(). Typing the command data(package="geoR") will show a list of
the available data sets with respective names and a short description. For each
of them there is a help file explaining the data contents and format.

Another, and often more convenient, way of running a sequence of R com-
mands is to use source(). To do so, we first type the required sequence of
commands, without the > at the beginning of each line, into a text-file, say
elevation.R although any other legal file-name could be used. We then invoke
the whole sequence by responding to the R prompt with the single command
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> source("elevation.R")

This option, or an equivalent mode of operation based on toggling between
an editor and an R command window, is usually more efficient than typing R

commands directly in response to the > prompt.
The next example shows the output generated by applying the summary()

function to the elevation data. The output includes the number of data points,
the minimum and maximum values of the x and y-coordinates and of the
distances between pairs of points, together with summary statistics for the
measured elevations.

> summary(elevation)

Number of data points: 52

Coordinates summary

x y

min 0.2 0.0

max 6.3 6.2

Distance summary

min max

0.200000 8.275869

Data summary

Min. 1st Qu. Median Mean 3rd Qu. Max.

690.0 787.5 830.0 827.1 873.0 960.0

Another function which is useful for initial exploration of a set of data is the
method plot.geodata(), which is invoked by default when a geodata object is
supplied as an argument to the built-in plot() function. Its effect is to produce
a 2×2 display showing the point locations, the measured values at each location
against each of the coordinates, and a histogram of the measured values. This
plot for the elevation data is shown in Figure 1.8, which is produced by the
command

> plot(elevation, lowess = T)

The optional argument lowess=T adds a smooth line to the scatterplots of the
measured values against each of the spatial coordinates. The top-right panel of
Figure 1.8 has been rotated by 90 degrees from the conventional orientation, i.e.
the measured values correspond to the horizontal rather than the vertical axis,
so that the spatial coordinate axes have the same interpretation throughout.
These plots aim to investigate the behaviour of the data along the coordinates,
which can be helpful in deciding whether a trend surface should be included in
the model for the data. By default, the plot of the data locations shown in the
top-left panel of Figure 1.8 uses circles, triangles, vertical and diagonal crosses
to correspond to the quartiles of the empirical distribution of measured values.
On a computer screen, these points would also appear in different colours: blue,
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Figure 1.8. Point locations (top-left), data values against coordinates (top-right and
bottom-left) and histogram (bottom-right) of the measured elevations.

green, yellow and red, respectively. The use of four distinct colours is the default
for this function.

1.6.2 More on the geodata object

The functions read.geodata() and as.geodata() store a geostatistical data-
set in a particular format called a geodata object. A geodata object is a list
which has two obligatory components: a matrix with the two-dimensional coor-
dinates (coords) of the sampling design and a vector giving the corresponding
measured value at each of the locations in the design (data). Four additional,
optional components are: a matrix with coordinates defining the boundary of
the polygonal study area (borders); a vector or data-frame with covariates
(covariate); an offset variable (units.m); and a vector indexing the number
of the realisation of the process if more than one is available (realisation),
as for instance for data collected at different time points. These additional
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components, if present, are then used automatically by some of the geoR

functions.
The example below shows the components of some of the data-sets which are

included in the geoR package as geodata objects.

> names(elevation)

$coords

[1] "x" "y"

$data

[1] "data"

> data(parana)

> names(parana)

$coords

[1] "east" "north"

$data

[1] "data"

$other

[1] "borders" "loci.paper"

> data(ca20)

> names(ca20)

$coords

[1] "east" "north"

$data

[1] "data"

$covariate

[1] "altitude" "area"

$other

[1] "borders" "reg1" "reg2" "reg3"

> names(unclass(ca20))

[1] "coords" "data" "covariate" "borders" "reg1"

[6] "reg2" "reg3"

The slightly different results returned from the calls names(ca20) and
names(unclass(ca20)) illustrate that some special methods have been pro-
vided to modify the way that standard R functions handle geodata objects; in
this case the standard command names(ca20) recognises that ca20 is a geo-

data object, and invokes the non-standard method names.geodata() whereas
the command unclass(ca20) gives the standard result of the names function
by removing the class geodata from the object ca20.
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Other, perhaps more useful methods to facilitate data manipulation are also
implemented such as as.data.frame.geodata()which converts a geodata ob-
ject to a data-frame and subset.geodata()which facilitates extracting subsets
of geodata objects. Below we illustrate the usage of subset.geodata() on the
ca20 data-set selecting data only within sub-area 3 in the first command and
selecting only data greater than 70 in the second.

> ca20.3 <- subset(ca20, area == 3)

> ca20.g70 <- subset(ca20, data > 70)

1.6.3 Rongelap data

Our next example produces a circle plot for the Rongelap data, together with
an enlarged inset of the western part of the island. The rongelap data-set is
included with the geoRglm package.

> require(geoRglm)

> data(rongelap)

The response to the command names(rongelap) reveals that the rongelap
geodata object has four components: coords contains the spatial coordinates;
data contains the photon emission counts yi attributable to radioactive cae-
sium; units.m is an off-set variable which gives the values of ti, the time (in
seconds) over which yi was accumulated; borders contains the coordinates of
a digitisation of the island’s coastline. The function summary() recognises and
summarises all four components.

> names(rongelap)

$coords

NULL

$data

[1] "data"

$units.m

[1] "units.m"

$other

[1] "borders"

> summary(rongelap)

Number of data points: 157

Coordinates summary

Coord.X Coord.Y

min -6050 -3430

max -50 0
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Distance summary

min max

40.000 6701.895

Borders summary

[,1] [,2]

min -6299.31201 -3582.2500

max 20.37916 103.5414

Data summary

Min. 1st Qu. Median Mean 3rd Qu. Max.

75 1975 2639 3011 3437 21390

Offset variable summary

Min. 1st Qu. Median Mean 3rd Qu. Max.

200.0 300.0 300.0 401.9 400.0 1800.0

We can use points() to visualise the data on a map of the study area as
shown in Figure 1.2. For the enlargement of the western part of the island, we
have used subarea() to select a subset of the original data-set whose spatial
coordinates lie within a specified sub-area. The function subarea() accepts
arguments xlim and/or ylim defining a rectangular sub-area. If these arguments
are not provided the user is prompted to click on two points which then define
the opposite corners of the required rectangular area. To produce the Figure,
we use the following sequence of commands.

> points(rongelap)

> rongwest <- subarea(rongelap, xlim = c(-6300, -4800))

> rongwest.z <- zoom.coords(rongwest, xzoom = 3.5, xoff = 2000,

+ yoff = 3000)

> points(rongwest.z, add = T)

> rect.coords(rongwest$sub, lty = 2, quiet = T)

> rect.coords(rongwest.z$sub, lty = 2, quiet = T)

> text(-4000, 1100, "western area", cex = 1.5)

The object rongwest is a geodata object which is generated by subarea(). It
has the same components as the original geodata object but is restricted to the
area whose x-coordinates are in the range −6300 to −4800; because the ylim

argument was not used, the y-coordinate range is unrestricted.
Note that, by default, if the element units.m is present in the data object,

as for this case, the size of the circle plotted at each location is determined by
the corresponding emission count per unit time, rather than by the emission
count itself. Setting data=rongelap$data the effect of the argument is that
the raw data on emission count would be plotted. If preferred, the argument
pt.div="equal" could be used to specify that all the points should have the
same size. The coastline is included in the plot by default because the element
borders is present in the geodata object. If this is unwanted the argument
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borders can be set to NULL. Alternatively, another object with the polygon
defining the region bondaries can be passed using this argument.

1.6.4 The Gambia malaria data

The Gambia malaria data shown in Example 1.3 are available as a data-frame

in the geoR package. The commands below load the data and display the first
three lines of the resulting data-frame, with variable names printed at the head
of each column of data.

> data(gambia)

> gambia[1:3, ]

x y pos age netuse treated green phc

1850 349631.3 1458055 1 1783 0 0 40.85 1

1851 349631.3 1458055 0 404 1 0 40.85 1

1852 349631.3 1458055 0 452 1 0 40.85 1

Each line corresponds to one child. The columns are the coordinates of the
village where the child lives (x and y), whether or not the child tested positive
for malaria (pos), their age in days (age), usage of bed-net(netuse), whether
the bed-net is treated with insecticide (treated), the vegetation index measured
at the village location (green) and the presence or absence of a health centre in
the village (phc).

To display the data as show in Figure 1.3 we use the gambia.map() function
which is also included in geoR.

> gambia.map()

1.6.5 The soil data

The soil data shown in Example 1.4 are included in geoR and can be loaded
with the commands data(ca20) and data(camg). The former loads only the
calcium data, stored as a geodata object, whereas the latter loads a data-frame
which includes both the calcium and the magnesium data. In order to produce
the right-hand panel in Figure 1.5 we use the sequence of commands below.

> data(camg)

> mg20 <- as.geodata(camg, data.col = 6)

> points(mg20, cex.min = 0.2, cex.max = 1.5, pch = 21)

> data(ca20)

> polygon(ca20$reg1, lty = 2)

> polygon(ca20$reg2, lty = 2)

> polygon(ca20$reg3, lty = 2)

The first command loads the combined data using data(), the second creates
a geodata object for plotting the magnesium data. Borders of the region and
sub-regions included in the plot use extra information provided in the calcium
data object ca20, which is included in the geoR package.
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We now inspect the ca20 object in more detail using the summary() function.
Remember that help(ca20) gives the documentation for this data-set.

> summary(ca20)

Number of data points: 178

Coordinates summary

east north

min 4957 4829

max 5961 5720

Distance summary

min max

43.01163 1138.11774

Borders summary

east north

min 4920 4800

max 5990 5800

Data summary

Min. 1st Qu. Median Mean 3rd Qu. Max.

21.00 43.00 50.50 50.68 58.00 78.00

Covariates summary

altitude area

Min. :3.300 1: 14

1st Qu.:5.200 2: 48

Median :5.650 3:116

Mean :5.524

3rd Qu.:6.000

Max. :6.600

Other elements in the geodata object

[1] "reg1" "reg2" "reg3"

The output above shows that the data contain 178 locations, with E-W co-
ordinates ranging from 4957 to 5961 and N-S coordinates ranging from 4829
to 5720. The minimum distance between any two locations is about 43 units
and the maximum 1138. The object also has a borders component which is
a two-column matrix with rows corresponding to a set of coordinates defining
the polygonal boundary of the study-area. The function also shows summary
statistics for the response variable and for the covariates. For the covariate area
the summary indicates that 14, 48 and 116 locations lie within the sub-areas 1,
2 and 3, respectively.



26 1. Introduction

1.7 Exercises

1.1. Produce a plot of the Rongelap data in which a continuous colour-scale
or grey-scale is used to indicate the value of the emission count per unit
time at each location, and the two sub-areas with the 5 by 5 sub-grids at
50 metre spacing are shown as insets.

1.2. Construct a polygonal approximation to the boundary of The Gambia.
Construct plots of the malaria data which show the spatial variation in
the values of the observed prevalence in each village, and of the green-ness
covariate.

1.3. Consider the elevation data as a simple regression problem with elevation
as the response and north-south location as the explanatory variable. Fit
the standard linear regression model using ordinary least squares. Exam-
ine the residuals from the linear model, with a view to deciding whether
any more sophisticated treatment of the spatial variation in elevation
might be necessary.

1.4. Find a geostatistical data-set which interests you.

(a) What scientific questions are the data intended to address? Do these
concern estimation, prediction or testing?

(b) Identify the study-region, the design, the response and the covariates,
if any.

(c) What is the support of each response?
(d) What is the underlying signal?
(e) If you wished to predict the signal throughout the study-region,

would you choose to interpolate the response data?

1.5. Load the Paraná data set using the command data(parana) and inspect
its documentation using help(parana). For these data, consider the same
questions as were raised in Exercise 1.4.
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2
An overview of model-based geostatistics

The aim of this chapter is to provide a short overview of model-based geostatis-
tics, using the elevation data of Example 1.1 to motivate the various stages
in the analysis. Although this example is very limited from a scientific point of
view, its simplicity makes it well-suited to the task in hand. Note, however, that
Handcock & Stein (1993) show how to construct a useful explanatory variable
for these data using a map of streams which run through the study-region.

2.1 Design

Statistical design is concerned with deciding what data to collect in order to
address a question, or questions, of scientific interest. In this chapter, we shall
assume that the scientific objective is to produce a map of surface elevation
within a square study region whose side-length is 6.7 units, or 335 feet (≈ 102
meters); we presume that this study-region has been chosen for good reason,
either because it is of interest in its own right, or because it is representative of
some wider spatial region.

In this simple setting, there are essentially only two design questions: at how
many locations should we measure the elevation? and where should we place
these locations within the study-region?

In practice, the answer to the first question is usually dictated by limits
on the investigator’s time and/or any additional cost in converting each field
sample into a measured value. For example, some kinds of measurements involve
expensive off-site laboratory assays whereas others, such as surface elevation,
can be measured directly in the field. For whatever reason, the answer in this
example is 52.
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For the second question, two obvious candidate designs are a completely ran-

dom design or a completely regular design. In the former, the locations xi form
an independent random sample from the uniform distribution over the study
area, i.e. a homogeneous planar Poisson process (Diggle, 2003, chapter 1). In
the latter, the xi form a regular lattice pattern over the study-region. Classical
sampling theory (Cochran 1977) tends to emphasise the virtue of some form of
random sampling to ensure unbiased estimation of underlying population char-
acteristics, whereas spatial sampling theory (Matérn 1960) shows that under
typical modelling assumptions spatial properties are more efficiently estimated
by a regular design. A compromise, which the originators of the surface eleva-
tion data appear to have adopted, is to use a design which is more regular than
the completely random design but not as regular as a lattice.

Lattice designs are widely used in applications. The convenience of lat-
tice designs for field-work is obvious, and provided there is no danger that
the spacing of the lattice will match an underlying periodicity in the spatial
phenomenon being studied, lattice designs are generally efficient for spatial pre-
diction (Matérn 1960). In practice, the rigidity and simplicity of a lattice design
also provide some protection against sub-conscious bias in the placing of the xi.
Note in this context that, strictly, a regular lattice design should mean a lattice
whose origin is located at random, to guard against any subjective bias. The
soil data of Example 1.4 provide an example of a regular lattice design.

Even more common in some areas of application is the opportunistic design,
whereby geostatistical data are collected and analysed using an existing network
of locations xi which may have been established for quite different purposes.
Designs of this kind often arise in connection with environmental monitoring. In
this context, individual recording stations may be set up to monitor pollution
levels from particular industrial sources or in environmentally sensitive loca-
tions, without any thought initially that the resulting data might be combined
in a single, spatial analysis. This immediately raises the possibility that the de-
sign may be preferential, in the sense discussed in Section 1.2.3. Whether they
arise by intent or by accident, preferential designs run the risk that a standard
geostatistical analysis may produce misleading inferences about the underlying
continuous spatial variation.

2.2 Model formulation

We now consider model formulation – unusually before, rather than after, ex-
ploratory data analysis. In practice, clean separation of these two stages is rare.
However, in our experience it is useful to give some consideration to the kind
of model which, in principle, will address the questions of interest before refin-
ing the model through the usual iterative process of data analysis followed by
reformulation of the model as appropriate.

For the surface elevation data, the scientific question is a simple one – how can
we use the measured elevations to construct our best guess (or, in more formal
language, to predict) the underlying elevation surface throughout the study-
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region? Hence, our model needs to include a real-valued, spatially continuous
stochastic process, S(x) say, to represent the surface elevation as a function
of location, x. Depending on the nature of the terrain, we may want S(x) to
be continuous, differentiable or many-times differentiable. Depending on the
nature of the measuring device, or the skill of its operator, we may also want
to allow for some discrepancy between the true surface elevation S(xi) and
the measured value Yi at the design location xi. The simplest statistical model
which meets these requirements is a stationary Gaussian model, which we define
below. Later, we will discuss some of the many possible extensions of this model
which increase its flexibility.

We denote a set of geostatistical data in its simplest form, i.e. in the absence
of any explanatory variables, by (xi, yi) : i = 1, . . . , n where the xi are spatial
locations and yi is the measured value associated with the location xi. The
assumptions underlying the stationary Gaussian model are:

1. {S(x) : x ∈ IR2} is a Gaussian process with mean µ, variance σ2 =
Var{S(x)} and correlation function ρ(u) = Corr{S(x), S(x′)}, where u =
||x− x′|| and || · || denotes distance;

2. conditional on {S(x) : x ∈ IR2}, the yi are realisations of mutually in-
dependent random variables Yi, Normally distributed with conditional
means E[Yi|S(·)] = S(xi) and conditional variances τ 2.

The model can be defined equivalently as

Yi = S(xi) + Zi : i = 1, . . . , n

where {S(x) : x ∈ IR2} is defined by assumption 1 above and the Zi are mu-
tually independent N(0, τ2) random variables. We favour the superficially more
complicated conditional formulation for the joint distribution of the Yi given
the signal, because it identifies the model explicitly as a special case of the
generalized linear geostatistical model which we introduced in Section 1.4.

In order to define a legitimate model, the correlation function ρ(u) must be
positive-definite. This condition imposes non-obvious constraints so as to ensure
that, for any integer m, set of locations xi and real constants ai, the linear
combination

∑m
i=1 aiS(xi) will have non-negative variance. In practice, this is

usually ensured by working within one of several standard classes of parametric
model for ρ(u). We return to this question in Chapter 3. For the moment, we
note only that a flexible, two-parameter class of correlation functions due to
Matérn (1960) takes the form

ρ(u;φ, κ) = {2κ−1Γ(κ)}−1(u/φ)κKκ(u/φ) (2.1)

where Kκ(·) denotes the modified Bessel function of the second kind, of order
κ. The parameter φ > 0 determines the rate at which the correlation decays to
zero with increasing u. The parameter κ > 0 is called the order of the Matérn
model, and determines the differentiability of the stochastic process S(x), in a
sense which we shall make precise in Chapter 3.

Our notation for ρ(u) presumes that u ≥ 0. However, the correlation function
of any stationary process must by symmetric in u, hence ρ(−u) = ρ(u).
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The stochastic variation in a physical quantity is not always well described by
a Normal distribution. One of the simplest ways to extend the Gaussian model
is to assume that the model holds after applying a transformation to the original
data. For positive-valued response variables, a useful class of transformations is
the Box-Cox family (Box & Cox 1964):

Y ∗ =

{

(Y λ − 1)/λ : λ 6= 0
logY : λ = 0

(2.2)

Another simple extension to the basic model is to allow a spatially varying
mean, for example by replacing the constant µ by a linear regression model for
the conditional expectation of Yi given S(xi), so defining a spatially varying
mean µ(x).

A third possibility is to allow S(x) to have non-stationary covariance struc-
ture. Arguably, most spatial phenomena exhibit some form of non-stationarity,
and the stationary Gaussian model should be seen only as a convenient ap-
proximation to be judged on its usefulness rather than on its strict scientific
provenance.

2.3 Exploratory data analysis

Exploratory data analysis is an integral part of modern statistical practice, and
geostatistics is no exception. In the geostatistical setting, exploratory analysis
is naturally oriented towards the preliminary investigation of spatial aspects of
the data which are relevant to checking whether the assumptions made by any
provisional model are approximately satisfied. However, non-spatial aspects can
and should also be investigated.

2.3.1 Non-spatial exploratory analysis

For the elevation data in Example 1.1 the 52 data values range from 690 to 960,
with mean 827.1, median 830 and standard deviation 62. A histogram of the
52 elevation values (Figure 2.1) indicates only mild asymmetry, and does not
suggest any obvious outliers. This adds some support to the use of a Gaussian
model as an approximation for these data. Also, because geostatistical data are,
at best, a correlated sample from a common underlying distribution, the shape
of their histogram will be less stable than that of an independent random sample
of the same size, and this limits the value of the histogram as a diagnostic for
non-Normality.

In general, an important part of exploratory analysis is to examine the re-
lationship between the response and available covariates, as illustrated for the
soil data in Figure 1.7. For the current example, the only available covariates
to consider are the spatial coordinates themselves.
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Figure 2.1. Histogram of the surface elevation data.

2.3.2 Spatial exploratory analysis

The first stage in spatial exploratory data analysis is simply to plot the response
data in relation to their locations, for example using a circle plot as shown for
the surface elevation data in Figure 1.1. Careful inspection of this plot can
reveal spatial outliers, i.e. responses which appear grossly discordant with their
spatial neighbours, or spatial trends which might suggest the need to include
a trend surface model for a spatially varying mean, or perhaps qualitatively
different behaviour in different sub-regions.

In our case, the most obvious feature of Figure 1.1 is the preponderance of
large response values towards the southern end of the study region. This sug-
gests that a trend surface term in the model might be appropriate. In some
applications, the particular context of the data might suggest that there is
something special about the north-south direction – for example, for applica-
tions on a large geographical scale, we might expect certain variables relating
to the physical environment to show a dependence on latitude. Otherwise, our
view would be that if a trend surface is to be included in the model at all, then
both of the spatial coordinates should contribute to it because the orientation
of the study region is essentially arbitrary.

Scatterplots of the response variable against each of the spatial coordinates
can sometimes reveal spatial trends more clearly. Figure 2.2 show the surface ele-
vations plotted against each of the coordinates, with lowess smooths (Cleveland,
1979, 1981) added to help visualisation. These plots confirm the north-south
trend whilst additionally suggesting a less pronounced, non-monotone east-west
trend, with higher responses concentrated towards the eastern and western
edges of the study-region.
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Figure 2.2. Elevation data against the coordinates.

When interpreting plots of this kind it can be difficult, especially when
analysing small data-sets, to distinguish between a spatially varying mean
response and correlated spatial variation about a constant mean. Strictly speak-
ing, without independent replication the distinction between a deterministic
function µ(x) and the realisation of a stochastic process S(x) is arbitrary. Op-
erationally, we make the distinction by confining ourselves to “simple” functions
µ(x), for example low-order polynomial trend surfaces, using the correlation
structure of S(x) to account for more subtle patterns of spatial variation in the
response. In Chapter 5 we shall use formal, likelihood-based methods to guide
our choice of model for both mean and covariance structure. Less formally, we
interpret spatial effects which vary on a scale comparable to or greater than
the dimensions of the study-region as variation in µ(x) and smaller-scale ef-
fects as variation in S(x). This is in part a pragmatic strategy, since covariance
functions which do not decay essentially to zero at distances shorter than the
dimensions of the study region will be poorly identified, and in practice indis-
tinguishable from spatial trends. Ideally, the model for the trend should also
have a natural physical interpretation; for example, in an investigation of the
dispersal of pollutants around a known source, it would be natural to model
µ(x) as a function of the distance, and possibly the orientation, of x relative to
the source.

To emphasise this point, the three panels of Figure 2.3 compare the original
Figure 1.1 with circle plots of residuals after fitting linear and quadratic trend
surface models by ordinary least squares. If we assume a constant spatial mean
for the surface elevations themselves, then the left-hand panel of Figure 2.3
indicates that the elevations must be very strongly spatially correlated, to the
extent that the correlation persists at distances beyond the scale of the study
region. As noted above, fitting a model of this kind to the data would result
in poor identification of parameters describing the correlation structure. If, in
contrast, we use a linear trend surface to describe a spatially varying mean,
then the central panel of Figure 2.3 still suggests spatial correlation because
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Figure 2.3. Circle plot of the surface elevation data. The left-hand panel shows the
original data. The center and right-hand panels show the residuals from first-order
(linear) and second-order (quadratic) polynomial trend surfaces, respectively, using
empty and filled circles to represent negative and positive residuals and circle radii
proportional to the absolute values of the residuals.

positive and negative residuals tend to occur together, but the scale of the
spatial correlation is smaller. The right-hand panel of 2.3 has a qualitatively
similar appearance to the centre panel, but the range of the residuals has been
reduced, because some additional variation is taken up by the quadratic terms
in the fitted trend surface. The range of the residuals is from −61.1 to +110.7
in the centre panel, and from −63.3 to +97.8 in the right-hand panel.

Notwithstanding the above discussion, visual assessment of spatial correlation
from a circle plot is difficult. For a sharper assessment, a useful exploratory tool
is the empirical variogram. We discuss theoretical and empirical variograms
in more detail in Chapters 3 and 5, respectively. Here, we give only a brief
description.

For a set of geostatistical data (xi, yi) : i = 1, . . . , n, the empirical variogram

ordinates are the quantities vij = 1
2 (yi−yj)2. For obvious reasons, some authors

refer to these as the semi-variogram ordinates. If the yi have spatially constant
mean and variance, then vij has expectation σ2{1 − ρ(xi, xj)} where σ2 is
the variance and ρ(xi, xj) denotes the correlation between yi and yj . If the yi
are generated by a stationary spatial process, then ρ(·) depends only on the
distance between xi and xj and typically approaches zero at large distances,
hence the expectation of the vij approaches a constant value, σ2, as the distance
uij between xi and xj increases. If the yi are uncorrelated, then all of the vij
have expectation σ2. These properties motivate the definition of the empirical

variogram as a plot of vij against the corresponding distance uij . A more easily
interpretable plot is obtained by averaging the vij within distance bands.

The left-hand panel of Figure 2.4 shows a variogram for the original sur-
face elevations, whilst the right-hand panel shows variograms for residuals from
the linear and quadratic trend-surface models, indicated by solid and dashed
lines, respectively. In the left-hand panel, the variogram increases throughout
the plotted range, indicating that if these data were generated by a stationary
stochastic process, then the range of its spatial correlation must extend beyond
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Figure 2.4. Empirical variograms for the original data (left-panel) and for residuals
(right panel) from a linear (solid lines) or quadratic (dashed lines) trend surface. In all
three cases, empirical variogram ordinates have been averaged in bins of unit width.

the scale of the study-region. Pragmatically, including a spatially varying mean
is a better modelling strategy. The solid line on right hand panel shows be-
haviour more typical of a stationary, spatially correlated process, i.e. an initial
increase levelling off as the correlation decays to zero at larger distances. Finally,
the shape of the variogram in the dashed line on the right-hand panel is similar
to the solid one but its range is smaller by a factor of about 0.6. The range of
values in the ordinates of the empirical variogram is approximately equal to the
variance of the residuals, hence the reduction in range again indicates how the
introduction of progressively more elaborate models for the mean accounts for
correspondingly more of the empirical variation in the original data. Note also
that in all panels of Figure 2.4 the empirical variogram approaches zero at small
distances. This indicates that surface elevation is being measured with negligi-
ble error, relative to either the spatial variation in the surface elevation itself
(left-hand panel), or the residual spatial variation about the linear or quadratic
trend surface (right-hand panel). This interpretation follows because the expec-
tation of vij corresponding to two independent measurements, yi and yj , at the
same location is simply the variance of the measurement error.

We emphasise that, for reasons explained in Chapter 5, we prefer to use the
empirical variogram only as an exploratory tool, rather than as the basis for
formal inference. With this proviso, Figure 2.4 gives a strong indication that a
stationary model is unsuitable for these data, whereas the choice between the
linear and quadratic trend-surface models is less clear-cut.

When an empirical variogram appears to show little or no spatial correla-
tion, it can be useful to assess more formally whether the data are compatible
with an underlying model of the form yi = µ(xi) + zi where the zi are un-
correlated residuals about a spatially varying mean µ(x). A simple way to do
this is to compute residuals about a fitted mean µ̂(x) and to compare the
residual empirical variogram with the envelope of empirical variograms com-
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Figure 2.5. Monte Carlo envelopes for the variogram of ordinary least squares resid-
uals of the surface elevation data after fitting linear (left-hand panel) or quadratic
(right-hand panel) trend surface models.

puted from random permutations of the residuals, holding the corresponding
locations fixed. The left-hand panel of Figure 2.5 shows a variogram envelope
obtained from 99 independent random permutations of the residuals from a
linear trend surface fitted to the surface elevations by ordinary least squares.
This shows that the increasing trend in the empirical variogram is statistically
significant, confirming the presence of positive spatial correlation. The same
technique applied to the residuals from the quadratic trend surface produces
the diagram shown as the right-hand panel of Figure 2.5. This again indicates
significant spatial correlation, although the result is less clear-cut than before,
as the empirical variogram ordinates at distances 0.5 and 1.0 fall much closer
to the lower simulation envelope than they do in the left-hand panel.

2.4 The distinction between parameter estimation and
spatial prediction

Before continuing with our illustrative analysis of the surface elevation data, we
digress to expand on the distinction between estimation and prediction.

Suppose that S(x) represents the level of air pollution at the location x,
that we have observed (without error, in this hypothetical example) the values
Si = S(xi) at a set of locations xi : i = 1, . . . , n forming a regular lattice over a
spatial region of interest, A, and that we wish to learn about the average level
of pollution over the region A. An intuitively reasonable estimate is the sample
mean,

S̄ = n−1
n

∑

i=1

Si. (2.3)
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What precision should we attach to this estimate?
Suppose that S(x) has aconstant expectation, θ = E[S(x)] for any location x

in A. One possible interpretation of S̄ is as an estimate of θ, in which case an
appropriate measure of precision is the mean square error, E[(S̄ − θ)2]. This is
just the variance of S̄, which we can calculate as

n−2
n

∑

i=1

n
∑

j=1

Cov(Si, Sj). (2.4)

For a typical geostatistical model, the correlation between any two Si and Sj
will be either zero or positive, and (2.4) will therefore be larger than the naive
expression for the variance of a sample mean, σ2/n where σ2 = Var{S(x)}.

If we regard S̄ as a predictor of the spatial average,

SA = |A|−1

∫

A

S(x)dx,

where |A| is the area of A, then the mean square prediction error is E[(S̄−SA)2].
Noting that SA is a random variable, we write this as

E[(S̄ − SA)2] = n−2
n

∑

i=1

n
∑

j=1

Cov(Si, Sj)

+ |A|−2

∫

A

∫

A

Cov{S(x), S(x′)}dxdx′

− 2(n|A|)−1
n

∑

i=1

∫

A

Cov{S(x), S(xi)}dx. (2.5)

In particular, the combined effect of the second and third terms on the right
hand side of (2.5) can easily be to make the mean square prediction error smaller
than the naive variance formula. For example, if we increase the sample size n
by progressively decreasing the spacing of the lattice points xi, (2.5) approaches
zero, whereas (2.4) does not.

2.5 Parameter estimation

For the stationary Gaussian model, the parameters to be estimated are the
mean µ and any additional parameters which define the covariance structure
of the data. Typically, these include the signal variance σ2, the conditional or
measurement error variance τ 2 and one or more correlation function parameters
φ.

In geostatistical practice, these parameters can be estimated in a number of
different ways which we shall discuss in detail in Chapter 5. Our preference
here is to use the method of maximum likelihood within the declared Gaussian
model.

For the elevation data, if we assume a stationary Gaussian model with a
Matérn correlation function and a fixed value κ = 1.5, the maximum likelihood
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estimates of the remaining parameters are µ̂ = 848.3, σ̂2 = 3510.1, τ̂2 = 48.2
and φ̂ = 1.2.

However, our exploratory analysis suggested a model with a non-constant
mean. Here, we assume a linear trend surface,

µ(x) = β0 + β1d1 + β2d2

where d1 and d2 are the north-south and east-west coordinates. In this case
the parameter estimates are β̂0 = 912.5, β̂1 = −5, β̂2 = −16.5, σ̂2 = 1693.1,
τ̂2 = 34.9 and φ̂ = 0.8. Note that because the trend surface accounts for some
of the spatial variation, the estimate of σ2 is considerably smaller than for the
stationary model, and similarly for the parameter φ which corresponds to the
range of the spatial correlation. As anticipated, for either model the estimate
of τ2 is much smaller than the estimate of σ2. The ratio of τ̂2 to σ̂2 is 0.014 for
the stationary model, and 0.021 for the linear trend surface model.

2.6 Spatial prediction

For prediction of the underlying, spatially continuous elevation surface we shall
here illustrate perhaps the simplest of all geostatistical methods: simple kriging.
In our terms, simple kriging is minimum mean square error prediction under the
stationary Gaussian model, but ignoring parameter uncertainty, i.e. estimates
of all model parameters are plugged into the prediction equations as if they
were the true parameter values. As discussed earlier, we do not claim that this
is a good model for the surface elevation data.

The minimum mean square error predictor, Ŝ(x) say, of S(x) at an arbitrary
location x is the function of the data, y = (y1, . . . , yn), which minimises the
quantity E[{Ŝ(x) − S(x)}2]. A standard result, which we discuss in Chapter 6,
is that Ŝ(x) = E[S(x)|y]. For the stationary Gaussian process, this conditional
expectation is a linear function of the yi, namely

Ŝ(x) = µ+
n

∑

i=1

wi(x)(yi − µ) (2.6)

where the wi(x) are explicit functions of the covariance parameters σ2, τ2 and
φ.

The top-left panel of Figure 2.6 gives the result of applying (2.6) to the
surface elevation data, using as values for the model parameters the maximum
likelihood estimates reported in Section 2.5, whilst the bottom-left panel shows
the corresponding prediction standard errors, SE(x) =

√
Var{S(x)|y}. The

predictions follow the general trend of the observed elevations whilst smoothing
out local irregularities. The prediction variances are generally small at locations
close to the sampling locations, because τ̂ 2 is relatively small; had we used the
value τ2 = 0 the prediction standard error would have been exactly zero at each
sampling location and the predicted surface Ŝ(x) would have interpolated the
observed responses yi.
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Figure 2.6. Simple kriging predictions for the surface elevation data. The top-left
panel shows the simple kriging predictor as a grey-scale image and contour plot; sam-
pling locations are plotted as circles with radii proportional to observed elevations.
The bottom-left panel shows the prediction standard deviations; sampling locations
are plotted as small crosses. The top-right and bottom-right panels give the same
information, but based on the model with a linear trend-surface.

It is straightforward to adapt the simple kriging formula (2.6) to incorporate
a spatially varying mean. We simply replace the constant µ on the right-hand-
side of (2.6) by a spatial trend, µ(x). If we do this, using the linear trend surface
model and its associated maximum likelihood parameter estimates we obtain
the results summarised in the top-right and bottom-right panels of Figure 2.6.
The plots corresponding to the two different models are directly comparable be-
cause they use a common grey-scale within each pair. Note in particular that in
this simple example, the dubious assumption of stationarity has not prevented
the simple kriging methodology from producing a predicted surface which cap-
tures qualitatively the apparent spatial trend in the data, and which is almost
identical to the predictions obtained using the more reasonable linear trend
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surface model. The two models produce somewhat different prediction stan-
dard errors; these range between 0 and 25.5 for the stationary model, between
0 and 24.4 for the model with the linear trend surface and between 0 and 22.9
for the model with the quadratic trend surface. The differences amongst the
three models are rather small. They are influenced by several different aspects
of the data and model, including the data-configuration and the estimated val-
ues of the model parameters. In other applications, the choice of model may
have a stronger impact on the predictive inferences we make from the data,
even when this choice does not materially affect the point predictions of the
underlying surface S(x). Note also that the plug-in standard errors quoted here
do not account for parameter uncertainty.

2.7 Definitions of distance

A fundamental stage in any geostatistical analysis is to define the metric for cal-
culating the distance between any two locations. By default, we use the standard
planar Euclidean distance, i.e. the“straight-line distance”between two locations
in IR2. Non-Euclidean metrics may be more appropriate for some applications.
For example, Rathbun (1998) discusses the measurement of distance between
points in an estuarine environment where, arguably, two locations which are
close in the Euclidean metric but separated by dry land should not be consid-
ered as near neighbours. It is not difficult to think of other settings where natural
barriers to communication might lead the investigator to question whether it is
reasonable to model spatial correlation in terms of straight-line distance.

Even when straight-line distance is an appropriate metric, if the study-region
is geographically extensive, distances computed between points on the earth’s
surface should strictly be great-circle distances, rather than straight-line dis-
tances on a map projection. Using (θ, φ) to denote a location in degrees of
longitude and latitude, and treating the earth as a sphere of radius r = 6378
kilometres, the great-circle distance between two locations is

r cos−1{sinφ1 sinφ2 + cosφ1 cosφ2 cos(θ1 − θ2)}.

Section 3.2 of Waller & Gotway (2004) gives a nice discussion of this issue
from a statistical perspective. Banerjee (2005) examines the effect of distance
computations on geostatistical analysis and concludes that the choice of metric
may influence the resulting inferences, both for parameter estimation and for
prediction. Note in particular that degrees of latitude and longitude represent
approximately equal distances only close to the equator.

Distances calculations are especially relevant to modelling spatial correlation,
hence parameters which define the correlation structure are particularly sensi-
tive to the choice of metric. Furthermore, the Euclidean metric plays an integral
part in determining valid classes of correlation functions using Bochner’s the-
orem (Stein 1999). Our geoR software implementation only calculates planar
Euclidean distances.
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2.8 Computation

The non-spatial exploratory analysis of the surface elevation data reported in
this chapter uses only built-in R functions as follows.

> with(elevation, hist(data, main = "", xlab = "elevation"))

> with(elevation, plot(coords[, 1], data, xlab = "W-E",

+ ylab = "elevation data", pch = 20, cex = 0.7))

> lines(lowess(elevation$data ~ elevation$coords[, 1]))

> with(elevation, plot(coords[, 2], data, xlab = "S-N",

+ ylab = "elevation data", pch = 20, cex = 0.7))

> lines(with(elevation, lowess(data ~ coords[, 2])))

To produce circle plots of the residual data we use the geoR function
points.geodata(), which is invoked automatically when a geodata object is
passed as an argument to the built-in function points(), as indicated below.
The argument trend defines a linear model on the covariates from which the
residuals are extracted for plotting. The values "1st" and "2nd" passed to the
argument trend are aliases to indicate first and second degree polynomials on
the coordinates. More details and other options to specify the trend are dis-
cussed later in this Section and in the documentation for trend.spatial().
Setting abs=T instructs the function to draw the circles with radii proportional
to the absolute values of the residuals.

> points(elevation, cex.max = 2.5)

> points(elevation, trend = "1st", pt.div = 2, abs = T,

+ cex.max = 2.5)

> points(elevation, trend = "2nd", pt.div = 2, abs = T,

+ cex.max = 2.5)

To calculate and plot the empirical variograms shown in Figure 2.4 for the
original data and for the residuals, we use variog(). The argument uvec defines
the classes of distance used when computing the empirical variogram, whilst
plot() recognises that its argument is a variogram object, and automatically
invokes plot.variogram(). The argument trend is used to indicate that the
variogram should be calculated from the residuals about a fitted trend surface.

> plot(variog(elevation, uvec = seq(0, 5, by = 0.5)),

+ type = "b")

> res1.v <- variog(elevation, trend = "1st", uvec = seq(0,

+ 5, by = 0.5))

> plot(res1.v, type = "b")

> res2.v <- variog(elevation, trend = "2nd", uvec = seq(0,

+ 5, by = 0.5))

> lines(res2.v, type = "b", lty = 2)

To obtain the residual variogram and simulation envelopes under random per-
mutation of the residuals, as shown in Figure 2.5, we proceed as in the following
example. By default, the function uses 99 simulations, but this can be changed
using the optional argument nsim.



2.8. Computation 41

> set.seed(231)

> mc1 <- variog.mc.env(elevation, obj = res1.v)

> plot(res1.v, env = mc1, xlab = "u")

> mc2 <- variog.mc.env(elevation, obj = res2.v)

> plot(res2.v, env = mc2, xlab = "u")

To obtain maximum likelihood estimates of the Gaussian model, with or without
a trend term, we use the geoR function likfit(). Because this function uses
a numerical maximisation procedure, the user needs to provide initial values
for the covariance parameters, using the argument ini. In this example we use
the default value 0 for the parameter τ 2, in which case ini specifies initial
values for the parameters σ2 and φ. Initial values are not required for the mean
parameters.

> ml0 <- likfit(elevation, ini = c(3000, 2), cov.model = "matern",

+ kappa = 1.5)

> ml0

likfit: estimated model parameters:

beta tausq sigmasq phi

" 848.317" " 48.157" "3510.096" " 1.198"

likfit: maximised log-likelihood = -242.1

> ml1 <- likfit(elevation, trend = "1st", ini = c(1300,

+ 2), cov.model = "matern", kappa = 1.5)

> ml1

likfit: estimated model parameters:

beta0 beta1 beta2 tausq sigmasq

" 912.4865" " -4.9904" " -16.4640" " 34.8953" "1693.1329"

phi

" 0.8061"

likfit: maximised log-likelihood = -240.1

To carry out the spatial interpolation using simple kriging we first define, and
store in the object locs, a grid of locations at which predictions of the values
of the underlying surface are required. The function krige.control() then
defines the model to be used for the interpolation, which is carried out by
krige.conv(). In the example below, we first obtain predictions for the sta-
tionary model, and then for the model with a linear trend on the coordinates.
If required, the user can restrict the trend surface model, for example by spec-
ifying a linear trend is the north-south direction. However, as a general rule
we prefer our inferences to be invariant to the particular choice of coordinate
axes, and would therefore fit both linear trend parameters or, more generally,
full polynomial trend surfaces.

> locs <- pred_grid(c(0, 6.3), c(0, 6.3), by = 0.1)

> KC <- krige.control(type = "sk", obj.mod = ml0)
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> sk <- krige.conv(elevation, krige = KC, loc = locs)

> KCt <- krige.control(type = "sk", obj.mod = ml1, trend.d = "1st",

+ trend.l = "1st")

> skt <- krige.conv(elevation, krige = KCt, loc = locs)

Finally, we use a selection of built-in graphical functions to produce the maps
shown in Figure 2.6, using optional arguments to the graphical functions to
ensure that pairs of corresponding plots use the same grey-scale.

> pred.lim <- range(c(sk$pred, skt$pred))

> sd.lim <- range(sqrt(c(sk$kr, skt$kr)))

> image(sk, col = gray(seq(1, 0, l = 51)), zlim = pred.lim)

> contour(sk, add = T, nlev = 6)

> points(elevation, add = TRUE, cex.max = 2)

> image(skt, col = gray(seq(1, 0, l = 51)), zlim = pred.lim)

> contour(skt, add = T, nlev = 6)

> points(elevation, add = TRUE, cex.max = 2)

> image(sk, value = sqrt(sk$krige.var), col = gray(seq(1,

+ 0, l = 51)), zlim = sd.lim)

> contour(sk, value = sqrt(sk$krige.var), levels = seq(10,

+ 27, by = 2), add = T)

> points(elevation$coords, pch = "+")

> image(skt, value = sqrt(skt$krige.var), col = gray(seq(1,

+ 0, l = 51)), zlim = sd.lim)

> contour(skt, value = sqrt(skt$krige.var), levels = seq(10,

+ 27, by = 2), add = T)

> points(elevation$coords, pch = "+")

In geoR, covariates which define a linear model for the mean response can be
specified by passing additional arguments to plotting or model-fitting functions.
In the examples above, we used trend="1st" or trend="2nd" to specify a lin-
ear or quadratic trend surface. However, these are simply short-hand aliases
to formulae which define the corresponding linear models, and are provided
for users’ convenience. For example, the model formula trend=~coords[,1] +

coords[,2] would produce the same result as trend="1st". The trend argu-
ment will also accept a matrix representing the design matrix of a general linear
model, or the output of the trend definition function, trend.spatial(). For
example, the call below to plot() can be used in order to inspect the data
after taking out the linear effect of the north-south coordinate. By setting the
argument trend=~coords[,2] the function fits a standard linear model on this
covariate and uses the residuals to produce the plots shown in Figure 2.7, rather
than plotting the original response data. Similarly, we could fit a quadratic func-
tion on the x-coordinate by setting trend=~coords[,2] + poly(coords[,1],

degree=2). We invite the reader to experiment with different options for the
argument trend and trend.spatial(). The procedure of taking out the effect
of a covariate is sometimes called trend removal.

> plot(elevation, low = TRUE, trend = ~coords[, 2], qt.col = 1)
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Figure 2.7. Output of plot.geodata() when setting the argument
trend=~coords[,2].

The trend argument can also be used to take account of covariates other than
functions of the coordinates. For example, the data set ca20 included in geoR

stores the calcium content from soil samples, as discussed in Example 1.4, to-
gether with associated covariate information. Recall that in this example the
study region is divided in three sub-regions with different histories of soil man-
agement. The covariate area included in the data-set indicates for each datum
the sub-region in which it was collected. Figure 2.8 shows the exploratory plot
for the residuals after removing a separate mean for calcium content in each
sub-region. This diagram was produced using the following code.

> data(ca20)

> plot(ca20, trend = ~area, qt.col = 1)

The plotting functions in geoR also accept an optional argument lambda

which specifies the numerical value for the parameter of the Box-Cox family
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Figure 2.8. Exploratory plot for the ca20 data-set obtained when setting trend=~area.

of transformations, with default lambda=1 corresponding to no transformation.
For example, the command

> plot(ca20, lambda = 0)

sets the Box-Cox transformation parameter to λ = 0, which will then produce
plots using the logarithm of the original response variable.

2.9 Exercises

2.1. Investigate the R packages splancs or spatstat, both of which provide
functions for the analysis of spatial point pattern data. Use either of these
packages to confirm (or not, as the case may be) that the design used
for the surface elevation data is more regular than a completely random
design.
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2.2. Consider the following two models for a set of responses, Yi : i = 1, . . . , n
associated with a sequence of positions xi : i = 1, . . . , n along a one-
dimensional spatial axis x.

(a) Yi = α + βxi + Zi, where α and β are parameters and the Zi are
mutually independent with mean zero and variance σ2

Z .
(b) Yi = A+Bxi + Zi where the Zi are as in (a) but A and B are now

random variables, independent of each other and of the Zi, each with
mean zero and respective variances σ2

A and σ2
B .

For each of these models, find the mean and variance of Yi and the covari-
ance between Yi and Yj for any j 6= i. Given a single realisation of either
model, would it be possible to distinguish between them?

2.3. Suppose that Y = (Y1, . . . , Yn) follows a multivariate Normal distribution
with E[Yi] = µ and Var{Yi} = σ2 and that the covariance matrix of Y
can be expressed as V = σ2R(φ). Write down the log-likelihood function
for θ = (µ, σ2, φ) based on a single realisation of Y and obtain explicit
expressions for the maximum likelihood estimators of µ and σ2 when φ
is known. Discuss how you would use these expressions to find maximum
likelihood estimators numerically when φ is unknown.

2.4. Load the ca20 data-set with data(ca20). Check the data-set documen-
tation with help(ca20). Perform an exploratory analysis of these data.
Would you include a trend term in the model? Would you recommend a
data transformation? Is there evidence of spatial correlation?

2.5. Load the Paraná data with data(parana) and repeat Exercise 2.4.
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