ANÁLISE DA VARIABILIDADE ESPACIAL DA MATÉRIA ORGÂNICA EM DIFERENTES SISTEMAS DE MANEJO DO SOLO¹

Comunello, E.¹, Werner, S. S.²; Ribeiro Jr., P. J.³

¹ Relatório final de atividades práticas realizadas na disciplina LCE-5700 – Geoestatística (USP/Esalq).

² USP/Esalq, Doutorando em Engenharia de Sistemas Agrícolas {ecomunel@gmail.com}

⁴ UFPR/LEG, Professor do Programa de Pós-Graduação em Estatística e Experimentação Agrícola (USP/Esalq) {paulojus@ufpr.br}

1. INTRODUÇÃO

Entre os elementos da paisagem, os solos são naturalmente dotados de grande variabilidade espacial. E os efeitos desta variabilidade podem ser atestados na análise de seus atributos. A importância dessa constatação é reforçada na prática da experimentação agrícola, já que poderia mascarar o efeito de tratamentos distintos sobre determinados atributos do solo. Ou seja, variações que possam ocorrer em determinado ambiente podem ser decorrentes de outras fontes que não o tratamento aplicado.

Felizmente, existem ferramentas para auxiliar esta análise, destacando-se a geoestatística, a qual possibilita identificar e determinar a existência de dependência espacial nas variáveis de interesse. Também por meio dos métodos geoestatísticos pode-se determinar a presença de tendências nos dados e considerar o efeito destas tendências na determinação da variabilidade espacial. E uma vez conhecida a variabilidade espacial dos dados de determinada área, pode-se empregar a interpolação por krigagem, visando uma estimativa confiável da variável em áreas não amostradas, de modo a caracterizar adequadamente uma determinada área de estudo.

As práticas agrícolas aplicadas a um determinado pedoambiente irão repercutir diretamente nos atributos do solo (CENTURION, et al., 2001). Entre estas práticas, o sistema de preparo é um dos mais impactantes, atuando diretamente nos níveis de Matéria Orgânica do Solo (MOS) e consequentemente em sua estrutura (CASTRO FILHO et al., 1998). Embora haja um número considerável de práticas agrícolas que possam ser consideradas, é possível agrupá-las de acordo com sistemas de manejo. Entre os sistemas mais empregados estão o Plantio Convencional, Sistema Plantio Direto (SPD) e Integração Lavoura-Pecuária (ILP). Para efeitos de comparação pode-se incluir ainda as pastagens permanentes, dado o manejo comparativamente reduzido em relação aos demais.

A matéria orgânica do solo é uma variável de grande importância na atividade agrícola e, associada à atividade biológica, é um dos principais fornecedores de carbono e nitrogênio ao solo. O carbono proveniente do gás carbônico do ar é fixado, pelas plantas clorofiladas, através da fotossíntese, e o nitrogênio é fixado do ar atmosférico por microrganismos. Em um ecossistema em equilíbrio o teor de matéria orgânica do solo é relativamente constante devido à semelhança entre as taxas de incorporação de restos orgânicos e de decomposição pelos microrganismos. Além de fornecer nutrientes, a matéria orgânica funciona como agregador do solo melhorando sua porosidade e friabilidade. Atua também elevando a capacidade de retenção de água e a capacidade de troca de cátions do solo (FABRICIO & SALTON, 1999). O aumento da matéria orgânica no solo pode ser relacionado à recuperação ou acréscimo da capacidade produtiva do solo (MIELNICZUK, 1994).

Reconhecida a importância da Matéria Orgânica do Solo (MOS), pode-se entender sua utilidade como indicador da qualidade de diferentes sistemas de manejo e o interesse em avalia-la nesse trabalho. Ocorre, entretanto, que experimentos envolvendo sistemas de manejo são pouco usuais em relação à experimentação clássica. Os efeitos não são mensuráveis a curto prazo, de modo que são necessários longos períodos de experimentação para a obtenção de dados de medida. Outra particularidade é a tentativa de aproximar as áreas experimentais das áreas produtivas reais, ou seja, empregam-se grandes áreas, muitas vezes abrindo mão da casualização e repetição. Experimentos dessa natureza são costumeiramente designados como de longa duração e são de difícil avaliação, uma vez que muitas vezes não se podem controlar todos os efeitos que agem sobre o ambiente e não se dispõe de repetições para

³ USP/Esalq, Doutoranda em Estatística e Experimentação Agrícola {simoneswerner@gmail.com}

auxiliar na detecção de erros. Fontes de variação comuns, além do efeito do tratamento podem ser devidas à variações nas classes de solo ao longo da área experimental ou ainda diferenças altimétricas ou de exposição do terreno.

De acordo com o disposto inicialmente, parece ser uma oportunidade para a aplicação de técnicas geoestatísticas, uma vez que determinando o comportamento da variável no espaço, será possível quantificá-la adequadamente e comparar o efeito de diferentes sistemas de manejo sobre esta variável. Deste modo, este trabalho foi conduzido, visando estudar o efeito de diferentes sistemas de produção agropecuários, na alteração do teor de matéria orgânica.

2. MATERIAIS E MÉTODOS

A área de estudo corresponde a um experimento de longa duração, iniciado em 1995, em uma área de 20 hectares localizados na área experimental (22º17'00"S, 54º48'15"W, 380 m) da Embrapa Agropecuária Oeste, em Dourados, MS. Formada por um Latossolo Vermelho distroférrico típico, caulinítico, esta área era originalmente utilizada para o cultivo de grãos em preparo convencional. Este local encontra-se em uma faixa de transição entre os biomas Cerrado e Mata Atlântica, e recebe a classificação climática Cwa, que define o clima mesotérmico úmido, com verões quentes e invernos secos.

Fig. 1. Representação espacial da área de estudo.

O experimento destina-se a avaliação de quatro sistemas de produção básicos, com variações que totalizam sete tratamentos avaliados, tal como segue:

1) Plantio Convencional (PC): lavoura em preparo convencional (2 ha), com cultivo de soja no verão e aveia no inverno. Preparo do solo utilizando grades de discos (pesada e niveladora).

2) Sistema Plantio Direto (SPD): área total de 6 hectares de lavoura sob SPD (6 ha), subdividida em três sistemas de rotação de culturas (SPD-A, SPD-B e SPD-C) alternando soja ou milho no verão com trigo, aveia ou nabo no outono-inverno (nabo-milho-aveia-soja-trigo-soja).

3) Integração Lavoura – Pecuária (ILP): área de 8 hectares, subdividida em dois esquemas de rotação (ILP-A e ILP-B) alternando lavouras anuais (soja ou aveia) com o cultivo de Brachiaria decumbens (pastagem) conduzida em Plantio Direto, em ciclos de dois anos. Cada subdivisão ocupa 4 hectares e quando ocupadas por pastagem são submetidas ao pastejo, tendo lotação ajustada de forma a manter a oferta de forragem constante.

4) Pastagem Permanente (PP): área de 4 ha, permanentemente ocupada com Brachiaria decumbens e manejada em pastoreio rotativo, com a lotação ajustada de forma a manter a oferta de forragem constante.

A amostragem da área seguiu uma grade de pontos georreferenciados, predominantemente espaçada em 30m e totalizando 243 pontos. Nos pontos definidos realizaram-se uma série de avaliações pertinentes à cultura (rendimento de grãos, massa vegetal, ocorrência de pragas, doenças e plantas daninhas) ou ao solo (atributos físicos, químicos e biológicos) em três diferentes profundidades ao longo do tempo. Contudo, o presente trabalho avaliará apenas a variabilidade espacial da Matéria Orgânica do Solo considerando as profundidades de 0-5 cm e 5-15 cm.

Os dados foram processados e analisados com auxílio do software estatístico R, versão 2.15.2, empregando-se diversos pacotes para análise espacial, devendo destacar: geoR, sp e rgdal. Em uma primeira etapa, houve a preparação dos dados com a definição de covariáveis e grids de predição. Num segundo momento procedeu-se a análise exploratória dos dados, empregando-se sobretudo as funções MASS::boxcox() e geoR::plot.geodata(). Nesta etapa diversos modelos foram considerados, variando distâncias, fontes de tendências, anisotropia, função e métodos de ajuste. Os variogramas foram produzidos de acordo com os modelos elaborados, empregando-se equações de ajuste do modelo exponencial e esférico, segundo o método de ajustamento por mínimos quadrados (variofit) e máxima verossimilhança (likfit). Os melhores modelos de cada grupo foram inspecionados visualmente e considerando índices de desempenho (soma de erros, GDE, AIC, BIC, etc). Os modelos selecionados como de melhor desempenho foram então submetidos à validação cruzada. Os dados originais foram ajustados linearmente em função dos dados preditos, buscando avaliar a qualidade das predições. Por fim, procedeu-se a interpolação dos dados originais por krigagem.

3. RESULTADOS E DISCUSSÃO

Os gráficos exploratórios para a variável matéria orgânica utilizando diferentes covariáveis são apresentados na Figura 2. Observa-se que aparentemente a inclusão da altura, tratamento ou regressão de primeira ordem em relação as coordenadas têm efeitos similares.

Figura 2: Gráficos exploratórios referentes à profundidade 0 a 5 cm: (a) sem covariáveis; (b) regressão de primeira ordem em relação às coordenadas; (c) altura como covariável; (d) efeito de tratamento como covariável.

Figura 3: Gráficos exploratórios referentes à profundidade 5 a 15 cm: (a) sem covariáveis; (b) regressão de primeira ordem em relação às coordenadas; (c) altura como covariável; (d) efeito de tratamento como covariável.

Visando a modelagem espacial da variável matéria orgânica pela função variofit() foram gerados 18 variogramas, com variações em função da tendência considerada e direção de cálculo da distância entre pontos. Utilizou-se uma distância máxima de 280m para todos os variogramas, definida empiricamente com base na avaliação coletiva das características dos variogramas gerados, sobretudo em relação à forma do variograma no trecho inicial, próximo à origem.

	Tabela 1. Variogramas gerados								
Denominação	Profundidade	Característica	Tendência						
vA0.i	0 a 5 cm	isotrópico	"cte"						
vA1.i	0 a 5 cm	isotrópico	"1st"						
vA2.i	0 a 5 cm	isotrópico	"~DA\$ALT"						
vA3.i	0 a 5 cm	isotrópico	"~DA\$ALT + coords"						
vA4.i	0 a 5 cm	isotrópico	"~(DA\$TRAT - 1)"						
vA5.i	0 a 5 cm	isotrópico	"~(DA\$TRAT - 1) + DA\$ALT"						
vA6.i	0 a 5 cm	isotrópico	"~(DA\$GTRAT - 1)"						
vA7.i	0 a 5 cm	isotrópico	"~(DA\$GTRAT - 1) + DA\$ALT"						
vA2.0	0 a 5 cm	direcional (0º)	"~DA\$ALT"						
vA4.0	0 a 5 cm	direcional (0º)	"~(DA\$TRAT - 1)"						
vA5.0	0 a 5 cm	direcional (0º)	"~(DA\$TRAT - 1) + DA\$ALT"						
vA6.0	0 a 5 cm	direcional (0º)	"~(DA\$GTRAT - 1)"						
vA7.0	0 a 5 cm	direcional (0º)	"~(DA\$GTRAT - 1) + DA\$ALT"						
vA2.45	0 a 5 cm	direcional (45º)	"~DA\$ALT"						
vA4.45	0 a 5 cm	direcional (45º)	"~(DA\$TRAT - 1)"						
vA5.45	0 a 5 cm	direcional (45º)	"~(DA\$TRAT - 1) + DA\$ALT"						
vA6.45	0 a 5 cm	direcional (45º)	"~(DA\$GTRAT - 1)"						
vA7.45	0 a 5 cm	direcional (45º)	"~(DA\$GTRAT - 1) + DA\$ALT"						
vB0.i	5 a 15 cm	isotrópico	"cte"						
vB1.i	5 a 15 cm	isotrópico	"1st"						
vB2.i	5 a 15 cm	isotrópico	"~DB\$ALT"						
vB3.i	5 a 15 cm	isotrópico	"~DB\$ALT + coords"						
vB4.i	5 a 15 cm	isotrópico	"~(DB\$TRAT - 1)"						
vB5.i	5 a 15 cm	isotrópico	"~(DB\$TRAT - 1) + DB\$ALT"						
vB6.i	5 a 15 cm	isotrópico	"~(DB\$GTRAT - 1)"						
vB7.i	5 a 15 cm	isotrópico	"~(DB\$GTRAT - 1) + DB\$ALT"						
vB2.0	5 a 15 cm	direcional (0º)	"~DB\$ALT"						
vB4.0	5 a 15 cm	direcional (0º)	"~(DB\$TRAT - 1)"						
vB5.0	5 a 15 cm	direcional (0º)	"~(DB\$TRAT - 1) + DB\$ALT"						
vB6.0	5 a 15 cm	direcional (0º)	"~(DB\$GTRAT - 1)"						
vB7.0	5 a 15 cm	direcional (0º)	"~(DB\$GTRAT - 1) + DB\$ALT"						
vB2.45	5 a 15 cm	direcional (45º)	"~DB\$ALT"						
vB4.45	5 a 15 cm	direcional (45º)	"~(DB\$TRAT - 1)"						
vB5.45	5 a 15 cm	direcional (45º)	"~(DB\$TRAT - 1) + DB\$ALT"						
vB6.45	5 a 15 cm	direcional (45º)	"~(DB\$GTRAT - 1)"						
vB7.45	5 a 15 cm	direcional (45º)	"~(DB\$GTRAT - 1) + DB\$ALT"						

Inicialmente, foram realizados testes com diferentes modelos de ajuste, havendo indicativos de que os modelos exponencial e esférico seriam os mais adequados aos dados em questão. O modelo exponencial foi indicado pelo ajustamento automático da função, enquanto o esférico foi selecionado empiricamente, considerando a avaliação visual da forma do variograma. Visualmente houve o indício de que a função exponencial tenderia a subestimar o valor do parâmetro tau, inclusive com a possível determinação de valores negativos.

Visando uma análise menos subjetiva, procedeu-se a análise dos parâmetros dos modelos, baseando-se sobretudo na soma do erro quadrado e do Grau de Dependência Espacial (GDE), calculando segundo a recomendação de Zimback (2001), onde GDE é resultante do parâmetro sigma ao quadrado dividido pela soma deste parâmetro com o parâmetro tau (pepita). Nesta análise, verificaram-se valores negativos do parâmetro tau no modelo anisotrópico de direção 0º, quando ajustado pelo modelo exponencial. Por essa razão optou-se por fixar o valor do parâmetro no valor 10, ajustando-se os outros parâmetros. A Tabela 2 compila os principais resultados obtidos.

Tabela 2. Parâmetros obtidos pelo ajustamento das funções de modelo exponencial e esférico dos variogramas experimentais definidos para a primeira profundidade (o a 5 cm).

id	nome	model	sum.sq	sigmasq	phi	tau	kappa	max.dist	p.range	GDE
1	VFA0.i.exp	exponential	396392	52	95	22	0.5	280	283	70
2	VFA1.i.exp	exponential	428135	37	51	20	0.5	280	153	64
3	VFA2.i.exp	exponential	401773	36	56	21	0.5	280	167	63
4	VFA3.i.exp	exponential	469693	35	44	19	0.5	280	132	65
5	VFA4.i.exp	exponential	150954	29	51	17	0.5	280	153	63
6	VFA5.i.exp	exponential	124055	30	52	15	0.5	280	156	66
7	VFA6.i.exp	exponential	177452	28	52	18	0.5	280	157	61
8	VFA7.i.exp	exponential	157804	30	50	16	0.5	280	151	66
9	VFA2.0.exp	exponential	203169	55	106	10*	0.5	280	319	85
10	VFA4.0.exp	exponential	87898	40	91	10*	0.5	280	271	80
11	VFA5.0.exp	exponential	61721	39	93	10*	0.5	280	280	80
12	VFA6.0.exp	exponential	79416	41	93	10*	0.5	280	278	80
13	VFA7.0.exp	exponential	60637	41	96	10*	0.5	280	288	80
14	VFA2.45.exp	exponential	68238	26	63	35	0.5	280	189	43
15	VFA4.45.exp	exponential	83574	29	55	22	0.5	280	164	57
16	VFA5.45.exp	exponential	91055	31	56	19	0.5	280	169	62
17	VFA6.45.exp	exponential	75277	27	59	25	0.5	280	176	53
18	VFA7.45.exp	exponential	86852	30	60	22	0.5	280	179	58
19	VFA0.i.sph	spherical	340465	41	215	28	0.5	280	215	59
20	VFA1.i.sph	spherical	376777	26	174	31	0.5	280	174	45
21	VFA2.i.sph	spherical	349411	26	179	31	0.5	280	179	46
22	VFA3.i.sph	spherical	426820	23	168	32	0.5	280	168	42
23	VFA4.i.sph	spherical	130945	20	170	25	0.5	280	170	44
24	VFA5.i.sph	spherical	103588	21	170	24	0.5	280	170	47
25	VFA6.i.sph	spherical	154290	20	173	26	0.5	280	173	43
26	VFA7.i.sph	spherical	132634	21	169	25	0.5	280	169	46
27	VFA2.0.sph	spherical	159883	54	188	4	0.5	280	188	93
28	VFA4.0.sph	spherical	55406	40	182	6	0.5	280	182	86
29	VFA5.0.sph	spherical	35690	38	186	7	0.5	280	186	83
30	VFA6.0.sph	spherical	52148	40	183	7	0.5	280	183	86
31	VFA7.0.sph	spherical	37477	39	187	8	0.5	280	187	84
32	VFA2.45.sph	spherical	60062	19	201	42	0.5	280	201	32
33	VFA4.45.sph	spherical	74719	21	184	30	0.5	280	184	41
34	VFA5.45.sph	spherical	80864	22	184	27	0.5	280	184	45
35	VFA6.45.sph	spherical	67705	20	192	32	0.5	280	192	38
36	VFA7.45.sph	spherical	77868	21	192	30	0.5	280	192	42

Os resultados obtidos com o modelo esférico foram considerados melhores tanto na análise visual do ajustamento, quando na avaliação coletiva dos parâmetros. E mesmo independente do modelo de ajustamento, os melhores resultados foram obtidos quando considerando a tendência combinada do tratamento com a altitude e também a anisotropia. O modelo VFA5.0.sph é um modelo esférico, direcional (0º), que considera a tendência devido ao tratamento e altitude. Este modelo obteve o melhor desempenho, seguido de perto de sua variação VFA7.0.sph, que se diferencia pelo agrupamento dos tratamentos referentes ao Sistema Plantio Direto (SPD) em uma única classe. A despeito da sutilidade das diferenças observadas, o modelo VFA7.0.sph leva vantagem pelo menor número de parâmetros e portanto, maior simplicidade.

Tabela 3. Parâmetros obtidos pelo ajustamento das funções de modelo exponencial e esférico dos variogramas experimentais definidos para a segunda profundidade (5 a 15 cm).

n	id	model	sum.sq	sigmasq	phi	tau	kappa	max.dist	p.range	GDE
1	VFB0.i.exp	exponential	230225	38	102	5	0.5	280	304	88
2	VFB1.i.exp	exponential	234617	38	100	5	0.5	280	299	88
3	VFB2.i.exp	exponential	230789	39	105	5	0.5	280	315	89
4	VFB3.i.exp	exponential	262300	35	88	5	0.5	280	264	88
5	VFB4.i.exp	exponential	53968	16	62	5	0.5	280	186	77
6	VFB5.i.exp	exponential	50901	16	64	5	0.5	280	190	76
7	VFB6.i.exp	exponential	56773	16	62	5	0.5	280	186	77
8	VFB7.i.exp	exponential	53636	16	63	5	0.5	280	190	77
9	VFB2.0.exp	exponential	72095	39	218	5	0.5	280	653	89
10	VFB4.0.exp	exponential	18511	18	122	5	0.5	280	366	78
11	VFB5.0.exp	exponential	16587	18	125	5	0.5	280	374	78
12	VFB6.0.exp	exponential	18521	18	121	5	0.5	280	363	78
13	VFB7.0.exp	exponential	16424	18	126	5	0.5	280	378	78
14	VFB2.45.exp	exponential	79356	44	130	5	0.5	280	391	90
15	VFB4.45.exp	exponential	28237	20	65	5	0.5	280	195	80
16	VFB5.45.exp	exponential	28894	20	67	5	0.5	280	202	80
17	VFB6.45.exp	exponential	27411	20	64	5	0.5	280	192	80
18	VFB7.45.exp	exponential	28565	20	67	5	0.5	280	200	80
19	VFB0.i.sph	spherical	167594	34	201	5	0.5	280	201	87
20	VFB1.i.sph	spherical	173937	34	199	5	0.5	280	199	87
21	VFB2.i.sph	spherical	174889	34	203	5	0.5	280	203	87
22	VFB3.i.sph	spherical	191334	32	190	5	0.5	280	190	87
23	VFB4.i.sph	spherical	55270	16	164	5	0.5	280	164	76
24	VFB5.i.sph	spherical	51188	16	165	5	0.5	280	165	76
25	VFB6.i.sph	spherical	58870	16	165	5	0.5	280	165	76
26	VFB7.i.sph	spherical	53767	16	166	5	0.5	280	166	76
27	VFB2.0.sph	spherical	60965	26	257	5	0.5	280	257	84
28	VFB4.0.sph	spherical	12190	15	211	5	0.5	280	211	75
29	VFB5.0.sph	spherical	10668	15	213	5	0.5	280	213	75
30	VFB6.0.sph	spherical	12367	15	210	5	0.5	280	210	75
31	VFB7.0.sph	spherical	10700	15	214	5	0.5	280	214	75
32	VFB2.45.sph	spherical	72890	37	236	5	0.5	280	236	88
33	VFB4.45.sph	spherical	29847	19	175	5	0.5	280	175	79
34	VFB5.45.sph	spherical	29709	19	179	5	0.5	280	179	79
35	VFB6.45.sph	spherical	29762	19	173	5	0.5	280	173	79
36	VFB7.45.sph	spherical	29910	19	178	5	0.5	280	178	79

Para a segunda profundidade houve problemas com a estimação do parâmetro tau na maior parte dos ajustes, optando-se por fixar o valor em todos os casos (tau=5). Apesar disso, os resultados alcançados são bastante aos da primeira camada. Vantagem dos modelos esféricos, sendo necessário considerar a tendência e anisotropia. Os melhores modelos foram VFB5.0.sph e VFB7.0.sph.

Gráfico 3. Representação dos variogramas e ajustamentos dos modelos exponencial (azul) e esférico (vermelho) para a primeira profundidade.

Gráfico 4. Representação dos variogramas e ajustamentos dos modelos exponencial (azul) e esférico (vermelho) para a segunda profundidade.

Os ajustes propiciados pelo modelo exponencial tenderam a subestimar o valor de tau, optando-se por fixar o valor de tau na segunda profundidade. O problema também ocorreu nos modelos esféricos.

Os mesmos modelos acima avaliados foram ajustados utilizando o método da máxima verossimilhança, por meio da função likfit() no pacote geoR. As Tabelas 3 e 4 reúnem os principais parâmetros obtidos.

n	id	model	pars	AIC	BIC	n2LV	comp	pars.dif	n2LV.dif	pchisq
1	MVA0.i.exp	exponential	4	1624	1638	1616	-	-	-	-
2	MVA1.i.exp	exponential	6	1616	1637	1604	MVA0.i.exp	2	-11.7258	0.0028
3	MVA2.i.exp	exponential	5	1611	1628	1601	MVA1.i.exp	-1	-3.6889	0.0548
4	MVA3.i.exp	exponential	7	1612	1637	1598	MVA2.i.exp	2	-2.2043	0.3322
5	MVA4.i.exp	exponential	10	1540	1575	1520	MVA2.i.exp	5	-80.8094	<0.0001
6	MVA5.i.exp	exponential	11	1541	1580	1519	MVA4.i.exp	1	-0.4829	0.4871
7	MVA6.i.exp	exponential	8	1543	1571	1527	MVA5.i.exp	-3	8.2317	0.0415
8	MVA7.i.exp	exponential	9	1545	1577	1527	MVA5.i.exp	-2	7.9586	0.0187
9	MVA2.a.exp	exponential	7	1519	1543	1505	MVA5.i.exp	-4	-14.2954	0.0064
10	MVA4.a.exp	exponential	12	1510	1552	1486	MVA2.a.exp	5	-18.4891	0.0024
11	MVA5.a.exp	exponential	13	1511	1557	1485	MVA4.a.exp	1	-1.1668	0.2801
12	MVA6.a.exp	exponential	10	1509	1544	1489	MVA4.a.exp	-2	2.4784	0.2896
13	MVA7.a.exp	exponential	11	1511	1549	1489	MVA4.a.exp	-1	2.4505	0.1175
14	MVA0.i.sph	spherical	4	1622	1636	1614	-	-	-	-
15	MVA1.i.sph	spherical	6	1618	1639	1606	MVA0.i.sph	2	-8.1059	0.0174
16	MVA2.i.sph	spherical	5	1613	1631	1603	MVA1.i.sph	-1	-2.7232	0.0989
17	MVA3.i.sph	spherical	7	1616	1641	1602	MVA2.i.sph	2	-0.7846	0.6755
18	MVA4.i.sph	spherical	10	1560	1595	1540	MVA2.i.sph	5	-62.7309	0
19	MVA5.i.sph	spherical	11	1546	1585	1524	MVA4.i.sph	1	-15.9577	<0.0001
20	MVA6.i.sph	spherical	8	1562	1590	1546	MVA5.i.sph	-3	21.9801	<0.0001
21	MVA7.i.sph	spherical	9	1547	1578	1529	MVA5.i.sph	-2	4.3897	0.1114
22	MVA2.a.sph	spherical	7	1518	1542	1504	MVA5.i.sph	-4	-20.5447	<0.0001
23	MVA4.a.sph	spherical	12	1510	1552	1486	MVA2.a.sph	5	-17.7773	0.0032
24	MVA5.a.sph	spherical	13	1511	1557	1485	MVA4.a.sph	1	-0.8358	0.3606
25	MVA6.a.sph	spherical	10	1508	1543	1488	MVA4.a.sph	-2	2.1652	0.3387
26	MVA7.a.sph	spherical	11	1510	1548	1488	MVA4.a.sph	-1	1.4136	0.2345
27	MVA5.i.7s	exponential	17	1528	-	1494				

Tabela 4. Parâmetros obtidos pelo ajustamento das funções de modelo exponencial e esférico, utilizando a máxima verossimilhança para a variável matéria orgânica, na primeira profundidade.

Tabela 5. Parâmetros complementares obtidos pelo ajustamento das funções de modelo exponencial e esférico, utilizando a máxima verossimilhança para a variável matéria orgânica, na primeira profundidade.

n	id	model	sigmasq	phi	tau	kappa	max.dist	p.range
1	MVA0.i.exp	exponential	82	210	26	0.5	675	629
2	MVA1.i.exp	exponential	36	36	17	0.5	675	108
3	MVA2.i.exp	exponential	34	35	17	0.5	675	105
4	MVA3.i.exp	exponential	33	31	16	0.5	675	93
5	MVA4.i.exp	exponential	793	2605	15	0.5	675	7803
6	MVA5.i.exp	exponential	599	2039	16	0.5	675	6108
7	MVA6.i.exp	exponential	558	1780	16	0.5	675	5332
8	MVA7.i.exp	exponential	424	1381	16	0.5	675	4137
9	MVA2.a.exp	exponential	184	180	10	0.5	447	539
10	MVA4.a.exp	exponential	98	180	11	0.5	459	539
11	MVA5.a.exp	exponential	300	644	11	0.5	463	1930

n		id	model	sigmasq	phi	tau	kappa	max.dist	p.range
	12	MVA6.a.exp	exponential	102	180	11	0.5	457	539
	13	MVA7.a.exp	exponential	100	180	11	0.5	458	539
	14	MVA0.i.sph	spherical	59	177	22	0.5	675	177
	15	MVA1.i.sph	spherical	33	174	28	0.5	675	174
	16	MVA2.i.sph	spherical	27	174	30	0.5	675	174
	17	MVA3.i.sph	spherical	24	173	30	0.5	675	173
	18	MVA4.i.sph	spherical	46	187	16	0.5	675	187
	19	MVA5.i.sph	spherical	40	186	16	0.5	675	186
	20	MVA6.i.sph	spherical	50	193	16	0.5	675	193
	21	MVA7.i.sph	spherical	40	186	17	0.5	675	186
	22	MVA2.a.sph	spherical	117	180	10	0.5	450	180
	23	MVA4.a.sph	spherical	62	164	12	0.5	453	164
	24	MVA5.a.sph	spherical	55	165	12	0.5	453	165
	25	MVA6.a.sph	spherical	65	163	12	0.5	450	163
	26	MVA7.a.sph	spherical	58	163	12	0.5	451	163
				90/7/21/42/					
	27	MVA5.i.7s	exponential	21/41/1.2	77	12	-		

Também nessa comparação os modelos esféricos foram melhores, uma vez que os exponenciais revelaram algumas incoerências (Tabela 4). Entre os modelos isotrópicos destacam-se para MVA5.i.sph e MVA7.i.sph. Apesar da soma do erro muito similar, a vantagem do segundo modelo é o menor número de parâmetros. Na condição de anisotropia, o modelo com melhor desempenho é MVA7.a.sph, mas MVA2.a.sph pode ser uma opção pela simplicidade.

Tabela 6. Parâmetros obtidos pelo ajustamento das funções de modelo exponencial e esférico, utiliza	indo a
máxima verossimilhança para a variável matéria orgânica, na segunda profundidade.	

		1			<u> </u>	U				
n	id	model	pars	AIC	BIC	n2LV	comp	pars.dif	n2LV.dif	pchisq
1	MVB0.i.exp	exponential	4	1623	1637	1615	MVB0.i.exp	-	-	-
2	MVB1.i.exp	exponential	6	1616	1637	1604	MVB0.i.exp	2	-10.7426	0.0046
3	MVB2.i.exp	exponential	5	1611	1628	1601	MVB1.i.exp	-1	-3.6889	0.0548
4	MVB3.i.exp	exponential	7	1612	1637	1598	MVB2.i.exp	2	-2.2026	0.3324
5	MVB4.i.exp	exponential	10	1540	1575	1520	MVB2.i.exp	5	-80.8094	<0.0001
6	MVB5.i.exp	exponential	11	1541	1580	1519	MVB4.i.exp	1	-0.4829	0.4871
7	MVB6.i.exp	exponential	8	1543	1571	1527	MVB5.i.exp	-3	8.2317	0.0415
8	MVB7.i.exp	exponential	9	1545	1577	1527	MVB5.i.exp	-2	7.9586	0.0187
9	MVB2.a.exp	exponential	7	1506	1531	1492	MVB5.i.exp	-4	-26.9937	<0.0001
10	MVB4.a.exp	exponential	12	1512	1554	1488	MVB2.a.exp	5	-4.3568	0.4993
11	MVB5.a.exp	exponential	13	1510	1556	1484	MVB4.a.exp	1	-3.3828	0.0659
12	MVB6.a.exp	exponential	10	1507	1542	1487	MVB4.a.exp	-2	-1.2036	0.5478
13	MVB7.a.exp	exponential	11	1510	1549	1488	MVB4.a.exp	-1	0.5731	0.449
14	MVB0.i.sph	spherical	4	1380	1394	1372	MVB0.i.sph	-	-	-
15	MVB1.i.sph	spherical	6	1384	1405	1372	MVB0.i.sph	2	-0.1697	0.9187
16	MVB2.i.sph	spherical	5	1381	1398	1371	MVB1.i.sph	-1	-0.9654	0.3258
17	MVB3.i.sph	spherical	7	1384	1408	1370	MVB2.i.sph	2	-1.0523	0.5909
18	MVB4.i.sph	spherical	10	1312	1347	1292	MVB2.i.sph	5	-79.0854	< 0.0001
19	MVB5.i.sph	spherical	11	1305	1343	1283	MVB4.i.sph	1	-9.1145	0.0025
20	MVB6.i.sph	spherical	8	1309	1337	1293	MVB5.i.sph	-3	10.2197	0.0168

21	MVB7.i.sph	spherical	9	1301	1332	1283	MVB5.i.sph	-2	0.0582	0.9713
22	MVB2.a.sph	spherical	7	1252	1277	1238	MVB5.i.sph	-4	-44.4859	< 0.0001
23	MVB4.a.sph	spherical	12	1249	1291	1225	MVB2.a.sph	5	-13.3934	0.02
24	MVB5.a.sph	spherical	13	1251	1296	1225	MVB4.a.sph	1	-4.00E-04	0.984
25	MVB6.a.sph	spherical	10	1245	1280	1225	MVB4.a.sph	-2	0.5326	0.7662
26	MVB7.a.sph	spherical	11	1247	1286	1225	MVB4.a.sph	-1	0.5184	0.4715

Tabela 7. Parâmetros complementares obtidos pelo ajustamento das funções de modelo exponencial e esférico, utilizando a máxima verossimilhança para a variável matéria orgânica, na primeira profundidade.

n	id	model	sigmasq	phi	tau	kappa	max.dist	p.range
1	MVB0.i.exp	exponential	57	96	21	0.5	675	287
2	MVB1.i.exp	exponential	36	36	17	0.5	675	107
3	MVB2.i.exp	exponential	34	35	17	0.5	675	105
4	MVB3.i.exp	exponential	33	31	16	0.5	675	94
5	MVB4.i.exp	exponential	793	2604	15	0.5	675	7802
6	MVB5.i.exp	exponential	599	2039	16	0.5	675	6108
7	MVB6.i.exp	exponential	558	1780	16	0.5	675	5332
8	MVB7.i.exp	exponential	424	1381	16	0.5	675	4138
9	MVB2.a.exp	exponential	38	9	11	0.5	448	27
10	MVB4.a.exp	exponential	45	60	11	0.5	447	180
11	MVB5.a.exp	exponential	30	6	11	0.5	458	18
12	MVB6.a.exp	exponential	31	6	11	0.5	452	17
13	MVB7.a.exp	exponential	299	600	11	0.5	461	1797
14	MVB0.i.sph	spherical	53	172	1	0.5	675	172
15	MVB1.i.sph	spherical	53	172	1	0.5	675	172
16	MVB2.i.sph	spherical	53	172	1	0.5	675	172
17	MVB3.i.sph	spherical	53	171	1	0.5	675	171
18	MVB4.i.sph	spherical	33	180	2	0.5	675	180
19	MVB5.i.sph	spherical	29	180	3	0.5	675	180
20	MVB6.i.sph	spherical	35	183	2	0.5	675	183
21	MVB7.i.sph	spherical	29	180	3	0.5	675	180
22	MVB2.a.sph	spherical	46	157	2	0.5	460	157
23	MVB4.a.sph	spherical	31	167	2	0.5	466	167
24	MVB5.a.sph	spherical	30	167	2	0.5	466	167
25	MVB6.a.sph	spherical	32	168	2	0.5	468	168
26	MVB7.a.sph	spherical	30	168	2	0.5	468	168

De posse das comparações foram selecionados os melhores modelos de variofit() e likfit() para cada profundidade, visando uma nova comparação através do procedimento de validação cruzada. Feita a validação, os parâmetros do ajuste são apresentados nas tabelas que seguem:

Tabela 8. Resultados	s da validação	o cruzada para a	a primeira	profundidade
----------------------	----------------	------------------	------------	--------------

id	AIC	logLik	r.sq	adj.r.sq
VFA0.i.sph	1590	-792	0.47	0.46
MVA0.i.sph	1577	-786	0.49	0.49
VFA2.0.sph	1576	-785	0.5	0.49
VFA7.i.sph	1512	-753	0.61	0.61
VFA5.i.sph	1510	-752	0.62	0.61

id	AIC	logLik	r.sq	adj.r.sq
VFA5.0.sph	1502	-748	0.63	0.63
VFA7.0.sph	1503	-748	0.63	0.63
MVA5.i.sph	1500	-747	0.63	0.63
MVA7.i.sph	1501	-748	0.63	0.63
MVA2.a.sph	1448	-721	0.7	0.7
MVA4.a.sph	1446	-720	0.7	0.7
MVA6.a.sph	1446	-720	0.7	0.7
MVA5.a.sph	1444	-719	0.71	0.71
MVA7.a.sph	1444	-719	0.71	0.71

Tabela 9. Resultados da validação cruzada para a segunda profundidade

id	AIC	logLik	r.sq	adj.r.sq
VFB2.0.sph	1343	-668	0.54	0.54
VFB0.i.sph	1332	-663	0.56	0.56
MVB0.i.sph	1309	-652	0.6	0.6
VFB5.0.sph	1257	-626	0.68	0.68
VFB5.i.sph	1255	-624	0.68	0.68
VFB7.0.sph	1256	-625	0.68	0.68
VFB7.i.sph	1253	-624	0.68	0.68
MVB5.i.sph	1247	-621	0.69	0.69
MVB7.i.sph	1246	-620	0.69	0.69
MVB4.a.sph	1160	-577	0.78	0.78
MVB5.a.sph	1162	-578	0.78	0.78
MVB6.a.sph	1158	-576	0.78	0.78
MVB7.a.sph	1161	-578	0.78	0.78
MVB2.a.sph	1156	-575	0.79	0.79

Avaliando os resultados da validação cruzada, confirma-se o que já havia sido inferir a partir dos parâmetros de ajuste dos modelos. O efeito da tendência imposta pela covariável altitude se confunde com o de tratamentos, havendo ainda uma interação com a anisotropia. Na primeira profundidade houve leve vantagem para o modelo que considera a tendência proveniente dos tratamentos associadas à altitude, contudo, se forma prática poderia-se optar pelo modelo que considera só a altitude (MVA2.0.sph), uma vez que os resultado da regressão retornam valores extremamente próximos, com a vantagem do modelo ser muito mais simples. Na segunda profundidade isso se evidencia ainda mais, ao ponto do modelo mais simples superar os demais, nos parâmetros considerados.

Com base nas tabelas 8 e 9, temos a superioridade em desempenho dos modelos ajustados por likfit, mesmo quando não considerada a anisotropia. Considerada a anisotropia, qualquer um dos modelos tem desempenho superior aos que não a consideram.

De posse dos resultados procedeu-se a krigagem dos valores, utilizando uma grade de saída regularmente espaçada em 10m.

CONSIDERAÇÕES FINAIS

Ao término deste trabalho é possível concluir:

a) A variável matéria orgânica é afetada por uma tendência associada à posição do tratamento na área experimental;

b) O efeito de tendência presente na área não pode ser dissociado claramente, havendo interação de efeito entre covariáveis e mesmo com a anisotropia.

c) os melhores resultados são obtidos quando considerado o efeito da tendência e da anisotropia;

d) o modelo de ajuste esférico se mostrou o mais adequado aos dados analisados;

e) os ajustes devem ser avaliados visualmente, buscando assegurar a coerência dos resultados;

f) procedimentos adicionais podem ser requeridos, tal como fixar o valor de parâmetros;

g) os ajustes realizados por meio da função likfit (por máxima verossimilhança) superaram os ajustes dados pela função variofit (por mínimos quadrados);

h) o comportamento da variável é similar nas duas profundidades, com provável alta correlação e portanto possibilidade de co-krigagem;

i) em termos práticos, evidenciados pela validação cruzada, nem sempre a maior complexidade do modelo e desempenho dos parâmetros de ajuste irão assegurar vantagem na predição;

Alguns desenvolvimentos que se fazem necessários:

a) adequação do script de análise para comportar mais uma profundidade e outras variáveis;

b) simplificação do procedimento de análise, diminuindo a quantidade de informação produzida, mas assegurando a qualidade da análise.

c) realizar a krigagem utilizando a tendência de acordo com covariáveis na grade de predição.