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Abstract – The objective of this study was to evaluate the efficiency of spatial statistical analysis in the selection
of genotypes in a plant breeding program and, particularly, to demonstrate the benefits of the approach when
experimental observations are not spatially independent. The basic material of this study was a yield trial of
soybean lines, with five check varieties (of fixed effect) and 110 test lines (of random effects), in an augmented
block design. The spatial analysis used a random field linear model (RFML), with a covariance function estimated
from the residuals of the analysis considering independent errors. Results showed a residual autocorrelation of
significant magnitude and extension (range), which allowed a better discrimination among genotypes (increase
of the power of statistical tests, reduction in the standard errors of estimates and predictors, and a greater
amplitude of predictor values) when the spatial analysis was applied. Furthermore, the spatial analysis led to a
different ranking of the genetic materials, in comparison with the non-spatial analysis, and a selection less
influenced by local variation effects was obtained.

Index terms: augmented design, mixed model, information recovery, autocorrelation, correlated data, geostatistics.

Seleção de genótipos e análise estatística espacial no melhoramento
de plantas

Resumo – O objetivo deste trabalho foi avaliar a eficiência da análise estatística espacial na seleção de genótipos
de plantas num programa de melhoramento. Buscou-se demonstrar os benefícios potenciais dessa abordagem
quando as observações experimentais não são espacialmente independentes. O material consistiu de um ensaio
de competição de linhagens de soja, com cinco cultivares testemunhas (de efeitos fixos) e 110 novos genótipos
(de efeitos aleatórios), delineado em blocos aumentados. O ajuste espacial foi feito pelo modelo linear de campo
aleatório (RFLM), com função de autocovariância estimada a partir dos resíduos da análise sob erros indepen-
dentes. Os resultados apontaram uma autocorrelação residual de magnitude e alcance significativos, o que
garantiu à abordagem espacial uma melhoria considerável na discriminação dos tratamentos genéticos – aumen-
to do poder dos testes estatísticos, redução nos erros padrão de estimativas e de preditores e alargamento na
amplitude das predições genotípicas. A análise espacial levou a um diferente ordenamento das linhagens em
relação à análise não espacial e, finalmente, a uma seleção menos influenciada por efeitos da variação local.

Termos para indexação: delineamento aumentado, modelo misto, recuperação de informação, autocorrelação,
dados correlacionados, geoestatística.

Introduction

In plant breeding, two features indicate the preliminary
phases of selective programs: the large numbers of new
genotypes to be evaluated and the small amount of ma-
terial for their propagation. Both of them limit the use of
replications of these genetic treatments, which are
frequently evaluated in a single experimental plot, i.e.,
without replications. Federer (1956) proposed the
augmented experimental designs to deal with this type

of limitation, which allow the adjustment of the test line
(new treatment) means for environmental effects
(blocks, lines, or columns) estimated on the basis of
repeated check genotypes. The author also presented
the corresponding methods of statistical analysis, based
on ordinary least squares (OLS) and, therefore, on the
assumption of independence among observations.

The limited availability of propagation material, such
as seeds and tubers, on the other hand, forces the breeder
to adopt small plots, usually with just one or two rows of
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plants. This increases the chance of violating the
independence among observations assumed when using
the OLS method, due to the likely similarity of
observations of neighboring plots (Stroup et al., 1994).
This phenomenon, referred to as spatial correlation –
also called spatial dependence or autocorrelation – can
seriously affect the comparison of treatments. Es & Es
(1993) have demonstrated that when this correlation
occurs, the statistical tests associated with contrasting
treatments in plots nearer together have higher
probabilities of type II error, which consists of different
treatments appearing to be identical. On the other hand,
higher probabilities of type I error, i.e., identical treatments
appearing to be different, were observed in the contrasts
between treatments in which plots were farther apart.

The traditional analysis of variance relies on
randomization to neutralize the harmful effects of this
type of correlation, but frequently this is not attained
adequately (Stroup et al., 1994). For this reason,
Kempton et al. (1994) support a greater use of methods
that consider some accounting for spatial dependence
to improve the precision of variety trials. Recent
advances in statistics for spatially distributed data have
provided a number of alternative methods. One
interesting approach is that of Zimmerman & Harville
(1991). In this analysis, the plot effect (trend + error) is
modeled in such a way that the observations are
collectively taken as a partial outcome of a random field,
similar to predictive models used in geostatistical
applications (Martínez, 1994). The model aims at
estimating the general covariance function, which is used
in estimation and prediction, through generalized least
squares (GLS). Therefore, it is a mixed linear model
with spatially correlated errors, called a random field
linear model (RFLM).

Due to the relatively limited use of these techniques
among plant breeders, it is necessary to assess their
effects on selection of genotypes to finally demonstrate
their true potential. This study illustrates the application
of the RFLM approach, adapting it to the augmented
block design, which is typical in the preliminary phases
of the selection process in plant breeding. The attempt
does not intend to represent the best spatial approach
for the set of data analyzed, but, rather, to demonstrate
the benefits of a less restrictive statistical analysis in
comparison with the traditional one, based on spatially
independent observations.

Material and Methods

The data used in this study were obtained in a soybean
variety trial, with F6:3 lines of the semi-early maturity group,
conducted in the locality of Areão, municipality of Piracicaba,
SP, Brazil, in 1999/1995. The trial is part of a selection
program conducted to increase soybean yield, carried out
by the Department of Genetics of Esalq/USP. Genetic
materials were evaluated in augmented block design, witht
t = 5 check varieties (Bossier, Davis-1, IAC-12, IAS-5
and Viçoja) and p = 110 test lines, distributed in b = 4 blocks
with approximately 50 plots each. The plot corresponded
to two rows of plants, spaced 0.6 m apart and 5 m long.
Only grain yield data (kg ha-1) were considered here. For
spatial statistical analysis, it was necessary, in addition,
to obtain  the distances (meters) among plots, which
was done from the geographical coordinates of the center
of each plot in the experimental field grid – COORDX
represents the width coordinate of the plots and
COORDY, the length coordinate.

Two mathematical models were used for statistical
analysis: i) a model which assumes spatially independent
observations; and ii) a model allowing spatial correlations
among observations. In both cases, the effects of test
lines were taken as random, and here were assumed to
be derived from a single base population, that is, varying
randomly about a common mean. For this reason, the
independent error analysis here does not correspond to
the fixed model (OLS). Thus, both are mixed models,
despite the adjustment for checks. The only difference
between them is the assumption on the experimental
error.

In the case of spatially independent observations, this
analysis is described as intergenotypic information
recovery analysis (Wolfinger et al., 1997; Federer, 1998).
One peculiarity of such analysis in the augmented designs
is that the mathematical model needs to accommodate
two types of treatment effects: fixed effects for the
checks (t populations) and random effects for the test
lines. These lines constitute the (t+1)th population, which
is also assumed to have a fixed effect. Thus, in the first
alternative (i), the observations can be individually
characterized by the model (an adaptation to the model
of Scott & Milliken, 1993, proposed by Duarte, 2000):
Yijk = µ + bj + ck + gi(k) + eijk

in which Yijk is the observation in the plot with genotype i,
stemming from population k in block j; µ is the constant
common to all observations; bj is the fixed effect of the
jth block (j=1,2,...,b); ck is the fixed effect of the kth

population (k=1,2,...,t,t+1; here the check cultivars plus
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the population of lines); gi(k) is the effect of the ith

genotype within the kth population, assumed to be fixed
and with a null mean, if the genotype is a check (i(k) = 1),
or random with independent distribution N(0, 2

gσ ), if the
genotype is a test line (i(k)=1,2,...,pk , with Σpk = p); and
eijk is the random experimental error associated with
the ijkth plot, which is assumed to be independent, that
is, null covariance among the errors of different plots,
and with distribution N(0, 2

eσ ).
In model (ii), the term eijk is assumed to have the

distribution eijk ~ N [0,C(h)], in which C(h) is the covariance
between two errors of plots which are h units of distance
apart (h≥0). If such errors are denoted by e(s) and e(s+h), in
which s represents the spatial position of the ijkth plot, in
the RFLM approach, C(h) is defined as (Littell et al., 1996):

 C(h)=






σ=σ
σ

 0h>   if   , ]f(h)[

                  and    ; 0 = h  if    ,
2

(s+h)e , (s)e

2

Thus, it is assumed that the covariance of the errors
is a function of the distance that separates the
corresponding plots (f(h)). However, this is not
predetermined, but is estimated from the “uniformity
experiment” suggested by the residuals ( ijkê ) of the
independent error model adjustment.

Representing the observations by a vector y, both
models can be expressed in matrix notation by the ge-
neral mixed linear model (Henderson, 1984): y = Xβ +
Zγ + ε; with γ~N(φ,G), ε~N(φ,R), E(y)=Xβ and
Var(y) = V = ZGZ' + R.

The fixed effects are in parametric vector β; the
random effects, in parametric vector γ, except the errors
that are in vector ε; X and Z are incidence matrices of
the effects contained in β and γ, respectively. The random
genotypic effects (γ) are assumed, without loss of
generality, to have a normal distribution with a null mean
(φ) and matrix of covariance G = I 2

gσ  (where I is an
identity matrix). The experimental errors are presumed
to have a normal distribution with a null mean and a
generic matrix of covariance R. Thus, in the first model
(i), R = I 2

eσ , while in the other (ii), R = Σ, i.e., a non-
diagonal matrix with structure defined by the general
covariance function and by the autocorrelation range.

The first step in this spatial analysis is the adjustment
of the model which postulate spatial independence
among observations. The components of variance 2

gσ
and 2

eσ  were estimated by restricted maximum likelihood

(REML). The estimated residual vector of this

adjustment is: ŷyˆ −=ε , with γ+β= ~ZXŷ 0 , in which

yVX)XVX( 110 −−− ′′=β  and )Xy(VZG~ 01 β−′=γ − ,

representing the solution vectors of the mixed model
equations (Henderson, 1984). The residuals were then
used to estimate the spatial correlation structure. This
was done graphically by means of a so-called
semivariogram or simply variogram (Stroup et al., 1994).

In this graphic representation, estimated values of

semivariance, (h)Ŝ , are plotted against their respective

distances h, resulting in a scatter plot (sample variogram).
The semivariance is defined as: S(h)=½Var[ (s)h)+(s ee − ];

which is estimated by ∑ −= +
N(h)

2
(s)h)(sN(h)2

1 ]êê[(h)Ŝ , with

N(h) being the number of differences at the distance h.
In this graph, values (h)Ŝ  that are distributed randomly
as a function of h reflect independent observations
(residuals). The typical configuration of spatial
dependence among observations occurs if values (h)Ŝ
tend to increase as h increases up to a certain distance
(range), after which the semivariance stabilizes reaching
a plateau (or sill). Less variability is associated with
smaller distances. The spatial correlation range (a) is
the mean distance influence of an observation (plot),
asserted here to be uniform in all directions (isotropy).
The sill (σ 2 ) corresponds to the intrinsic variance of the
variable under study (Var[e(s)] = Cov[e(s),e(s)]), which is
also equivalent to the covariance between residuals of
plots separated by a distance equal to or greater than
the range (Cov[e(s),e(s+h)], with h≥a).

There is an advantage in evaluating spatial dependence
by means of the variogram. Under stationarity – spatial
law unaffected by translation – the variogram has a direct
and simple relation to the function of autocovariance
C(h), that is: S(h) = σ2-C(h); in which σ2 = C(h = 0)
(Es & Es, 1993; Stroup et al., 1994; Pannatier, 1996).
Thus, fitting a continuous model to the sample variogram,
the corresponding spatial covariance function for this
relation is obtained. The most commonly utilized
variogram functions are the so-called spherical,
exponential and Gaussian models (Grondona & Cressie,
1991; Zimmerman & Harville, 1991; Vieira, 2000). Due
to the wide application of the variogram in geostatistics,
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software that facilitates this adjustment is available
(ex: Variowin; Geo-Eas). In such programs, the search
for the function that best fits the observational points is
carried out by changing slightly the values of σ 2  and a.
In the present case, the exponential model provided the
best fit, corresponding to the following covariance
function (for isotropic random fields):

)(exp C(h) a
h32 −σ= .

After defining parameters (σ 2  and a) and the gene-
ral covariance function, the next step is fitting the model
to account for spatial dependence (R = Σ). This involves
obtaining estimates, predictors, and statistical tests related
to treatment effects, which must be free from estimated
autocorrelation effects. To evaluate only the effects of
the spatial adjustment on the statistical analysis, the same
estimate of 2

gσ  obtained in the former analysis (under
R = I 2

eσ ) was used. The following procedure consisted
of resolving the mixed model equations (Henderson,
1984):
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which solutions have already been reported.

Results and Discussion

Characterization of spatial covariance
The experimental data showed a positive spatial

correlation of first-order to sixth-order, in the series of
residuals (Table 1). This fact is indicative of the violation
of spatial independence among observations postulated
by the first model (under R = I 2

eσ ). Residuals of this

analysis were not randomly distributed in the experimental
field (Figure 1). Rather, there is a clear tendency for
larger residual values ( ijkê ) to be concentrated in the
top of the field map graph, that is, to be associated with
plots having smaller COORDX values.

This fact also determined a predominant gradient in
the direction of plot widths (COORDX). Considering
this is how the blocks were constructed, it is possible
that such an orientation may not have been ideal. Given
the features of the residual surface, which provides an
estimate of the uniformity trial underlying the experiment,
it is reasonable to suppose that a lengthwise blocking of
the plots would have been more effective in controlling
local variation. The possibility of making this diagnosis
represents an advantage of the spatial approach, which
creates perspectives for the application of alternative
forms of a posteriori local control or post-blocking
(Federer, 1998).

The variogram obtained for distances less than 30 m
is showed in Figure 2. The configuration of the dots is
typical of stochastic processes with spatial dependence,
that is, with decreasing variability as distance decreases.
After 20 m (range) the variability tends to stabilize. The
value of this plateau represents the residual variance
among independent plots, and the existence of the
increasing variogram with a plateau is an indication that
the intrinsic hypothesis of stationarity was satisfied
(Vieira, 2000). Furthermore, on the assumption of
isotropy, the continuous function that best fits the dots is
the exponential semivariance model:

)](exp 1[S(h) a
h32 −−σ= , with: σ 2 =126450 (kg ha-1)2

and a = 20.4 m. Consequently, the respective
autocovariance function is expressed by

)(exp 126450C(h)
8,6
h−= . This defines the residualTable 1. First to tenth-order autocorrelations ( ρ̂ ) and the

respective Durbin-Watson statistics (d) for the residual ( ijkê )
series obtained from the adjustment of an augmented block
design model with independent errors.

(1)Marginal probability of the statistical test (H0: ρ =0) (one-sided to

the left, in this case).

Figure 1. Residuals (kg ha- 1) of the augmented block design
model adjustment, with recovery of test lines information,
under independent errors as a function of the plot center
coordinates, in meters (COORDX and COORDY).

Order ρ̂ d Pr<d(1)

1
2
3
4
5
6
7
8
9

10

  0.64125
  0.50359
  0.42519
  0.38857
  0.29623
  0.16385
  0.09528
-0.00189
-0.06130
-0.10327

0.7003
0.9599
1.0895
1.1313
1.2942
1.5386
1.6624
1.8176
1.9241
2.0027

0.0001
0.0001
0.0001
0.0001
0.0001
0.0143
0.0839
0.3440
0.6153
0.7964
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covariance matrix R = S, whose main diagonal elements
were all equal to 126450 and the off-diagonal elements
were equal to )(exp 126450 8.6

h− , in which h is the distance
that separates each two plots identified by a row and a
column in the matrix. Thus, the spatial covariance
inherent to the experiment was characterized. The
implications of the use, or not, of this information in
statistical analysis are evaluated in the following section.

Comparison of the spatial and non-spatial
statistical analysis models

Models with a larger number of covariance
parameters always exhibit better fit than those with a
simpler structure. For this reason, comparative criteria
that penalize the more parametrized models, such as the
Akaike’s Information Criterion (AIC) and Schwarz’s
Bayesian Criterion (BIC) should be adopted. Both are
based on the value which maximizes the restricted
likelihood logarithm, LREML(G,R), reduced from a function
of the number of parameters. Thus, the model with the
greatest AIC or BIC values should be preferred (Littell

et al., 1996). The results in Table 2 show that the
covariance structure R = Σ provides a better fit to the
respective model in comparison with the independent
error model (R = I 2

eσ ).
With regard to statistical tests related to the genotypic

effects, it was observed that variation among the six
fixed populations was not significant in the first analysis
(at the 5% level of probability), but reached high statistical
significance (p-value<0.01) in the spatial analysis
(Table 3). With further partitioning of the population
effects, the F values were also higher under the spatial
analysis, both in the detection of differences among
checks (four degree of freedom) and in the contrast
between checks and test lines (one degree of freedom).
Considering the three contrasts chosen to illustrate the
comparison among some of these lines, the superiority
of the spatial analysis was again evident and even

greater. While the analysis under R = I 2
eσ  did not detect

any difference among these genotypes (p-value>0.90),
the spatial analysis showed that two of the three contrasts
were significant (p-value<0.025). These results reflect
greater genotypic discrimination ability under the spatial
analysis, compared with the non-spatial procedure.

This superiority was confirmed when the predicted
genotypic values (EBLUP) were considered. While in
the first analysis these varied between -98.2 and 100.5
(complete data in Duarte, 2000), with a range of about

Table 2. Characteristics of the fitting of non-spatial and spatial
models for grain yield data (kg ha-1) in a soybean variety trial
in an augmented block design.

Figure 2. Sample variogram (dots) of the residuals of an
augmented block design analysis that assumed independent
errors, and adjustment (continuous line) by the exponential
semivariance model [a = 20.4 m; s2=126450 (kg ha-1)2]. The
dotted line illustrates the corresponding autocovariance
function.

Description Value

Non-spatial analysis Spatial analysis

L
REML

(G, R)
Akaike’s Information
Criterion (AIC)
Schwarz’s Bayesian
Criterion (BIC)

-881.125

-883.125

-885.896

-838.975

-841.975

-846.131

Table 3. Statistical tests of some genotypic effects obtained on the basis of spatial and non-spatial analysis models(1).

(1)Grain yield data, in kg ha-1; soybean variety trial in augmented block design. (2)NDF and DDF are the numbers of degrees of freedom of numerator
and denominator of F (Snedecor) statistic, respectively; the last obtained by the Satterthwaite approximation.

Source NDF(2) Non-spatial analysis Spatial analysis

DDF(2) F Pr > F DDF(2) F Pr>F

Populations
    Checks
    Checks vs. Test lines
Line G1 vs. Line G3
Line G1 vs. Line G24
Line G3 vs. Line G24

5
    4
    1
1
1
1

12.0
11.4
15.5
0.20
0.20
0.20

2.71
0.93
9.89
0.00
0.01
0.01

0.0727
0.4793
0.0065
0.9859
0.9712
0.9575

31.9
31.5
33.3
23.7
25.8
25.0

3.95
1.79

10.28
0.46
6.00
9.82

0.0067
0.1547
0.0030
0.5064
0.0214
0.0044
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Table 4. Predictors (EBLUP) of individual genotypic effects of 28 soybean lines, respective standard errors and ranking of test
lines under two statistical analysis models(1).

(1)Grain yield data in kg ha-1; variety trial with 110 lines and five checks, in augmented block design.

Lines Non-spatial analysis Spatial analysis

EBLUP Standard error Rank EBLUP Standard error Rank
USP 93-2802
USP 93-2850
USP 93-2547
USP 93-2075
USP 93-2302
USP 93-2114
USP 93-2623
USP 93-2642
USP 93-2722
USP 93-2753
USP 93-2171
USP 93-2159
USP 93-2479
USP 93-2881
USP 93-2187
USP 93-2037
USP 93-2148
USP 93-2475
USP 93-2474
USP 93-2048
USP 93-2198
USP 93-2266
USP 93-2153
USP 93-2916
USP 93-2418
USP 93-2393
USP 93-2077
USP 93-2985

100.48
96.97
76.77
76.37
72.64
70.08
69.27
68.46
66.80
65.68
62.45
58.72
56.78
53.56
53.41
52.79
52.43
50.86
48.70
48.53
47.49
46.90
46.51
44.66
43.98
40.76
38.15
37.30

123.96
123.98
123.98
123.95
123.96
123.95
123.96
123.98
123.96
123.96
123.95
123.96
123.98
123.96
124.01
123.95
123.96
123.96
124.01
123.95
123.96
124.01
123.95
124.01
124.01
123.96
123.98
123.95

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

200.50
172.97
66.91
64.51

107.14
42.59
67.11
13.76
83.48

156.46
126.62
150.22
-21.24
172.84
47.13

5.82
38.83
33.96
64.17

-45.25
-32.91
25.62

-40.82
17.93
76.09

-43.15
-4.27
25.77

103.71
103.68
103.27
107.80
103.34
107.77
103.33
111.13
103.35
103.34
103.54
103.69
111.08
103.34
111.11
111.74
103.63
103.35
111.68
104.17
111.20
103.35
103.73
103.33
102.76
103.34
107.06
108.87

1
2

20
22
11
31
19
50
14

4
6
5

65
3

29
53
35
37
23
83
75
42
81
48
18
82
55
41

200 kg ha-1, in the spatial analysis the detected range
was greater than 500 kg ha-1 (values between -337 and
200.5). This represents an increase of more than 150%
in the differentiation among the test lines, in favor of the
spatial analysis. The smaller standard errors associated
with EBLUP also confirm the better genotypic
discrimination of this analytic model. Pontes (2002) has
demonstrated a gain of 7% in the efficiency of these
predictors when an iterative process to estimate the
variogram and its parameters (a and σ2 ) was used.

When a selection intensity of 25% of the most
productive lines was assumed (28 in 110 genotypes), a
coincidence of only 46% between the two statistical
analysis models was observed (Table 4). In addition,
among the genotypes selected by the more traditional
analysis (non-spatial), at least 30% would occupy poor
ranking positions in the spatial analysis (up to fiftieth
position). Examples include the following lines:

USP 93-2048, USP 93-2393, USP 93-2153 and
USP 93-2198. On the other hand, four lines classified in
the spatial analysis as among the ten most productive
would be discarded using the other analysis
(under R = I 2

eσ ).
The disagreement between these selections can be

better understood if the spatial positions of plots with
the selected lines in the experimental field are considered.
The evidence of the effect of spatial adjustment on
selection can be seen in Figure 3. When the non-spatial
model was used, the selected genotypes were located
exclusively in the left side strip of the experimental field,
probably its most fertile area. However, when the spatial
adjustment was taken into account, the selected
genotypes were detected in plots scattered throughout
the whole experimental area. The predominance of
genotypes from the left side-stripe can be explained as
a result of possible remaining fertility effects or of the
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breeder’s preference in allocating genotypes of the same
parent side by side. In any event, what is expected from
experiments  of this nature is an outcome as shown in
part (b) of Figure 3 rather than one displayed in its
part (a). Similar results are also reported by Besag &
Kempton (1986), Cullis et al. (1989), and Kempton &
Gleeson (1997).

Considering that the cause of the divergence in the
two selections was the genotypic adjustment for position
effects, which are of purely environmental nature, it can
be concluded that, in similar conditions, the use of spatial
analysis can assure greater efficiency to the breeding
programs.

Conclusions

1. In variety trials with large numbers of treatments
and limited availability of propagation material, experi-
mental observations can not be spatially independent; in
such conditions, spatial analysis allows better
discrimination among genotypes, because it provides
increased power in statistical tests, reduced standard
errors of genotypic estimates, and greater amplitudes
among predicted values.

2. The spatial analysis can be led to a different ranking
of the genetic materials, in comparison with the non-
spatial analysis, and a selection less influenced by local

variation; such differences may have important
consequences for the final outcome of plant breeding
programs.
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