# Geostatística<sup>1</sup>

# Paulo Justiniano Ribeiro Jr

Laboratório de Estatística e Geoinformação, Universidade Federal do Paraná and ESALQ/USP (Brasil)

em colaboração com

# Peter J Diggle

Lancaster University (UK) and Johns Hopkins University School of Public Health (USA)

Curso de verão, IME/USP, Jan 2007

<sup>&</sup>lt;sup>1</sup>versão modificada de transparências do curso "Model Based Geostatistics" apresentado por PJD & PJRJr na IBC-2006, Montreal, CA e baseado no livro Diggle & Ribeiro Jr (2007), Springer.

# **SESSION** 1

#### **Spatial statistics** – an overview

See another set of slides

# **SESSION 2**

# Introduction and motivating examples

# Geostatistics

- traditionally, a self-contained methodology for spatial prediction, developed at École des Mines, Fontainebleau, France
- nowadays, that part of spatial statistics which is concerned with data obtained by spatially discrete sampling of a spatially continuous process

# Motivating examples

In the following examples we should identify:

- the structure of the available data
- the underlying process
- the scientific objectives
- the nature of the response variable(s) and potential covariates
- combine elements/features for a possible statistical model

#### **Example 1.1:** Measured surface elevations



require(geoR) ; data(elevation) ; ?elevation

Potential distinction between S(x) and Y(x)



# **Example 1.2:** Residual contamination from nuclear weapons testing







#### **Example 1.3:** Childhood malaria in Gambia



#### **Example 1.3:** continued



Correlation between prevalence and green-ness of vegetation?



#### Example 1.4: Soil data



Ca (left-panel) and Mg (right-panel) concentrations

#### **Example 1.4:** Continued



Correlation between local Ca and Mg concentrations.

#### **Example 1.4:** Continued



Covariate relationships for Ca concentrations.

## **Terminology and Notation**

- data format:  $(x_i, y_i)$
- $x_i$  fixed or stochastically independent of  $Y_i$
- S(x) is the assumed underlying stochastic process
- model specification: [S, Y] = [S][Y|S]

Note:  $[\cdot]$  denotes the distribution of

# Support

- $x_i$  is in principle a point, but sometimes measurements are taken on (maybe small) portions
- revisiting the examples (e.g. elevation and rongelap) we can see contrating situations

• 
$$S(x) = \int w(r) S^*(x-r) dr$$

- smoothness of w(s) contrains allowable forms for the correlation function
- support vs data from discrete spatial variation

## Multivariate responses and covariates

- $Y(x_i)$  can be a vector of observable variable
- not necessarily measurements are taken at coincident locations
- data structure  $(x_i, y_i, d_i)$  can include covariates (potential explanatory variables)
- jargon: *external trend* and *trend surface* (coordinates or functions of them as covariates)
- distinction between multivariate responses and covariates is not aways sharp and pragmatically, it may depend on the objectives and/or availability of data
- revisiting examples

# Sampling design

- uniform vs non-uniform
  - coverage of the area
  - estimation of spatial correlation
  - practical constraints
- preferential vs non-preferential
  - effects on inference
  - marked point process

## Scientific objectives

- Estimation: inference on model parameters
- Prediction: inference on the process (S(x) or some func-tional of it)
- Hypotesis testing (typically not a main concern)

#### Generalised linear models

- GLM's and marginal and mixed models
- GLGM: Generalized linear geostatistical models
- ingredients:
  - 1. a Gaussian process S(x), the signal
  - 2. data generating mechanism given the signal
  - **3.** relation to explanatory variables

$$h(\mu_i) = S(x_i) + \sum_{k=1}^p eta_k d_k(x_i)$$

• Gaussian and other models - revisiting examples

#### **Model-based Geostatistics**

- the application of general principles of statistical modelling and inference to geostatistical problems
- Example: kriging as minimum mean square error prediction under Gaussian modelling assumptions

## **Final remarks**

- course (book) structure
- statistical (pre)-requisites:
  - exploratory analysis, regression, statistical modelling and inference.
  - likelihood and Bayesian inference.
  - computational methods, including MCMC.
- computation (geoR and geoRglm)
  - R software (http://www.r-project.org)
  - geoR (http://www.leg.ufpr.br/geoR) and geoRglm (http://www.leg.ufpr.br/geoRglm) packages

# Some computational resources

- geoR package: http://www.leg.ufpr.br/geoR
- geoRglm package: http://www.leg.ufpr.br/geoRglm
- R-project: http://www.R-project.org
- CRAN spatial task view: http://cran.r-project.org/src/contrib/Views/Spatial.html
- AI-Geostats web-site: http://www.ai-geostats.org

# **SESSION 3**

## An overview of model based geostatistics

## Aims

- an overview of a *canonical* geostatistical analysis
- highlighting basic concepts, model features, results to be obtained
- steps of a typical data analysis
- using the *surface elevation data* as a running example

# Design

- what and where to address questions of scientific interest
- *elevation data*: map the true surface
- how many: sample size
  - statistical criteria
  - but typically limited by pratical contraints: time, costs, operational issues, etc
- where: design locations
  - completely random vs completely regular
  - different motivations, need to compromise
  - *oportunistic* designs: concerns about preferential sampling and impact on inferences

#### **Model formulation**

- here "unusually" before EDA (observational data)
- just a basic reference model antecipating issues for EDA
- *elevation data*: best guess of the true underlying surface from the available sparse data
- scientific reasoning: continuity and differentiability
- measurement process: distinction between S(x) and Y(x)

## A basic reference model

Gaussian geostatistics

The model:

- $\bullet \ \ [Y,S] = [S][Y|S]$
- Stationary Gaussian process  $S(x): x \in \mathbb{R}^2$ 
  - $\cdot \, \operatorname{E}\left[S(x)\right] = \mu$
  - $\cdot \operatorname{Cov} \left\{ S(x), S(x') \right\} = \sigma^2 \rho(\|x x'\|)$
- Mutually independent  $Y_i | S(\cdot) \sim \mathcal{N}(S(x_i), \tau^2)$

Equivalent to:

$$Y(x) = S(x) + \epsilon$$

#### **Correlation function**

- core of the spatially continuous models
- $\rho(u)$  is positive definite (any  $\sum_{i=1}^{m} a_i S(x_i)$  has a non-negative variance)
- here  $u \ge 0$ , symmetric
- typically assuming a parametric form for  $\rho(\cdot)$
- The Mátern class

$$ho(u)=\{2^{\kappa-1}\Gamma(\kappa)\}^{-1}(u/\phi)^\kappa K_\kappa(u/\phi)\}$$

• stationarity assumption

#### Some possible extensions

• transformation of the response variable (Box-Cox)

$$Y^* = \left\{egin{array}{ccc} (Y^\lambda - 1)/\lambda &: & \lambda 
eq 0 \ & \log Y &: & \lambda = 0 \end{array}
ight.$$

- non-constant mean model (covariates or trend surface)
- more general covariance functions
- non-stationary covariance structure

word of caution: decision on one will probably affect the other

# Exploratory data analysis

- non-spatial vs spatial
- Non-spatial
  - outliers
  - non-normality
  - arbitrary mean model: choice of potential covariates

#### **Spatial EDA - some tools and issues**

- spatial outliers
- trend surfaces (scatterplots against covariates)
- other potential spatial covariates
- GIS tools

#### Circle plot



## A quick exploratory display


## **Residual plots**



## Comments

- spatially varying mean *vs* correlation in the response variables around the mean
- keep it simple!
- likelihood based methods for model choice

# Variograms

• Theoretical variogram (for cte mean)

 $2V(u) = \operatorname{Var} \{Y(x_i) - Y(x_j)\} = \operatorname{E} \{[Y(x_i) - Y(x_j)]^2\}$ 

• Empirical (semi-)variogram:  $\hat{V}(u)$ 

- biased for non-constant mean
- higher order polynomials vs spatial correlation
- Monte Carlo envelopes for empirical variograms

#### An aside: distinction between parameter estimation and spatial prediction

- assume a set of locations  $x_i$ : i = 1, ..., n on a lattice covering the area
- interest: average level of pollution over the region
- consider the sample mean:

. . .

$$ar{S} = n^{-1} \sum_{i=1}^n S_i$$

• within a parameter estimation problem

- estimator of the constant mean parameter  $\mu = \operatorname{E}\left[S(x)
ight]$ 

- precision given by the M.S.E.  $\mathbb{E}\left\{\left[(ar{S}-\mu)^2\right]\right\}$ 

- Var 
$$[\bar{S}] = n^{-2} \sum_{i=1}^{n} \sum_{i=1}^{n} \operatorname{Cov}(S_i, S_j) \ge \sigma^2/n$$

- within a prediction problem
  - predictor of the spatial average  $S_A = |A|^{-1} \int_A S(x) dx$
  - precision given by the M.S.E.  $\mathbb{E}\left[(ar{S}-S_A)^2\right],\ S_A$  is r.v
  - precision (can even approach zero) given by

$$E[(\bar{S} - S_A)^2] = n^{-2} \sum_{i=1}^n \sum_{j=1}^n \operatorname{Cov}(S_i, S_j) + |A|^{-2} \int_A \int_A \operatorname{Cov} \{S(x), S(x')\} dx dx' - 2(n|A|)^{-1} \sum_{i=1}^n \int_A \operatorname{Cov} \{S(x), S(x_i)\} dx$$

#### Inference

- parameter estimation: likelihood based methods (other approaches are also used)
- spatial prediction: simple kriging

$$\hat{S}(x) = \mu + \sum_{i=1}^{n} w_i(x)(y_i - \mu)$$

- straightforward extension for  $\mu(x)$
- Parameter uncertainty? usually ignored in traditional geostatistics (plug-in prediction)

# Summary(I): Notation

- $(Y_i, x_i) : i = 1, ..., n$  basic format for geostatistical data
- $\{x_i : i = 1, ..., n\}$  is the sampling design
- $\{Y(x) : x \in A\}$  is the measurement process
- $\{S(x) : x \in A\}$  is the signal process
- $T = \mathcal{F}(S)$  is the target for prediction
- [S, Y] = [S][Y|S] is the geostatistical model

# Summary(II):A canonical geostatistical data analysis

**Basic steps:** 

- exploratory data analysis
- model choice
- inference on the model parameters
- spatial prediction

#### Assumptions:

- stationarity (translation) global mean, variance and spatial correlation
- isotropy (rotation)
- Gaussianity

# **Summary(III):Core Geostatistical Problems**

Design

- how many locations?
- how many measurements?
- spatial layout of the locations?
- what to measure at each location?

#### Modelling

- probability model for the signal, [S]
- conditional probability model for the measurements, [Y|S]

#### Estimation

- assign values to unknown model parameters
- make inferences about (functions of) model parameters

#### Prediction

• evaluate [T|Y], the conditional distribution of the target given the data

## **SESSION** 4

# Linear (Gaussian) geostatistical models

# **Opening remarks**

- Gaussian stochastic process are widely used
- physical representation, behaviour and \*tractability\*
- underlying structure many geoestatistical methods
- benchmark for hierarquical models

This section focus on characterization, properties and simulations of Gaussian models.

#### The reference model

• Equivalent model formulation for the Gaussian model

$$Y_i = \mu + S(x_i) + Z_i$$

• Schematic representation in 1-D:



#### **Covariance** function

• The assumed stationary Gaussian spatial process S(x) is fully specified by:

- the mean function  $\mu = \mathbb{E}[S(x)]$ 

- the covariance function  $\operatorname{Cov} \left\{ S(x), S(x') \right\} = \sigma^2 \rho(x, x')$ 

• A symmetric function  $Cov(\cdot)$  is positive definite if

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j \operatorname{Cov} \left( x_i - x_j \right) \ge 0$$

for all  $a_i \in \mathbb{R}, x_i \in \mathbb{R}^d$  and  $n \in \mathbb{N}$ .

- a function Cov (·) : ℝ → ℝ is a valid covariance function iff Cov (·) is positive definite
- geostatistics uses covariance functions to characterise spatial processes

#### Properties

- 1.  $Cov[Z(x), Z(x+0)] = Var[Z(x)] = Cov(0) \ge 0$
- 2. Cov(u) = Cov(-u)
- **3.**  $Cov(0) \ge |Cov(u)|$
- 4. Cov(u) = Cov[Z(s), Z(x+u)] = Cov[Z(0), Z(u)]
- 5. If  $\operatorname{Cov}_j(\mathbf{u})$ ,  $j = 1, 2, \ldots, k$ , are valid cov. fc. then  $\sum_{j=1}^k b_j \operatorname{Cov}_j(\mathbf{u})$  is valid for  $b_j \ge 0 \forall j$
- 6. If  $\operatorname{Cov}_j(\mathbf{u})$ ,  $j = 1, 2, \dots, k$ , are valid cov. fc. then  $\prod_{j=1}^k \operatorname{Cov}_j(\mathbf{u})$  is valid
- 7. If Cov(u) is valid in  $\mathbb{R}^d$ , then is also valid in  $\mathbb{R}^p$ , p < d

#### **Smoothness**

- A formal description of the smoothness of a spatial surface S(x) is its degree of differentiability.
- A process S(x) is mean-square continuous if, for all x,

$$\mathbb{E}\left[\left\{S(x+u) - S(x)\right\}^2\right] \to 0 \text{ as } h \to 0$$

• S(x) is mean square differentiable if there exists a process S'(x) such that, for all x,

$$\mathbb{E}\left[\left\{\frac{S(x+u)-S(x)}{u}-S'(x)\right\}^2\right]\to 0 \text{ as } h\to 0$$

• the mean-square differentiability of S(x) is directly linked to the differentiability of its covariance function

- Let S(x) be a stationary Gaussian process with correlation function  $\rho(u) : u \in \mathbb{R}$ . Then:
  - -S(x) is mean-square continuous iff ho(u) is continuous at u = 0;
  - -S(x) is k times mean-square differentiable iff ho(u) is (at least) 2k times differentiable at u = 0.

#### **Spectral representation**

**Bochener Theorem (iff):** 

$$\mathrm{Cov}(u) = \int_{-\infty}^{+\infty} \exp\{iu\} s(w) dw$$

- s(w) is the spectral density function
- Cov(u) and s(w) form a Fourier pair (the latter can be expressed as a function of the former)
- provided an alternative way to estimate covariance structure from the data using  $periodogram - \hat{s}(w)$
- provide ways for testinf valid covariance functions and/or to derive new ones

#### The Matérn family of correlation functions

 $\rho(u) = \{2^{\kappa-1}\Gamma(\kappa)\}^{-1}(u/\phi)^{\kappa}K_{\kappa}(u/\phi)$ 

- parameters  $\kappa > 0$  (smoothness of S(x)) and  $\phi > 0$  (extent of the spatial correlation)
- $K_{\kappa}(\cdot)$  denotes modified Bessel function of order  $\kappa$
- for  $\kappa = 0.5$ ,  $\rho(u) = \exp\{-u/\phi\}$ : exponential corr. fct.
- for  $\kappa \to \infty \ \rho(u) = \exp\{-(u/\phi)^2\}$ : Gaussian corr. fct.
- $\kappa$  and  $\phi$  are not orthogonal
  - scale parameters  $\phi$  are not comparable for different orders  $\kappa$  of the Matérn correlation function
  - reparametrisation:  $\alpha = 2\phi\sqrt{\kappa}$
  - effects on parameter estimation





## Notes

- many other are proposed in the literature
- correlation functions are typically, but not necessarily, decreasing functions
- models valid in *d* dimentions are valid for lower but not necessarily higher dimensions. Matérn is valid in 3-D.
- Matérn models are  $\lceil \kappa 1 \rceil$  times differentiable. For the example,  $\kappa = 0.5$ , 1.5 and 2.5 correspond to processes mean square continuous, once and twice differentiable.
- Whittle (1954) proposed a special case with  $\kappa = 1$
- for monotonic models, the pratical range is defined as the distance where the correlation is 0.05.
- we assume here punctual support for all data. For different supports (mis-aligned data) regularization is needed.

# Properties of the process (revisited)

- Strict stationarity
- Weak (second-order, covariance) stationarity
- isotropy

Variogram representations

- *intrinsic* stationarity (intrinsic random functions, Matheron, 1973)
- validity (Gneiting, Sasvári and Schlather, 2001)

## Simulating from the model

- For a finite set of locations x, S(x) is multivariate Gaussian.
- A "standard" way for obtaining (unconditional) simulations of S(x) is:
  - define the locations
  - define values for model parameters
  - compute  $\Sigma$  using the correlation function
  - obtain  $\Sigma^{1/2}$ , e.g. by Cholesky factorization of singular value decomposition
  - obtain simulations  $S = \Sigma^{1/2} Z$  where Z is a vector of normal scores.

# Simulating from the model (cont.)

- Large simulations are often need in practice and require other methods, e.g.:
  - Wood and Chan (1994) fast fourier transforms
  - Rue and Tjelmeland (2002) approximation by Markov Gaussian Random Fields Gibbs scheme using approximated sparse  $(n - 1) \times (n - 1)$  full conditionals (GMRFlib)
  - Schlather (2001) package RandomFields : implements a diversity of methods (circulant embedding, turning bands, etc)

### **SESSION 5**

# Linear (Gaussian) geostatistical models (cont.)

# Other families (I): powered exponential

$$ho(u) = \exp\{-(u/\phi)^\kappa\}$$

- scale parameter  $\phi$  and shape parameter  $\kappa$
- non-orthogonal parameters
- $0 < \kappa \leq 2$
- non-differentiable for  $\kappa < 2$  e infinitely dif. for  $\kappa = 2$
- asymptotically behaviour (pratical range)





# Other families (II): spherical model

$$ho(u) = \left\{egin{array}{ccc} [1-1.5(u/\phi)+0.5(u/\phi)^3] & {
m for} & 0 \leq u \leq \phi \ 0 & {
m for} & u > \phi \end{array}
ight.$$

- finite range  $\phi$
- non- differentiable at origin
- only once differentiable at  $u = \phi$
- potential difficulties for MLE
- overlapping volume between two spheres

## Other families (III): wave model

 $\rho(u) = (u/\phi)^{-1} \sin(u/\phi)$ 

- non-monotone
- oscilatory behaviour reflected in realisations







## The *nugget* effect

- discontinuity at the origin
- interpretations
  - $\operatorname{Var}[\boldsymbol{Y}|\boldsymbol{S}]$
  - measurement error (Y)
  - micro-scale variation (S)
  - combination of both
- importance for sampling design
- usually indistinguishable
- except repeated measurements at coincident locations
- impact on predictions and their variance

# **Spatial trends**

- term reffers to a variable mean function  $\mu(x)$
- trend surface and covariates
- deterministic vs stochastic: interpretation of the process
- exploratory analysis: possible non-linear relations

#### **Directional effects**

- environmental conditions wind, flow, soil formation, etc) can induce directional effects
- non-invariant properties of the cov. function under rota-tion
- simplest model: geometric anisotropy
- new coordinates by rotation and stretching of the original coordinates:

$$(x_1\prime, x_2\prime) = (x_1, x_2) \left( egin{array}{cc} \cos(\psi_A) & -\sin(\psi_A) \ \sin(\psi_A) & \cos(\psi_A) \end{array} 
ight) \left( egin{array}{cc} 1 & 0 \ 0 & rac{1}{\psi_R} \end{array} 
ight)$$

- add two parameters to the covariance function
- $(\psi_A, \psi_R)$  anisotropy angle and ratio parameters





Realisations of a geometrically anisotropic Gaussian spatial processes whose principal axis runs diagonally across the square region with anisotropy parameters  $(\pi/3, 4)$  for the left-hand panel and  $(3\pi/4, 2)$  for the right-hand panel.

#### Non-stationary models

- Stationarity is a convenient working assumption, which can be relaxed in various ways.
  - Functional relationship between mean and variance: sometimes handled by a data transformation
  - Non-constant mean: replace constant  $\mu$  by

$$\mu(x) = Feta = \sum_{j=1}^k eta_j f_j(x)$$

# Non-stationary models (cont.)

- Non-stationary random variation:
  - *intrinsic* variation a weaker hypothesis than stationarity (process has stationary increments, cf random walk model in time series), widely used as default model for discrete spatial variation (Besag, York and Molié, 1991).
  - Spatial deformation methods (Sampson and Guttorp, 1992) seek to achieve stationarity by complex transformations of the geographical space, x.
  - spatial convolutions (Higdon 1998, 2002; Fuentes e Smith)
  - low-rank models (Hastie, 1996)
  - non-Euclidean distances (Rathburn, 1998)
  - locally directional effects
need to balance increased flexibility of general modelling assumptions against over-modelling of sparse data, leading to poor identifiability of model parameters.

## An illustration



## Other topics

- transformed Gaussian models
- non-Gaussian (GLM) models (Gotway & Stroup, 1997; Diggle, Tawn & Moyeed, 1998)
- unconditional and conditional simulations
- decomposing the error term Z ("nugget effect"): Z = short scale variation + measurement error
- multivariate models
  - second order properties
  - constructions

## **Constructing multivariate models**

One example: A common-component model

- assume independent processes  $S_0^*(\cdot), S_1^*(\cdot)$  and  $S_2^*(\cdot)$
- Define a bivariate process  $S(\cdot) = \{S_1(\cdot), S_2(\cdot)\}$
- $S_j(x) = S_0^*(x) + S_j^*(x) : j = 1, 2.$
- $S(\cdot)$  is a valid bivariate process with covariance structure  $\mathrm{Cov}\{S_j(x), S_{j'}(x-u)\} = \mathrm{Cov}_0(u) + I(j=j') \mathrm{Cov}_j(u)$
- for different units it requires an additional scaling parameters so that  $S^*_{0j}(x) = \sigma_{0j}R(x)$  where R(x) has unit variance.

More general contructions are presented by Chilès and Delfiner, 1999; Gelfand, Schmidt, Banerjee & Sirmans (2004), Schmidt & Gelfand (2003)

## **SESSION 6**

### **Parameter Estimation**

## **Opening remarks**

• The canonical problem is spatial prediction of the form

$$\hat{S}(x) = \mu(x) + \sum_{i=1}^{n} w_i(x)(y_i - \mu(x))$$

The prediction problem can be tackled by adopting some criteria (e.g. minimise MSPE)

 $MSPE(\hat{T}) = E[(T-\hat{T})^2]$  e.g. above T = S(x)

• However this requires knowledge about model parameters

• infer first and second-moment properties of the process from the available data

# First moment properties (trend estimation)

• The OLS estimator

$$\tilde{\beta} = (D'D)^{-1}D'Y$$

is unbiased irrespective the covariance structure (assuming the model is correct)

• A more efficient GLS estimator:

$$\hat{\beta} = (D'V^{-1}D)^{-1}D'V^{-1}Y$$

- unbiased
- smaller variance
- MLE
- requires knowledge about covariance parameters

• for non-cte mean, OLS residuals can inform about covariance structure

$$R=Y-D ilde{eta}$$

• strategies: two stages (which can be interactive) or joint estimation

### Second order properties

Under the assumed model, for  $u = ||x_i - x_j||$ 

• Variances and covariances:

$$\operatorname{Var}\left[Y(x)\right] = \tau^2 + \sigma^2 \quad \operatorname{Cov}\left[Y(x_i), Y(x_j)\right] = \sigma^2 \rho(||u||)$$

• The (theoretical) variogram

$$\mathbf{V}(x_i, x_j) = \mathbf{V}(u) = \frac{1}{2} \operatorname{Var} \left\{ S(x_i) - S(x_j) \right\}$$

• Under stationarity

$$V(u) = \tau^2 + \sigma^2 \{1 - \rho(u)\}$$

• So, the theoretical variogram is a function which sumarises all the properties of the process

## Terminology

- the nugget variance:  $au^2$
- the sill:  $\sigma^2 = \operatorname{Var}\{S(x)\}$
- the total sill:  $\tau^2 + \sigma^2 = \operatorname{Var}\{Y(x)\}$
- the range:  $\phi$ , such  $\rho_0(u) = \rho(u/\phi)$
- the pratical range:  $u_0$ , such
  - ho(u)=0 (finite range correlation models)
  - $ho(u) = 0.95\sigma^2$  (correlation functions approaching zero asymptotically)
  - or, in terms of variogram  $V(u) = \tau^2 + 0.95\sigma^2$
  - this is just a practical convention!

## Schematic representation



u

## Paradigms for parameter estimation

- Ad hoc (variogram based) methods
  - compute an empirical variogram
  - fit a theoretical covariance model
- Likelihood-based methods
  - typically under Gaussian assumptions
  - more generally needs MCMC or approximations
  - Optimal under stated assumptions, robustness issues
  - full likelihood not feasible for large data-sets
  - variations on the likelihood function (*pseudo-likelihoods*)
- **Bayesian implementation**, combines estimation and prediction

### **Empirical variograms**

• The theoretical variogram suggests an empirical estimate of V(u):

$$\hat{V}(u_{ij}) = \operatorname{average}\{0.5[y(x_i) - y(x_j)]^2\} = \operatorname{average}\{v_{ij}\}$$

where each average is taken over all pairs  $[y(x_i), y(x_j)]$ such that  $||x_i - x_j|| \approx u$ 

- the variogram cloud is a scatterplot of the points  $(u_{ij}, v_{ij})$
- the empirical variogram is derived from the variogram cloud by averaging within bins:  $u h/2 \le u_{ij} < u + h/2$



- sample variogram ordinates  $V_k$ ;  $(k-1)h < u_{ij} < kh$
- convention  $u_k = (k 0.5)h$  (mid-point of the interval)
- may adopt distinct  $h_k$
- excludes zero from the smallest bin (deliberate)
- typically limited at a distance  $u < u_{max}$

## Variations on empirical variograms

- for a process with non-constant mean (covariates) replace  $y(x_i)$  by residuals  $r(x_i) = y(x_i) \hat{\mu}(x_i)$  from a trend removal
- usage of kernel or spline smoothers, however notice  $\frac{1}{2}n(n-1)$  points are not independent
- may not be worth the trouble (bandwidth issues, etc) considering exploratory purposes
- a diversity of alternative estimators is available

## Exploring directional effects



## Difficulties with empirical variograms

- $v_{ij} \sim V(u_{ij})\chi_1^2$
- the  $v_{ij}$  are correlated
- the variogram cloud is therefore unstable, both pointwise and in its overall shape
- binning removes the first objection to the variogram cloud, but not the second
- is sensitive to mis-specification of  $\mu(x)$

## Variogram model fitting

- fitting a typically non-linear variogram function (as e.g. the Matérn) to the empirical variogram provides a way to estimate the models parameters.
- e.g. a weighted least squares criteria minimises

$$W( heta) = \sum_k n_k \{ [ar{V}_k - V(u_k; heta)] \}^2$$

where  $\theta$  denotes the vector of covariance parameters and  $\bar{V}_k$  is average of  $n_k$  variogram ordinates  $v_{ij}$ .

- in practice u is usually limited to a certain distance
- variations includes:
  - fitting models to the variogram cloud
  - other estimators for the empirical variogram
  - different proposals for weights

- • • •

### **Comments on variograms - I**

• equally good fits for different "extrapolations" at origin



u

### **Comments on variograms - II**

• correlation between variogram points points



Empirical variograms for three simulations from the same model.

#### **Comments on variograms - III**

- sensitivity to the specification of the mean
- solid smooth line: true model, dotted: empirical variogram, solide: empirical variogram from true residuals, dashed: empirical variogram from estimated residuals.



**Computing variograms** 

— demo on variograms —

### Parameter estimation: maximum likelihood

For the basic geostatistical model

 $Y \sim \mathrm{MVN}(\mu 1, \sigma^2 R + \tau^2 I)$ 

1 denotes an n-element vector of ones,

I is the  $n \times n$  identity matrix

R is the  $n \times n$  matrix with  $(i, j)^{th}$  element  $\rho(u_{ij})$  where  $u_{ij} = ||x_i - x_j||$ , the Euclidean distance between  $x_i$  and  $x_j$ .

Or more generally for

$$egin{array}{rcl} S(x_i) &=& \mu(x_i) + S_c(x_i) \ \mu(x_i) &=& Deta = \sum_{j=1}^k f_k(x_i)eta_k \end{array}$$

where  $d_k(x_i)$  is a vector of covariates at location  $x_i$ 

$$Y \sim \text{MVN}(D\beta, \sigma^2 R + \tau^2 I)$$

The likelihood function is

$$egin{aligned} L(eta, au,\sigma,\phi,\kappa) \propto & -0.5\{\log|(\sigma^2R+ au^2I)|+\ & (y-Deta)'(\sigma^2R+ au^2I)^{-1}(y-Deta)\}. \end{aligned}$$

- reparametrise  $\nu^2 = \tau^2/\sigma^2$  and denote  $\sigma^2 V = \sigma^2 (R + \nu^2 I)$
- the log-likelihood function is maximised for

$$\hat{eta}(V) = (D'V^{-1}D)^{-1}D'V^{-1}y$$
  
 $\hat{\sigma}^{2}(V) = n^{-1}(y - D\hat{eta})'V^{-1}(y - D\hat{eta})$ 

• concentrated likelihood: substitute  $(\beta, \sigma^2)$  by  $(\hat{\beta}, \sigma^2)$  and the maximisation reduces to

$$L( au_r,\phi,\kappa) \propto -0.5\{n\log|\hat{\sigma^2}|+\log|(R+
u^2I)|\}$$

### Some technical issues

- poor quadratic approximations, unreliable Hessian matrices
- identifiability issues for more than tow parameters in the correlation function
- for models such as *Mat'ern* and *powered exponential*  $\phi$  and  $\kappa$  are not orthogonal
- For the Matérn correlation function we suggest to take  $\kappa$  in a discrete set  $\{0.5, 1, 2, 3, \dots, N\}$  ("profiling")
- other possible approach is reparametrization such as replacing  $\phi$  by  $\alpha = 2\sqrt{\kappa}\phi$  (Handcock and Wallis)
- stability: e.g. Zhang's comments on  $\sigma^2/\phi$
- reparametrisations and asymptotics, e.g.  $\theta_1 = \log(\sigma^2/\phi^{2\kappa})$ and  $\theta_2 = \log(\phi^{2\kappa})$

## Note: variations on the likelihood

- we strongly favor likelihood based methods.
- examining profile likelihoods can be reavealing on model identifiability and parameter uncertainty.
- restricted maximum likelihood is widely recommended leading to less biased estimators but is sensitive to misspecification of the mean model. In spatial models distinction between  $\mu(x)$  and S(x) is not sharp.
- **composite likelihood** uses independent contributions for the likelihood function for each pair of points.
- approximate likelihoods are useful for large data-sets.
- Markov Random Fields can be used to approximate geostatistical models.



## Example: Surface elevation data

|                | model with constant mean   |                            |                            |                  |              |               |          |  |
|----------------|----------------------------|----------------------------|----------------------------|------------------|--------------|---------------|----------|--|
| model          | $\hat{\mu}$                |                            |                            | $\hat{\sigma}^2$ | $\hat{\phi}$ | $\hat{	au}^2$ | $\log L$ |  |
| $\kappa=0.5$   | 863.71                     |                            |                            | 4087.6           | 6.12         | 0             | -244.6   |  |
| $\kappa = 1.5$ | 848.32                     |                            |                            | 3510.1           | 1.2          | <b>48.16</b>  | -242.1   |  |
| $\kappa=2.5$   | 844.63                     |                            |                            | 3206.9           | 0.74         | 70.82         | -242.33  |  |
|                |                            |                            | model w                    | ith linear tre   | nd           |               |          |  |
| model          | $\hat{oldsymbol{eta}}_{0}$ | $\hat{oldsymbol{eta}}_{1}$ | $\hat{oldsymbol{eta}}_{2}$ | $\hat{\sigma}^2$ | $\hat{\phi}$ | $\hat{	au}^2$ | $\log L$ |  |
| $\kappa=0.5$   | 919.1                      | -5.58                      | -15.52                     | 1731.8           | 2.49         | 0             | -242.71  |  |
| $\kappa = 1.5$ | 912.49                     | -4.99                      | -16.46                     | 1693.1           | 0.81         | 34.9          | -240.08  |  |
| $\kappa=2.5$   | 912.14                     | -4.81                      | -17.11                     | 1595.1           | 0.54         | 54.72         | -239.75  |  |



## **SESSION 7**

# Geostatistical spatial prediction (kriging)

### **Prediction** – general results

goal: predict the realised value of a (scalar) r.v. T, using data y a realisation of a (vector) r.v. Y.

**predictor:** of T is any function of Y,  $\hat{T} = t(Y)$ 

a criterion – MMSPE: the *best* predictor minimises $MSPE(\hat{T}) = E\left[(T-\hat{T})^2\right]$ 

The MMSEP of T is  $\hat{T} = E(T|Y)$ 

The prediction mean square error of  $\hat{T}$  is

$$\mathbf{E}[(T - \hat{T})^2] = \mathbf{E}_Y[\operatorname{Var}(T|Y)],$$

(the prediction variance is an estimate of  $MSPE(\hat{T})$ ).

 $E[(T - \hat{T})^2] \leq Var(T)$ , with equality if T and Y are independent random variables.

## Prediction – general results (cont.)

- We call  $\hat{T}$  the least squares predictor for T, and Var(T|Y) its prediction variance
- Var(T) Var(T|Y) measures the contribution of the data (exploiting dependence between T and Y)
- point prediction, prediction variance are summaries
- complete answer is the distribution [T|Y] (analytically or a sample from it)
- not transformation invariant:  $\hat{T}$  the best predictor for T does NOT necessarily imply that  $g(\hat{T})$  is the best predictor for g(T).

### **Prediction – Linear Gaussian model**

Suppose the target for prediction is T = S(x)The MMSEP is  $\hat{T} = E[S(x)|Y]$ 

• [S(x), Y] are jointly multivariate Gaussian. with mean vector  $\mu 1$  and variance matrix

$$\left[ egin{array}{ccc} \sigma^2 & \sigma^2 \mathrm{r'} \ \sigma^2 \mathrm{r} & au^2 I + \sigma^2 R \end{array} 
ight]$$

where r is a vector with elements  $r_i = \rho(||x - x_i||) : i = 1, \ldots, n$ .

- $\hat{T} = \mathbb{E}[S(x)|Y] = \mu + \sigma^2 r' (\tau^2 I + \sigma^2 R)^{-1} (Y \mu 1)$  (1)
- $\operatorname{Var}[S(x)|Y] = \sigma^2 \sigma^2 \mathbf{r}' (\tau^2 I + \sigma^2 R)^{-1} \sigma^2 \mathbf{r}$

## Prediction – Linear Gaussian model (cont.)

• for the Gaussian model  $\hat{T}$  is linear in Y, so that

$$\hat{T} = w_0(x) + \sum_{i=1}^n w_i(x)Y_i$$

- equivalent to a least squares problem to find  $w_i$  which minimise  $MSPE(\hat{T})$  within the class of linear predictors.
- Because the conditional variance does not depend on Y, the prediction MSE is equal to the prediction variance.
- Equality of prediction MSE and prediction variance is a special property of the multivariate Gaussian distribution, not a general result.

## Prediction – Linear Gaussian model (cont.)

- Construction of the surface  $\hat{S}(x)$ , where  $\hat{T} = \hat{S}(x)$  is given by (1), is called simple kriging.
- Assumes known model parameters.
- This name is a reference to D.G. Krige, who pioneered the use of statistical methods in the South African mining industry (Krige, 1951).

### **Features of spatial prediction**

The minimum mean square error predictor for S(x) is given by

$$\begin{split} \hat{T} &= \hat{S}(x) &= \mu + \sum_{i=1}^{n} w_i(x) (Y_i - \mu) \\ &= \{1 - \sum_{i=1}^{n} w_i(x)\} \mu + \sum_{i=1}^{n} w_i(x) Y_i \end{split}$$

- shows the predictor  $\hat{S}(x)$  compromises between its unconditional mean  $\mu$  and the observed data Y,
- the nature of the compromise depends on the target location x, the data-locations  $x_i$  and the values of the model parameters,
- $w_i(x)$  are the prediction weights.



#### Swiss rainfall data – trans-Gaussian model


| $\kappa$ | $\hat{oldsymbol{\mu}}$ | $\hat{\sigma}^2$ | $\hat{\phi}$ | $\hat{	au}^2$ | $\log \hat{L}$ |
|----------|------------------------|------------------|--------------|---------------|----------------|
| 0.5      | 18.36                  | 118.82           | 87.97        | 2.48          | -2464.315      |
| 1        | 20.13                  | 105.06           | 35.79        | 6.92          | -2462.438      |
| 2        | <b>21.36</b>           | 88.58            | 17.73        | 8.72          | -2464.185      |





# **SESSION 8**

# **Bayesian Inference**

# **Bayesian Basics**

Bayesian inference deals with parameter uncertainty by treating parameters as random variables, and expressing inferences about parameters in terms of their conditional distributions, given all observed data.

• model specification includes model parameters:

 $[Y,\theta] = [\theta][Y|\theta]$ 

• inference using **Bayes' Theorem:** 

 $[Y,\theta] = [Y|\theta][\theta] = [Y][\theta|Y]$ 

• to derive the posterior distribution

$$[\theta|Y] = [Y|\theta][\theta]/[Y] \propto [Y|\theta][\theta]$$

• The prior distribution  $[\theta]$  express the uncertainty about the model parameters

- The posterior distribution  $[\theta|Y]$  express the *revised* uncertainty after observing Y
- conjugacy is achieved in particular models where convenient choices of  $[\theta]$  produces  $[\theta|Y]$  within the same family
- more generally  $[\theta|Y]$  may be an unknown and  $[Y] = \int [Y|\theta][\theta] d\theta$ may need to be evaluated numerically.
- probability statements and estimates are based on the posterior density obtained through

$$p( heta|y) = rac{\ell( heta;y)\pi( heta)}{\int \ell( heta;y)\pi( heta)d heta}$$

are usually expressed as summary statistics (mean, median, mode) and/or Bayesian credibility intervals

• credible intervals are not uniquely defined (e.g. quantile based, highest density interval, etc)

# Prediction

For Bayesian prediction expand the Bayes' theorem to include the prediction target, allowing for uncertainty on model parameters to be accounted for.

• and for prediction

$$[Y,T, heta]=[Y,T| heta][ heta]$$

• derive the predictive distribution

$$[T|Y] = \int [T, heta|Y] d heta = \int [T|Y, heta][ heta|Y] d heta$$

- can be interpreted as a weighted prediction over possible values of  $[\theta|Y]$
- in general, as data becomes more abundant  $[\theta|Y]$  concentrates around  $\hat{\theta}$

# Bayesian inference for the geostatistical model

Bayesian inference for the geostatistcal model expands the previous results acknowledging for Y and S as specified by the adopted model.

• model specification:

$$[Y,S,\theta] = [\theta][Y,S|\theta] = [\theta][S|\theta][Y|S,\theta]$$

• inference using **Bayes' Theorem:** 

$$[Y,S, heta]=[Y,S| heta][ heta]=[Y][ heta,S|Y]$$

• to derive the posterior distribution

$$[ heta|Y] = \int [ heta,S|Y] dS = \int rac{[Y|S, heta][S| heta][ heta]}{[Y]} dS$$

- where  $[Y] = \int \int [Y|\theta] [S|\theta] [\theta] dS d\theta$  is typically difficult to evaluate
- For prediction

$$[Y,T,S, heta]=[Y,T|S, heta][S| heta][ heta]$$

• derive the predictive distribution

$$[T|Y] = \int \int [T,S, heta|Y] dS d heta = \int \int [T|Y,S, heta] [S, heta|Y] dS d heta$$

• and explore the conditional independence structure of the model to simplify the calculations

# Notes I

- likelihood function occupies a central role in both classical and Bayesian inference
- plug-in prediction corresponds to inferences about  $[T|Y, \hat{ heta}]$
- Bayesian prediction is a weighted average of plug-in predictions, with different plug-in values of  $\theta$  weighted according to their conditional probabilities given the observed data.
- Bayesian prediction is usually more cautious than plug-in prediction. Allowance for parameter uncertainty usually results in wider prediction intervals

# Notes II

- 1. The need to evaluate the integral which defines [Y] represented a major obstacle to practical application,
- 2. development of Markov Chain Monte Carlo (MCMC) methods has transformed the situation.
- 3. BUT, for geostatistical problems, reliable implementation of MCMC is not straightforward. Geostatistical models don't have a natural Markovian structure for the algorithms work well.
- 4. in particular for the Gaussian model other algorithms can be implemented.

## **Results for the Gaussian models - I**

• fixing covariance parameters and assuming a (conjugate) prior for  $\beta$ 

$$eta \sim \mathrm{N}\left(m_{eta} \; ; \; \sigma^2 V_{eta}
ight)$$

• The posterior is given by

• and the predictive distribution is

$$p(S^*|Y,\sigma^2,\phi) \hspace{.1in} = \hspace{.1in} \int p(S^*|Y,eta,\sigma^2,\phi) \hspace{.1in} p(eta|Y,\sigma^2,\phi) \hspace{.1in} deta.$$

• with mean and variance given by

$$E[S^*|Y] = (D_0 - r'V^{-1}D)(V_{\beta}^{-1} + D'V^{-1}D)^{-1}V_{\beta}^{-1}m_{\beta} + [r'V^{-1} + (D_0 - r'V^{-1}D)(V_{\beta}^{-1} + D'V^{-1}D)^{-1}D'V^{-1}]Y$$

$$\operatorname{Var}[S^*|Y] = \sigma^2 \left[ V_0 - r'V^{-1}r + (D_0 - r'V^{-1}D)(V_{\beta}^{-1} + D'V^{-1}D)^{-1}(D_0 - r'V^{-1}D)' \right]$$

- predicted mean balances between prior and weighted average of the data
- The predictive variance has three interpretable components: a priori variance, the reduction due to the data and the uncertainty in the mean.
- $V_{\beta} \to \infty$  results can be related to REML and universal (or ordinary) kriging.

#### Results for the Gaussian models - II

• fixing correlation parameters and assuming a (conjugate) prior for  $[\beta, \sigma^2] \sim N \chi^2_{ScI}(m_b, V_b, n_\sigma, S^2_\sigma)$  given by:

$$[\beta | \sigma^2] \sim \mathrm{N}\left(m_{\beta} \; ; \; \sigma^2 V_{\beta}\right) \; \mathrm{and} \; [\sigma^2] \sim \chi^2_{ScI}(n_{\sigma}, S^2_{\sigma})$$

• The posterior is  $[\beta, \sigma^2 | y, \phi] \sim N \chi^2_{ScI} \left( \tilde{\beta}, V_{\tilde{\beta}}, n_{\sigma} + n, S^2 \right)$ 

$$egin{aligned} & ilde{eta} = V_{ ilde{eta}}(V_b^{-1}m_b + D'R^{-1}y) \ &V_{ ilde{eta}} = (V_b^{-1} + D'R^{-1}D)^{-1} \ &S^2 = rac{n_\sigma S_\sigma^2 + m_b' V_b^{-1}m_b + y'R^{-1}y - ilde{eta}' V_{ ilde{eta}}^{-1} ilde{eta}}{n_\sigma + n} \end{aligned}$$

- The predictive distribution  $[S^*|y] \sim t_{n_\sigma+n} \left(\mu^*, S^2 \Sigma^* \right)$
- with mean and variance given by

$$\mu^{*} = (D^{*} - r'V^{-1}D)V_{\tilde{\beta}}V_{b}^{-1}m_{b} + \left[r'V^{-1} + (D^{*} - r'V^{-1}D)V_{\tilde{\beta}}D'V^{-1}\right]y,$$
  

$$\Sigma^{*} = V^{0} - r'V^{-1}r + (D^{*} - r'V^{-1}D)(V_{b}^{-1} + V_{\hat{\beta}}^{-1})^{-1}(D^{*} - r'V^{-1}D)'.$$

- valid if  $\tau^2 = 0$
- for  $\tau^2 > 0$ ,  $\nu^2 = \tau^2/\sigma^2$  can regarded as a correlation parameter

#### **Results for the Gaussian models - III**

Assume a prior  $p(\beta, \sigma^2, \phi) \propto \frac{1}{\sigma^2} p(\phi)$ .

• The posterior distribution for the parameters is:

$$p(eta,\sigma^2,\phi|y)=p(eta,\sigma^2|y,\phi)\;p(\phi|y)$$

• where  $p(\beta, \sigma^2 | y, \phi)$  can be obtained analytically and

$$pr(\phi|y) \propto pr(\phi) \; |V_{\hat{eta}}|^{rac{1}{2}} \; |R_y|^{-rac{1}{2}} \; (S^2)^{-rac{n-p}{2}}$$

• analogous results for more general prior:

 $\left[eta|\sigma^2,\phi
ight]\sim N\left(m_b,\sigma^2V_b
ight) \quad ext{ and } \quad \left[\sigma^2|\phi
ight]\sim \chi^2_{ScI}\left(n_\sigma,S^2_\sigma
ight),$ 

• choice of prior for  $\phi$  can be critical. (Berger, De Oliveira & Sansó, 2001)

#### Algorithm 1:

- 1. Discretise the distribution  $[\phi|y]$ , i.e. choose a range of values for  $\phi$  which is sensible for the particular application, and assign a discrete uniform prior for  $\phi$  on a set of values spanning the chosen range.
- 2. Compute the posterior probabilities on this discrete support set, defining a discrete posterior distribution with probability mass function  $\tilde{pr}(\phi|y)$ , say.
- 3. Sample a value of  $\phi$  from the discrete distribution  $\tilde{pr}(\phi|y)$ .
- 4. Attach the sampled value of  $\phi$  to the distribution  $[\beta, \sigma^2 | y, \phi]$ and sample from this distribution.
- 5. Repeat steps (3) and (4) as many times as required; the resulting sample of triplets  $(\beta, \sigma^2, \phi)$  is a sample from the joint posterior distribution.

The predictive distribution is given by:

$$egin{aligned} p(S^*|Y) &= \int \!\!\!\!\int \int p(S^*,eta,\sigma^2,\phi|Y)\,deta\,d\sigma^2\,d\phi \ &= \int \!\!\!\!\int \int p(s^*,eta,\sigma^2|y,\phi)\,\,deta\,d\sigma^2\,pr(\phi|y)\,d\phi \ &= \int p(S^*|Y,\phi)\,\,p(\phi|y)\,d\phi. \end{aligned}$$

Algorithm 2:

- 1. Discretise  $[\phi|Y]$ , as in Algorithm 1.
- 2. Compute the posterior probabilities on the discrete support set. Denote the resulting distribution  $\tilde{pr}(\phi|y)$ .
- 3. Sample a value of  $\phi$  from  $\tilde{pr}(\phi|y)$ .
- 4. Attach the sampled value of  $\phi$  to  $[s^*|y, \phi]$  and sample from it obtaining realisations of the predictive distribution.
- 5. Repeat steps (3) and (4) to generate a sample from the required predictive distribution.

# Notes

- 1. The algorithms are of the same kind to treat  $\tau$  and/or  $\kappa$  as unknown parameters.
- 2. We specify a discrete prior distribution on a multi-dimensional grid of values.
- 3. This implies extra computational load (but no new principles)

#### **Elevation data**





Table 1: Swiss rainfall data: posterior means and 95% central quantile-based credible intervals for the model parameters.

| parameter           | estimate     | 95% interval         |
|---------------------|--------------|----------------------|
| $\beta$             | 144.35       | $[53.08\ ,\ 224.28]$ |
| $\sigma^2$          | 13662.15     | [8713.18, 27116.35]  |
| ${oldsymbol{\phi}}$ | <b>49.97</b> | $[30\ , 82.5]$       |
| $\nu^2$             | 0.03         | [0, 0.05]            |



# **SESSION 9**

# Generalised linear geostatistical models

# Generalized linear geostatistical model

- Preserving the assumption of a zero mean, stationary Gaussian process  $S(\cdot)$ ,
- our basic model can be generalized replacing the assumption of mutually independent  $Y_i|S(\cdot) \sim N(S(x), \tau^2)$ by assuming  $Y_i|S(\cdot)$  are mutually independent within the class of generalized linear models (GLM)
- with a link function  $h(\mu_i) = \sum_{j=1}^p d_{ij} \beta_j + S(x_i)$
- this defines a generalized linear mixed model (GLMM) with correlated random effects
- which provides a way to adapt classical GLM for geostatistical applications.

# GLGM

- usually just a single realisation is available, in contrast with GLMM for longitudinal data analysis
- The GLM approach is most appealing when follows an natural sampling mecanism such as Poisson model for counts and logist-linear models for binary/binomial responses
- in principle transformed models can be considered for skewed distributions
- variograms for such processes can be obtained although providing a less obvious summary statistics
- empirical variograms of GLM residuals can be used for exploratory analysis

### An example: a Poisson model

•  $[Y(x_i) | S(x_i)]$  is Poisson with density

$$f(y_i; \zeta_i) = \exp(-\zeta_i)\zeta_i^{y_i}/y_i! \ y_i = 0, 1, 2, \dots$$

- link:  $E[Y(x_i) \mid S(x_i)] = \zeta_i = h(\mu_i) = h(\mu + S(x_i))$
- log-link  $h(\cdot) = \exp(\cdot)$
- more generaly the models can be expanded allowing for covariates and/or uncorrelated random effects

$$h(\mu_i) = \sum_{j=1}^p d_{ij}\beta_j + S(x_i) + Z_i$$

which, differently from Gaussian models, distinguish between the terms of the nugget effect: Poisson variation accounts for the anologue of measurement error and spatially uncorrelated component to the short scale variation



Simulations from the Poisson model; grey-scale shading represents the data values on a regular grid of sampling locations and contours represents the conditional expectation surface, with  $\mu = 0.5$  on the left panel and  $\mu = 5$  on the right panel.

### Another example: a Binomial logistic model

•  $[Y(x_i) | S(x_i)]$  is Binomial with density

$$f(y_i;\zeta_i) = \binom{n_i}{y_i} \zeta_i^{y_i} (1-\zeta_i)^{(n_i-y_i)} \quad y_i = 0, 1, \dots, n_i$$

- logistic link:  $E[Y(x_i) \mid S(x_i)] = n_i \zeta_i = \frac{\exp\{\mu_i\}}{1 + \exp\{\mu_i\}}$
- mean:  $\mu_i = \mu + S(x_i)$
- again can be expanded as

$$h(\mu_i) = \sum_{j=1}^p d_{ij}\beta_j + S(x_i) + Z_i$$

• typically more informative with larger values of  $n_i$ 

## An simulated example from binary model



- in this example the binary sequence is not much informative on S(x)
- wide intervals compared to the prior mean of p(x)

# Inference

• Likelihood function

$$L( heta) = \int_{\mathbb{R}^n} \prod_i^n f(y_i; h^{-1}(s_i)) f(s \mid heta) ds_1, \dots, ds_n$$

- Involves a high-dimensional (numerical) integration
- MCMC algorithms can exploit the conditional independence scructure of the model



### Prediction with known parameters

- Simulate  $s(1), \ldots, s(m)$  from [S|y] (using MCMC).
- Simulate  $s^*(j)$  from  $[S^*|s(j)], j = 1, ..., m$ (multivariate Gaussian)
- Approximate  $E[T(S^*)|y]$  by  $\frac{1}{m}\sum_{j=0}^m T(s^*(j))$
- if possible reduce Monte Carlo error by
  - calculating  $\operatorname{E}[T(S^*)|s(j)]$  directly
  - estimate  $\operatorname{E}[T(S^*)|y]$  by  $\frac{1}{m}\sum_{j=0}^m \operatorname{E}[T(S^*)|s(j)]$

# MCMC for conditional simulation

- Let  $S = D'\beta + \Sigma^{1/2}\Gamma$ ,  $\Gamma \sim N_n(0, I)$ .
- Conditional density of  $[\Gamma | Y = y]$

 $f(\gamma|y) \propto f(y|\gamma) f(\gamma)$ 

Langevin-Hastings algorithm

- Proposal:  $\gamma'$  from a  $N_n(\xi(\gamma), hI)$  where  $\xi(\gamma) = \gamma + \frac{h}{2} \nabla \log f(\gamma \mid y)$ .
- E.g for the Poisson-log Spatial model:  $\nabla \log f(\gamma|y) = -\gamma + (\Sigma^{1/2})'(y - \exp(s))$  where  $s = \Sigma^{1/2}\gamma$ .
- Expression generalises to other generalised linear spatial models.
- MCMC output  $\gamma_1, \ldots, \gamma_m$ . Multiply by  $\Sigma^{1/2}$  and obtain:  $s(1), \ldots, s(m)$  from [S|y].

# MCMC for Bayesian inference

#### **Posterior:**

- Update  $\Gamma$  from  $[\Gamma|y, \beta, \log(\sigma), \log(\phi)]$ (Langevin-Hasting described earlier)
- Update  $\beta$  from  $[\beta|\Gamma, \log(\sigma), \log(\phi)]$  (RW-Metropolis)
- Update  $\log(\sigma)$  from  $[\log(\sigma)|\Gamma, \beta, \log(\phi)]$  (RW-Metropolis)
- Update  $\log(\phi)$  from  $[\log(\phi)|\Gamma, \beta, \log(\sigma)]$  (RW-Metropolis)

#### **Predictive:**

- Simulate  $(s(j), \beta(j), \sigma^2(j), \phi(j)), j = 1, ..., m$ (using MCMC)
- Simulate  $s^*(j)$  from  $[S^*|s(j), \beta(j), \sigma^2(j), \phi(j)]$ ,  $j = 1, \dots, m$  (multivariate Gaussian)

# Comments

- Marginalisation w.r.t  $\beta$  and  $\sigma^2$  is possible using conjugate priors
- Discrete prior for  $\phi$  is an advantage (reduced computing time).
- thinning: not to store a large sample of high-dimensional quantities.
- similar algorithms for MCMC maximum likelihood estimation

Example code from geoRglm

— demo 03 —

# **SESSION 10**

# Case studies on generalised linear geostatistical models

# A simulated Poisson data


## **R** code for simulation

```
## setting the seed
> set.seed(371)
## defining the data locations on a grid
> cp <- expand.grid(seq(0, 1, 1 = 10), seq(0, 1, 1 = 10))</pre>
## simulating from the S process
> s <- grf(grid = cp, cov.pars = c(2, 0.2), cov.model = "mat",
  + kappa = 1.5)
## visualising the S process
> image(s, col = gray(seq(1, 0.25, l = 21)))
## inverse link function
> lambda <- exp(0.5 + s$data)
## simulating the data
> y <- rpois(length(s$data), lambda = lambda)</pre>
## visualising the data
> text(cp[, 1], cp[, 2], y, cex = 1.5, font = 2)
```

# **R** code for the data analysis

```
set.seed(371)
## calibracao do algoritmo MCMC
MCc <- mcmc.control(S.scale=0.025, phi.sc=0.1, n.iter=110000,
                     burn.in=10000, thin=100, phi.start=0.2)
## especificacao de priors
PGC <- prior.glm.control(phi.prior="exponential", phi=0.2,
                   phi.discrete=seq(0,2,by=0.02),tausq.rel=0)
## opo de saida
OC <- output.glm.control(sim.pred=T)</pre>
## escolhendo 2 localizacoes para predicao
locs <- cbind(c(0.75, 0.15), c(0.25, 0.5))
##
pkb <- pois.krige.bayes(dt, loc=locs, prior=PGC, mcmc=MCc, out=OC)</pre>
```

Summaries of the posterior for the simulated Poisson data: posterior means and 95% central quantile-based intervals.

| parameters               | true valu       | es posterio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r mean                                     | 95% interval      |
|--------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------|
| $\beta$                  | 0.5             | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                          | $[0.08 \ , 1.58]$ |
| $\sigma^2$               | 2.0             | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>24</b>                                  | $[0.8 \ , 2.76]$  |
| $\phi$                   | <b>0.2</b>      | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48                                         | $[0.3 \ , 1.05]$  |
| 0.0 Density<br>-4 0.6    |                 | Density $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.$ | 0.0 0.5 1.0 1.5 2.0<br>0.0 0.5 1.0 0.5 0.0 | 1.0 1.5           |
| 0.5 1.5 $\sigma^2$ 3.5 b | -2 0 1 2 3<br>β | + $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$ $+$ $-2$   | φ<br>0.5<br>1.5<br>σ                       | 2.5 3.5<br>2      |



# **Rongelap Island**

— see other set of slides —

# The Gambia malaria

— see other set of slides —

## Spatial prediction in tropical disease epidemiology



African Programme for Onchocerciasis Control

- "river blindness" an endemic disease in wet tropical regions
- donation programme of mass treatment with ivermectin
- approximately 30 million treatments to date
- serious adverse reactions experienced by some patients highly co-infected with Loa loa parasites
- precautionary measures put in place before mass treatment in areas of high *Loa loa* prevalence

http://www.who.int/pbd/blindness/onchocerciasis/en

# The Loa loa prediction problem

#### Ground-truth survey data

- random sample of subjects in each of a number of villages
- blood-samples test positive/negative for Loa loa

#### Environmental data (satellite images)

- measured on regular grid to cover region of interest
- elevation, green-ness of vegetation

#### **Objectives**

- predict local prevalence throughout study-region (Cameroon)
- compute local exceedance probabilities,

P(prevalence > 0.2|data)

## Loa loa: a generalised linear model

- Latent spatial process $S(x) \sim \mathrm{SGP}\{0, \sigma^2 \rho(u)\}$  $ho(u) = \exp(-|u|/\phi)$
- Linear predictor
  - $egin{aligned} d(x) &= ext{environmental variables at location } x \ \eta(x) &= d(x)'eta + S(x) \ p(x) &= \log[\eta(x)/\{1-\eta(x)\}] \end{aligned}$
- Error distribution

 $Y_i|S(\cdot) \sim Bin\{n_i, p(x_i)\}$ 

## Schematic representation of Loa loa model



# The modelling strategy

- use relationship between environmental variables and groundtruth prevalence to construct preliminary predictions via logistic regression
- use local deviations from regression model to estimate smooth residual spatial variation
- Bayesian paradigm for quantification of uncertainty in resulting model-based predictions

#### logit prevalence vs elevation



elevation



Max Greeness

#### logit prevalence vs SD = std.error NDVI



# Comparing non-spatial and spatial predictions in Cameroon

#### **Non-spatial**



Predicted prevalence - 'without ground truth data'

#### **Spatial**



Predicted prevalence - 'with ground truth data' (%)

## **Probabilistic prediction in Cameroon**



Observed prevalence of loa loa (IRD-TDR)

Figure 6: PCM for [high risk] in Cameroon based on ERMr with ground truth data.

# Next Steps

- analysis confirms value of local ground-truth prevalence data
- in some areas, need more ground-truth data to reduce predictive uncertainty
- but parasitological surveys are expensive

# Field-work is difficult!



# RAPLOA

- a cheaper alternative to parasitological sampling:
  - have you ever experienced eye-worm?
  - did it look like this photograph?
  - did it go away within a week?
- RAPLOA data to be collected:
  - in sample of villages previously surveyed parasitologically (to calibrate parasitology vs RAPLOA estimates)
  - in villages not surveyed parasitologically (to reduce local uncertainty)
- bivariate model needed for combined analysis of parasitological and RAPLOA prevalence estimates



Rapid Assessment Procedures for Loiasis



UNDP/World Bank/WHO Special Programme for Research & Training in Tropical Disease (TDR)

TDR/IDE/RP/RAPL/01.1

## **RAPLOA** calibration



Empirical logit transformation linearises relationship Colour-coding corresponds to four surveys in different regions

# RAPLOA calibration (ctd)



Fit linear functional relationship on logit scale and back-transform

# Parasitology/RAPLOA bivariate model

- treat prevalence estimates as conditionally independent binomial responses
- with bivariate latent Gaussian process in linear predictor
- asymmetric formulation,

$$S_1(x) = \alpha + \beta S_2(x) + Z(x)$$

• low-rank spline representation of  $S_2(x)$  to ease computation

# **Including individual-level variation**

What to do when parasitological and RAPLOA estimates are from same individuals?

- model for bivariate binary response at individual level
- $P_{ijk} = P(\text{positive in village } i, \text{ method } j, \text{ individual } k)$
- $\operatorname{logit}(P_{ijk}) = \mu_{ijk} + S_j(x_i) + U_{ik}$ 
  - linear model for  $\mu_{ijk}$
  - $-~U_{ik} \sim {
    m N}(0,
    u^2)$
- straightforward in principle, but computationally awkward
- may not make much difference in practice

# **SESSION** 11

# More on generalised linear geostatistical models

## **Covariance functions and variograms**

- In non-Gaussian settings, the variogram is a less natural summary statistic but can still be useful as a diagnostic tool
- for GLGM the model with constant mean:

$$\mathbb{E}\left[Y(x_i)|S(x_i)\right] = \mu_i = g(\alpha + S_i) \quad v_i = v(\mu_i)$$

$$\begin{split} \gamma_{Y}(u) &= \mathrm{E}[\frac{1}{2}(Y_{i} - Y_{j})^{2}] \\ &= \frac{1}{2}\mathrm{E}_{S}[\mathrm{E}_{Y}[(Y_{i} - Y_{j})^{2}|S(\cdot)]] \\ &= \frac{1}{2}\left(\mathrm{E}_{S}[\{g(\alpha + S_{i}) - g(\alpha + S_{j})\}^{2}] + 2\mathrm{E}_{S}[v(g(\alpha + S_{i}))]\right) \\ &\approx g'(\alpha)^{2}\gamma_{S}(u) + \bar{\tau}^{2} \end{split}$$

- the variogram on the Y-scale is approximately proportional to the variogram of  $S(\cdot)$  plus an intercept
- the intercept represents an average nugget effect induced by the variance of the error distribution of the model
- however it relies on a linear approximation to the inverse link function
- it may be inadequate for diagnostic analysis since the essence of the generalized linear model family is its explicit incorporation of a non-linear relationship between Y and S(x).
- The exact variogram depends on higher moments of  $S(\cdot)$
- explicit results are available only in special cases.

## Spatial survival analysis

- specified through hazard function  $h(t) = f(t)/\{1 F(t)\},\$
- $h(t)\delta t$  is the conditional probability event will occour in the interval  $(t, t + \delta t)$ , given it has not occour until time t
- proportional hazards model with  $\lambda_0(t)$ , an unspecified baseline hazard function

$$h_i(t) = \lambda_0(t) \exp(d'_i\beta)$$

- $h_i(t)/h_j(t)$  does not change over time
- alternativelly, fully specified models are proposed
- frailty corresponds to random effects can be introduced by  $h_i(t) = \lambda_0(t) \exp(z'_i \beta + U_i) = \lambda_0(t) W_i \exp(d'_i \beta)$

- e.g. log-Gaussian frailty model and gamma frailty model
- replacing  $U_i$  by  $S(x_i)$  introduces spatial frailties (Li & Ryan, 2002; Banerjee, Wall & Carlin, 2003)
- E[S(x)] = -0.5 Var[S(x)] preserves interpretation of  $exp\{S(x)\}$  as a frailty process
- other possible approaches, e.g. Henderson, Shimakura and Gorst (2002) extends the gamma-frailty model

# Geostatistical models for point process

- Two possible connections between point process and geostatistics:
  - 1. measurement process replaced by a point process
  - 2. choice of data locations for  $Y(x_i)$

#### Cox point processes Definition:

A Cox process is a point process in which there is an unobserved, non-negative-valued stochastic process  $S = \{S(x) : x \in \mathbb{R}^2\}$  such that, conditional on S, the observed point process is an inhomogeneous Poisson process with spatially varying intensity S(x).

- fits into the general geostatistical framework
- derived as limiting form of a geostatistical model as  $\delta \to 0$  for locations on lattice-spacing  $\delta$
- log-Gaussian Cox process is a tractable form of Cox process (e.g. Möller, Syversveen and Waagepetersen, 1998; Brix & Diggle, 2001)
- inference generally requires computationally intensive Monte Carlo methods, whose implementation involves careful tuning

• moment-based method provides an analogue of the variogram, for exploratory analysis and *preliminary* estimation of model parameters

### Cox point processes

- intensity surface  $\Lambda(x) = \exp\{S(x)\}$
- has mean and variance  $\lambda = \exp\{\mu + 0.5\gamma(0)\}$
- also represents the expected number of points per unit area in the Cox process, and  $\phi(u) = \exp{\{\gamma(u)\}} 1$ .
- K(s): reduced second moment measure of a stationary point process
- $\lambda K(s)$ : expected number of further points within distance s of an arbitrary point of the process
- For the log-Gaussian Cox process

$$K(s)=\pi s^2+2\pi\lambda^{-2}\int_0^s\phi(u)udu$$

• A non-parametric estimator:

$$\hat{K}(s) = \frac{|A|}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i} w_{ij}^{-1} I(u_{ij} \le s)$$

- $w_{ij}$  allows for *edge correction*
- *preliminary estimates* of model parameters can then be obtained by minimising a measure of the discrepancy between theoretical and empirical K-functions
Geostatistics and marked point processes

locations X signal S measurements Y

• Usually write geostatistical model as

[S,Y] = [S][Y|S]

• What if X is stochastic? Usual implicit assumption is [X, S, Y] = [X][S][Y|S],

hence can ignore [X] for inference about [S, Y].

• Resulting likelihood:

$$L( heta) = \int [S][Y|S] dS$$

Marked point processes

## locations X marks Y

- X is a point process
- Y need only be defined at points of X
- natural factorisation of [X, Y]?

#### **Example 1.** Spatial distribution of disease

- X: population at risk
- Y: case or non-case
- Natural factorisation is [X, Y] = [X][Y|X]
- Usual scientific focus is [Y|X]
- Hence, can ignore [X]

**Example 2.** Growth of natural forests

- X: location of tree
- Y: size of tree
- Two candidate models:
  - competitive interactions  $\Rightarrow [X, Y] = [X][Y|X]$
  - environmental heterogeneity  $\Rightarrow [X, Y] = [Y][X|Y]$ ?
- focus of scientific interest?

**Preferential sampling** 

### locations X signal S measurements Y

• Conventional model:

$$[X,S,Y] = [S][X][Y|S] \quad (1)$$

• Preferential sampling model:

$$[X, S, Y] = [S][X|S][Y|S, X]$$
 (2)

• Key point for inference: even if [Y|S, X] in (2) and [Y|S]in (1) are algebraically the same, the term [X|S] in (1) cannot be ignored for inference about [S, Y], because of the shared dependence on the unobserved process S A model for preferential sampling

# [X,S,Y] = [S][X|S][Y|S,X]

- $[S] = SGP(0, \sigma^2, \rho)$  (stationary Gaussian process)
- [X|S] = inhomogenous Poisson process with intensity

 $\lambda(x) = \exp\{\alpha + \beta S(x)\}$ 

•  $[Y|S, X] = \mathbb{N}\{\mu + S(x), \tau^2\}$  (independent Gaussian)

#### Simulation of preferential sampling model



Locations (dots) and underlying signal process (grey-scale):

- left-hand panel: uniform non-preferential
- centre-panel: clustered preferential
- right-hand panel: clustered non-preferential

Likelihood inference

# [X,S,Y] = [S][X|S][Y|S,X]

• data are X and Y, hence likelihood is

$$L( heta) = \int [X,S,Y] dS = \mathrm{E}_S \left[ [X|S][Y|S,X] 
ight]$$

• evaluate expectation by Monte Carlo,

$$L_{MC}( heta) = m^{-1} \sum_{j=1}^m [X|S_j][Y|S_j,X]$$

• use anti-thetic pairs  $S_{2j} = -S_{2j-1}$ 

#### Practical solutions to weak identifiability

- 1. Strong Bayesian priors (if you can believe them)
- 2. Explanatory variables as surrogate for S
- 3. Two-stage sampling

## **SESSION 12**

### Geostatistical design

#### Geostatistical design

#### • Retrospective

Add to, or delete from, an existing set of measurement locations  $x_i \in A : i = 1, ..., n$ .

#### • Prospective

Choose optimal positions for a new set of measurement locations  $x_i \in A : i = 1, ..., n$ .

#### Naïve design folklore

- Spatial correlation decreases with increasing distance.
- Therefore, close pairs of points are wasteful.
- Therefore, spatially regular designs are a good thing.

### Less naïve design folklore

- Spatial correlation decreases with increasing distance.
- Therefore, close pairs of points are wasteful if you know the correct model.
- But in practice, at best, you need to estimate unknown model parameters.
- And to estimate model parameters, you need your design to include a wide range of inter-point distances.
- Therefore, spatially regular designs should be tempered by the inclusion of some close pairs of points.

#### Examples of compromise designs





#### **Designs for parameter estimation**

Comparison of random and square lattice designs, each with n = 100 sample locations, with respect to three design criteria: spatial maximum of mean square prediction error M(x); spatial average of mean square prediction error M(x); scaled mean square error,  $100 \times MSE(T)$ , for  $T = \int S(x)dx$ . The simulation model is a stationary Gaussian process with parameters  $\mu = 0$ ,  $\sigma^2 + \tau^2 = 1$ , correlation function  $\rho(u) = \exp(-u/\phi)$  and nugget variance  $\tau^2$ . The tabulated figures are averages of each design criterion over N = 500 replicate simulations.

|                  |               | $\max  M(x)$ |         | average $M(x)$ |         | MSE(T) |         |  |
|------------------|---------------|--------------|---------|----------------|---------|--------|---------|--|
| Model parameters |               | Random       | Lattice | Random         | Lattice | Random | Lattice |  |
| $\tau^2 = 0$     | $\phi = 0.05$ | 9.28         | 8.20    | 0.77           | 0.71    | 0.53   | 0.40    |  |
|                  | $\phi=0.15$   | 5.41         | 3.61    | 0.40           | 0.30    | 0.49   | 0.18    |  |
|                  | $\phi=0.25$   | 3.67         | 2.17    | 0.26           | 0.19    | 0.34   | 0.10    |  |
|                  |               |              |         |                |         |        |         |  |
| $\tau^2 = 0.1$   | $\phi=0.05$   | 9.57         | 8.53    | 0.81           | 0.76    | 0.54   | 0.41    |  |
|                  | $\phi=0.15$   | 6.22         | 4.59    | 0.50           | 0.41    | 0.56   | 0.28    |  |
|                  | $\phi=0.25$   | 4.44         | 3.34    | 0.37           | 0.30    | 0.47   | 0.22    |  |
|                  |               |              |         |                |         |        |         |  |
| $\tau^2 = 0.3$   | $\phi = 0.05$ | 10.10        | 9.62    | 0.88           | 0.86    | 0.51   | 0.40    |  |
|                  | $\phi=0.15$   | 7.45         | 6.63    | 0.65           | 0.60    | 0.68   | 0.43    |  |
|                  | $\phi=0.25$   | 6.23         | 5.70    | 0.55           | 0.51    | 0.58   | 0.38    |  |

#### A Bayesian design criterion

Assume goal is prediction of S(x) for all  $x \in A$ .

$$[S|Y] = \int [S|Y, heta][ heta|Y]d heta$$

For retrospective design, minimise

$$\bar{v} = \int_A \mathrm{Var}\{S(x)|Y\} dx$$

For prospective design, minimise

$$\mathrm{E}(ar{v}) = \int_y \int_A \mathrm{Var}\{S(x)|y\}f(y)dy$$

where f(y) corresponds to

$$[Y] = \int [Y| heta][ heta] d heta$$

### Results

**Retrospective:** deletion of points from a monitoring network



#### Selected final designs



#### Prospective: regular lattice vs compromise designs





### Monitoring salinity in the Kattegat basin



Solid dots are locations deleted for reduced design.

#### Further remarks on geostatistical design

- 1. Conceptually more complex problems include:
  - (a) design when some sub-areas are more interesting than others;
  - (b) design for best prediction of non-linear functionals of  $S(\cdot)$ ;
  - (c) multi-stage designs (see next session).
- 2. Theoretically optimal designs may not be realistic (eg Loa loa photo).
- 3. Goal here is **NOT** optimal design, but to suggest constructions for good, general-purpose designs.

#### **Closing remarks**

- There is *nothing special* about geostatistics.
- Parameter uncertainty can have a material impact on prediction.
- Bayesian paradigm deals naturally with parameter uncertainty.
- Implementation through MCMC is not wholly satisfactory:
  - sensitivity to priors?
  - convergence of algorithms?
  - routine implementation on large data-sets?

- Model-based approach clarifies distinctions between:
  - the substantive problem;
  - formulation of an appropriate model;
  - inference within the chosen model;
  - diagnostic checking and re-formulation.
- Analyse problems, not data:
  - what is the scientific question?
  - what data will best allow us to answer the question?
  - what is a reasonable model to impose on the data?
  - inference: avoid *ad hoc* methods if possible
  - fit, reflect, re-formulate as necessary
  - answer the question.