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Air quality control usually requires a monitoring system of multiple indicators measured at various points
in space and time. Hence, the use of space–time multivariate techniques are of fundamental importance
in this context, where decisions and actions regarding environmental protection should be supported by
studies based on either inter-variables relations and spatial–temporal correlations. This paper describes
how canonical correlation analysis can be combined with space–time geostatistical methods for analysing
two spatial–temporal correlated aspects, such as air pollution concentrations and meteorological condi-
tions. Hourly averages of three pollutants (nitric oxide, nitrogen dioxide and ozone) and three atmospheric
indicators (temperature, humidity and wind speed) taken for two critical months (February and August)
at several monitoring stations are considered and space–time variograms for the variables are estimated.
Simultaneous relationships between such sample space–time variograms are determined through canon-
ical correlation analysis. The most correlated canonical variates are used for describing synthetically the
underlying space–time behaviour of the components of the two sets.

Keywords: space–time random fields; canonical correlation analysis; sample space–time variograms;
multivariate environmental data

1. Introduction

Environmental monitoring network usually provides multivariate data which are collected at dif-
ferent survey stations and for a certain period of time (long time series are often available for
each monitoring station). Hence, both classical multivariate methods and space–time geostatis-
tical techniques might be applied to analyse, interpret and control the complex evolution of the
observed variables. Principal component analysis (PCA) as well as related multivariate tech-
niques, such as canonical correlation analysis (CCA), have been widely applied and a lots of
papers and books can be found in literature ( [7,10,11] among others). The use of these classical
techniques for multivariate spatial and temporal data analysis is mainly due to climatologists.
Wackernagel [14] defined a stochastic framework in a multivariate temporal (or spatial) con-
text by using a vector of temporal (or spatial) second-order stationary random functions, whose
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2 S. De Iaco

components are related to different variables at a single station (or time-point). Walden et al. [15]
used simultaneous R- and Q-mode factor analysis for detecting multivariate patterns in magnetic
data sets (multivariate spatial analysis); Hsu [9] studied the interdependence between primary
and secondary pollutants by fitting a vector autoregressive model to almost two years of data
measured at only two stations, while Statheropoulos et al. [13] applied PCA to five years of data
for air pollutants and meteorological variables taken at one station (multivariate temporal anal-
ysis). De Iaco et al. [2,4] considered principal components as measures of total air pollution in
lieu of the separate contaminant concentrations. These components were treated as samples from
unobserved variates defined over space and time. Space–time variograms were fitted to these new
variates using the generalized product-sum model [3]. Besides classical multivariate techniques,
multivariate geostatistics provides tools which take into account either inter-variables relations
and spatial correlations. Cokriging, for instance, is applied when auxiliary variables may improve
the estimation of other variables [12]. Factorial kriging analysis has been developed in a multi-
variate context to determine how spatial correlation between variables changes from one spatial
scale to another [8]. Until very recently, these tools have been widely used primarily in a spatial
context rather than in a spatial–temporal one. De Iaco et al. [5,6] showed how the generalized
product-sum model can be used with a linear model of coregionalization for prediction purposes.
The GSLib “COKB3D” program has been recently modified to incorporate the space–time linear
coregionalization model, using the generalized product-sum variogram [1].

In this paper, a new space–time multivariate approach is described. A classical multivariate
analysis, such as CCA, has been combined with space–time geostatistical tools for detecting
possible interactions between two groups of variables, associated with pollutants and atmospheric
conditions. Space–time variograms for the variables under study have been estimated and CCA
has been used to determine simultaneous relationships between the sample variograms of the
pollutants and the sample variograms of the atmospheric variables. In this context, the canonical
variates, which are linear combinations of sample space–time variograms, provide a reasonable
concise measure of the underlying space–time correlations of the two groups of variables.

The methodology is applied to an environmental data set, composed of hourly averages of
three pollutants, such as nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3), and three
atmospheric indicators, such as temperature (T ), humidity (H ) and wind speed (Ws), in February
and August 2007, observed at several monitoring stations located in the Milan district and its
neighbourhood (Italy).

2. Air quality data in the Milan district and its neighbourhood

Many anthropic factors affect the plume concentrations, such as manufacturing activities, heavy
traffic and heating system. Besides anthropic emission sources, other aspects might influence the
process of pollution formation in an urban area, such as the geographical position, the anemological
field or, more generally, the atmospheric conditions which help some photochemical reactions
and might contribute to dispersion or stagnation processes. Hence, the monitoring network in the
Milan district and its neighbourhood is composed of several survey stations, classified in high
density population stations, industrial stations, high traffic stations and outskirts stations, which
provide hourly averages of different types of pollutants and meteorological variables.

These survey stations have been located in the district according to the national law in force
and they are sufficiently spread out in the area.

The environmental monitoring network for meteorological and chemical variables in the Milan
district and its neighbourhood is shown in Figure 1. As detailed hereafter, there are 44 moni-
toring stations for pollutants, seven for atmospheric variables and nine for both pollutants and
atmospheric variables.
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Journal of Applied Statistics 3

Figure 1. Map of the survey stations in the Milan district and its neighbourhood (Italy).

2.1 The data set

Although several pollutants and atmospheric variables are measured at each station of the mon-
itoring network, O3 and its precursors, such as nitric oxides (NO and NO2), have been selected
among the pollutants, moreover temperature, humidity and wind speed have been chosen among
the atmospheric variables. O3, NO and NO2 are especially involved in photochemical smog and
nowadays they represent a real threat for environmental quality, on the other hand, temperature,
humidity and wind speed undoubtedly affect the formation of plumes, their reactions and their
stagnation or dispersion.

In particular, the environmental data set consists of hourly averages of the six variables (three
contaminants and three meteorological indicators) available at several locations during February
and August. These two months are among the most critical periods of the year in terms of plume
concentrations: high values of NO and NO2 are usually recorded during winter time, likewise
peaks for O3 occur during summer time.

As shown in Figure 1, the monitoring network is composed of 60 stations spread out in the
area, which are usually set to measure several variables. Regarding the selected variables, there
are 53 stations for NO and NO2 measurements, 18 stations for O3, 16 for temperature and wind
speed, and 13 for humidity.

2.2 Explorative analysis in space–time

As a preliminary step, various descriptive statistics were computed. Figure 2 shows the histograms
of the variables together with some basic statistics, for February and August. Note that the fre-
quency distributions of the variables are quite different: those related to NO, O3 and wind speed
exhibit a negative skewness and a considerably high variance, especially in February; NO2 and
temperature show a slightly asymmetric distribution during both months; only humidity exhibits
a weak positive asymmetry, especially in August when the heat isle phenomenon is more evident.
Even if a prior transformation of data might be wise in presence of extreme values, in this case data
are preserved for the subsequent multivariate analysis, since CCA is applied to the well-structured
sample space–time variograms of the variables.
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4 S. De Iaco
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(b)

Figure 2. Histograms of the pollutants and atmospheric variables measured in (a) February, (b) August.

Moreover, among various descriptive statistics that were computed, it is worth to discuss the
correlation matrices of the two data sets for February and August (Table 1):

• the correlations between NO and NO2 are positive and relatively high during both months; a
weak inverse relationship characterizes NO2 and O3, especially in February when the photolysis
process does not strongly affect the formation of O3;

• with respect to the relationships between atmospheric variables, the physical inverse rela-
tion between temperature and humidity is strongly confirmed by the correlation coefficients,
especially in August;

• correlations between the two sets of variables show how dispersion or stagnation processes
and photochemical reactions can aid or prevent the formation of O3; in February, wind action
influences O3 formation (strong wind throws out NO, then this contributes to increase O3 level);
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Journal of Applied Statistics 5

Table 1. Correlation matrix of the pollutants and atmospheric variables for (a) February,
(b) August.

NO NO2 O3 T H Ws

February
NO 1.000 0.652 −0.396 −0.197 0.186 −0.409
NO2 0.652 1.000 −0.532 0.114 0.035 −0.403
O3 −0.396 −0.532 1.000 0.502 −0.570 0.612
T −0.197 0.114 0.502 1.000 −0.494 0.389
H 0.186 0.035 −0.570 −0.494 1.000 −0.447
Ws −0.409 −0.403 0.612 0.389 −0.447 1.000
August
NO 1.000 0.550 −0.359 −0.124 0.132 −0.008
NO2 0.550 1.000 −0.353 −0.004 0.032 −0.053
O3 −0.359 −0.353 1.000 0.717 −0.758 0.339
T −0.124 −0.004 −0.717 1.000 −0.851 0.281
H 0.132 0.032 −0.759 −0.851 1.000 −0.382
Ws −0.008 −0.053 0.338 0.281 −0.382 1.000

(a)

(b)

Figure 3. Box plots of the pollutants and atmospheric variables grouped by hour: (a) February, (b) August.
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6 S. De Iaco

Figure 4. Contour maps of monthly averages of the pollutants and atmospheric variables measured in (a)
February, (b) August.
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Journal of Applied Statistics 7

on the other hand, in August, temperature and humidity exert their influence on O3 formation
much more than wind does.

The exploratory analysis was completed by looking at the spatial and temporal profiles of the
variables.

Figure 3 shows the box plots of the six variables, grouped by hour, for February andAugust. They
give some insights into both the daily behaviour of the variables and their frequency distributions
for each hour of the day. The O3 daily behaviour contrasts with the daily evolution of NO and
NO2; on the other hand, temperature and humidity have a diametrically opposite cycle. The wind
velocity is not characterized by a clear daily periodic component.

Figure 4 illustrates the contour maps for the monthly averages of the variables measured in
February and August. These maps were obtained by using ordinary kriging estimator of monthly
averages, based on the spatial variogram models of the variables under study. Note that the spatial
distribution of nitrogen oxides (NO and NO2) is more concentrated around urban areas whereas the
spatial distribution of O3 is spread out over peripheral areas. Moreover, the negative correlation
between temperature and humidity is confirmed by the spatial profile analyses; especially in
August, high temperature values contrast low humidity values in the Southern-East area and in
the Northern-West area, and vice versa elsewhere. There is an increasing trend in the spatial
distribution of wind speed in the SE-NW direction during both months. This is probably due to
the anemological field of the Po Valley which is located in the Southern part of the district.

In the following section, the new space–time multivariate approach, used for detecting possible
interactions between environmental variables, has been described.

3. Methodology

Pollutants and atmospheric conditions are characterized by a considerable complexity and their
spatial–temporal interactions cannot be clearly ignored. Hence, a new space–time multivari-
ate approach, based on a combined use of multivariate classical techniques and space–time
geostatistical techniques, is suggested.

The sample variograms of the variables under study represent the bridge between the two
techniques. Possible similarities/dissimilarities of the spatial–temporal evolution of the variables
can be:

• interpreted by comparing the sample variograms,
• synthesized by combining the sample variograms.

In fact, one of the multivariate geostatistical method, known as Linear Coregionalization Model, is
based on a kind of linear combinations of variograms in order to describe the multivariate structure
of the data. Anyway, this has been widely used in a spatial context rather than in the spatial–
temporal one [5,6]. In this context, CCA is applied to relate the spatial–temporal behaviour (in
terms of space–time correlation structure) of the two groups of selected variables, i.e. pollutants
and meteorological variables. Regarding this aspect, the canonical variates, which are linear
combinations of sample space–time variograms, reflect the underlying space–time correlations
of the two groups of variables.

Note that the collected measurements are not comparable (in terms of scale and measurement
units), hence the data for each variable have been standardized by subtracting the monthly mean
and dividing by the monthly standard deviation. In all the subsequent analyses, standardized data
sets have been used.
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8 S. De Iaco

3.1 Space–time structural analysis

Let ZP (s, t) and ZA(s, t) denote two vector-valued random functions, defined on a space–time
domain:

ZP (s, t) = {(ZP1(s, t), ZP2(s, t), ZP3(s, t)); (s, t) ∈ D × T },
ZA(s, t) = {(ZA1(s, t), ZA2(s, t), ZA3(s, t)); (s, t) ∈ D × T },

where D ⊆ R
2 and T ⊆ R+, ZP1 , ZP2 and ZP3 are associated with the standardized chemical

variables NO, NO2 and O3, respectively, ZA1(s, t), ZA2(s, t) and ZA3(s, t) are associated with the
standardized atmospheric variables, temperature, humidity and wind speed, respectively.

Each component is assumed to be an intrinsic random field with variogram

γZ[·](hs , ht ) = 0.5Var(Z[·](s + hs , t + ht ) − Z[·](s, t)), (1)

where (s, s + hs) ∈ D2 and (t, t + ht ) ∈ T 2. Note that Z[·] is a simplified notation for ZPi
or ZAi

,
i = 1, 2, 3.

Let the sets of space–time data locations be

UPi
= {(sl , tj ), l = 1, 2 . . . , nsPi

, j = 1, 2, . . . , ntPi
},

for the pollutants ZPi
, i = 1, 2, 3, respectively, and

UAi
= {(sl , tj ), l = 1, 2 . . . , nsAi

, j = 1, 2, . . . , ntAi
},

for the atmospheric variables ZAi
, i = 1, 2, 3, respectively.

The spatial–temporal correlation of each component is estimated by computing the sample
space–time variogram, namely:

γ̂Z[·](rs , rt ) = 1

2|L[·](rs , rt )|
∑

L[·](rs ,rt )

[Z[·](s + hs , t + ht ) − Z[·](s, t)]2, (2)

where rs and rt are, respectively, the vector lag with spatial tolerance δs and the lag with temporal
tolerance δt and |L[·](rs , rt )| is the cardinality of the set L[·](rs , rt ), that is

{(s + hs , t + ht ) ∈ U[·], (s, t) ∈ U[·] : ‖rs − hs‖ < δs and ‖rt − ht‖ < δt }.
Note that U[·] and L[·](rs , rt ) are simplified notations for UPi

or UAi
and LPi

(rs , rt ) or LAi
(rs , rt ),

respectively.
At this stage, space–time variograms are estimated for the two groups of variables under study;

in the following stage, CCA is proposed in order to determine simultaneous relationships between
the sample variograms of the two groups of variables (i.e. pollutants and atmospheric variables).

3.2 Space–time canonical correlation analysis

Let X and Y be the data arrays associated, respectively, with the sample space–time variograms
for pollutants,

γ̂ZP
(hs , ht ) = (γ̂ZP1

(hs , ht ), γ̂ZP2
(hs , ht ), γ̂ZP3

(hs , ht )),

and the sample space–time variograms for meteorological measurements,

γ̂ZA
(hs , ht ) = (γ̂ZA1

(hs , ht ), γ̂ZA2
(hs , ht ), γ̂ZA3

(hs , ht )),

computed at different spatial and temporal lags (hs , ht ). Each data array is a 216×3 matrix, where
the number of rows is given by the number of space–time lags (3 spatial lags × 72 temporal lags)
at which the variograms were estimated.
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Journal of Applied Statistics 9

Given the sample covariance matrix:

� =
[
�xx �xy

�yx �yy

]
.

CCA is used in order to find a and b such that the correlation between the linear combinations
W = Xa, and Q = Yb (with zero mean and unit variance) is maximized [10].

Since the canonical correlation coefficient between W and Q,

ρ = aT�xyb√
(aT�xxa)(bT�yyb)

,

is invariant under scaling of a and b, W and Q must be constrained to have zero mean and unit
variance, hence

aT�xxa = bT�yyb = 1.

Maximizing the correlation between the two linear combinations subject to the above constraints
leads to the following eigenvalue problem:

(
�−1

xx �xy�
−1
yy �yx − λI

)
a = 0,

(
�−1

yy �yx�
−1
xx �xy − λI

)
b = 0,

where I is the identity matrix and λ the eigenvalues.
Hence, let λ1, λ2, and λ3, be the eigenvalues in decreasing order for the analysed data sets, and

a1, a2, a3, b1, b2, and b3, the corresponding eigenvectors; the following linear combinations:

Xai , Ybi , i = 1, 2, 3

represent the canonical variates and
√

λi, i = 1, 2, 3, the corresponding canonical correlations.
Hence, CCA is applied to the two groups of sample variograms in order to:

• identify simultaneous relationships between them; in the application, sample variograms for
the pollutants and sample variograms for the atmospheric conditions have been considered;

• use the most important canonical variates to describe the underlying space–time behaviour of
the components of the two groups.

4. Main results and comments

Figures 5 and 6 show the sample space–time variograms (2) for the standardized data of the two
groups, in February and August, respectively.

The sample variogram surfaces reflect the spatial–temporal correlation structures of the vari-
ables under study. Looking along the temporal lags, the periodic daily components which
characterize the corresponding pollutants and atmospheric variables, are clear. In particular:

• a 24 h cycle characterizes all the variables during both months, even if it is quite small for the
wind speed, especially in February;

• pollutant variograms reflect a 12 h cycle, especially in February, because of the influence of
human activities, such as heavy traffic during opening and closing time of the shops and heating
system;
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10 S. De Iaco

(a)

(d)

(b)

(e)

(c)

(f)
, , , ,

,
,

, ,

,,
,,

Figure 5. Sample space–time variograms for pollutants and atmospheric variables in February: (a) NO, (b)
NO2, (c) O3, (d) T , (e) H , (f) Ws .

(a)

(d)

(b)

(e)

(c)

(f)
, ,

, ,

,,

,,

,,

,,

Figure 6. Sample space–time variograms for pollutants and atmospheric variables in August: (a) NO, (b)
NO2, (c) O3, (d) T , (e) H , (f) Ws .

• O3 preserves only a periodic component at 24 h in August; it follows the temporal behaviour
of the atmospheric variables, such as temperature, since its formation is primarily due to
photochemical reactions.

Main results obtained by performing CCA on the two groups of sample space–time variograms,
separately for each month, are reported in Table 2.

These results can be interpreted by:

(1) looking at the magnitudes of the canonical weights, since the variograms which are most
important in maximizing the correlation can be identified;

(2) looking at the signs of the canonical weights, since they can give some insights into the
contrasts among the variograms;
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Journal of Applied Statistics 11

Table 2. Canonical weights and correlation coefficients.

February August
1st variate 2nd variate 1st variate 2nd variate

NO −0.2185 −0.3832 0.0025 0.2826
NO2 0.2899 −0.2580 −0.0087 0.0685
O3 0.2415 0.4564 0.1755 −0.0614

T −0.0442 0.1460 −0.2931 −0.1134
H 0.2109 −0.1843 0.4283 0.1542
Ws 0.1325 0.2708 0.0593 −0.4128

Corr. coeff. 0.9779 0.8423 0.9845 0.8814

(3) considering the canonical coefficients, since they determine how much the linear combinations
are correlated.

The weights computed for the first variates in February highlight that:

• the first variate for the group of variograms of pollutants explains the contrast between the sec-
ondary pollutants (NO2, O3) and the primary pollutant (NO): note that the absolute contribution
is almost the same among all pollutants;

• as regards the first variate for the variograms of the atmospheric variables, the greatest
contribution is given by humidity and, even if less significant, by wind speed.

On the other hand, from the CCA on the two groups of sample space–time variograms available
in August it follows that:

• only the space–time variogram of O3 characterizes the first linear combination of the group of
pollutants and it is highly correlated to the linear combination of the variograms of atmospheric
variables (ρ = 0.98);

• the weights of humidity and temperature present opposite signs, which is due to the inverse
relationship between humidity and temperature.

The second canonical variates reflect:

• the inverse space–time correlation between nitrogen oxides (NO, NO2) and ozone (O3). This
is more evident in February rather than in August when the weights of NO2 and O3 are very
close to zero;

• the space–time correlation of wind speed, which has the greatest contribution, with respect to
temperature and humidity.

Figures 7 and 8 show the first canonical variates for the two months. Note that the rescaled
surfaces provide a synthetic view of the space–time behaviour of the underlying variables.

The first canonical space–time variogram surfaces for February and August are essentially
characterized by a common basic structure of two groups of variables which is dominated by
a 24-h cycle in time and stationarity in space. Hence, CCA has been very useful to deter-
mine the simultaneous relationships between the sample variograms for the pollutants and the
sample variograms for the atmospheric variables. Under this viewpoint, the canonical variates,
which are linear combinations of sample space–time variograms, provide a concise measure
of the underlying space–time correlations of the two groups of variables. Actually, one of the
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12 S. De Iaco

(a) (b)

, ,, ,

Figure 7. First canonical variates for: (A) pollutants, (B) atmospheric variables (February).

(a) (b)

, ,, ,

Figure 8. First canonical variates for: (a) pollutants, (b) atmospheric variables (August).

multivariate geostatistical method, known as Linear Coregionalization Model, is based on a
kind of linear combinations of variograms in order to describe the multivariate structure of
the data.

5. Conclusions

In environmental field and in several other sectors, a detailed analysis often requires the use
of multivariate classical techniques as well as the use of Geostatistics: the former for detecting
relationships between variables and reducing the number of variables under study, the latter for
explaining the spatial–temporal multivariate structure of data and making predictions.

In this paper, the new space–time multivariate approach for an environmental data analysis is
based on a combination of classical and geostatistical tools. The proposed methodology enables
us to work with a considerably less number of variables as well as to find out the most relevant
space–time correlations of the underlying variables. Two sets of correlated variables were anal-
ysed: pollutants generated by human activities and photochemical reactions, and meteorological
conditions which affect stagnation or dispersion of plume. Sample space–time variograms for
the two groups of variables were compared through CCA and the most highly correlated linear
combinations of such variograms were considered for characterizing the multivariate spatial–
temporal behaviour of the variables. The surfaces, representing the first variates (whose canonical
correlation coefficients were significant), were used to synthesize the space–time behaviour of the
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two groups of variables. These might be clearly used for further investigations about the complex
environmental interactions.

The extension of classical techniques to multivariate spatial and temporal phenomena, firstly
due to climatologists, deserves attention and a lot can still be done in exploring and under-
standing spatio-temporal and multivariate patterns. It is clear that further developments should
be considered such as modelling the space–time canonical variates by using a product-sum,
application of cokriging techniques and comparison with linear coregionalization models in
space–time.
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