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Abstract

In this paper, we introduce a Bayesian analysis for compositional data considering ad-
ditive log-ratio (ALR) and Box-Cox transformations assuming a multivariate normal dis-
tribution for correlated errors. These results generalize some existing Bayesian approaches
assuming uncorrelated errors. We also consider the use of exponential power distributions
for uncorrelated errors of the transformed compositional data. These models gives a better
fit for compositional data. We illustrate the proposed methodology considering a real data
set.
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1 Introduction

Compositional data are vectors of propositions specifying G fractions as a whole. Thus, for
x = (x1, x2, · · · , xG)′ to be a compositional vector, we must have xi > 0, for i = 1, · · · , G
and x1 + x2 + · · · + xG = 1.

Compositional data often result when raw data are normalized or when data is obtained
as proportions of a certain heterogeneous quantity. These conditions are usual in geology,
economics and biology.

Standard existing methods to analyse multivariate data under the usual assumption of
multivariate normal distribution (see for example, Johnson and Wichern, 1998) are not
appropriate to analyse compositional data, since we have compositional restrictions.

Different modelling has been considered to analyse compositional data. A first model
considered to analyse compositional data was given by the Dirichlet distribution, but this
model requires that the correlation structure is wholly negative, a fact not observed for
compositional data where some correlations are positive (see for example, Aitchison, 1982;
or Aitchison, 1986).
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Aitchison and Shen (1985) introduced the lognormal distribution to analyse composi-
tional data, transforming the G component vector x to a vector y in RG−1 considering the
additive log-ratio (ALR) function.

Rayens and Srinivasan (1991a, 1991b) extended the ALR transformation considering
Box-Cox (1964) transformations as a generalization of the log-ratio function.

Usually we have great difficulties to get classical inference results for these models, espe-
cially in the presence of a vector of covariates. Alternatively, the use of Bayesian methods
(see for example, Gelman et al., 1995) is a good alternative to analyse compositional data
(see for example, Iyengar and Dey, 1996, 1998; or Tjelmeland and Lund, 2003), especially
considering Markov Chain Monte Carlo (MCMC) methods (see for example, Gelfand and
Smith, 1990 or Roberts and Smith, 1993).

As an illustration of compositional data, we have in Table 1, a real data set comprising of
sand, silt and clay compositions taken at various water depths in an Artic lake (see Coakley
and Rust, 1968).

Table 1: Sand, silt, clay compositions taken at diferent water depths in an Artic lake

Sample Sand Silt Clay Depth Sample Sand Silt Clay Depth

1 77.5 19.5 3.0 10.4 21 9.5 53.5 37 47.1

2 71.9 24.9 3.2 11.7 22 17.1 48 34.9 48.4

3 50.7 36.1 13.2 12.8 23 10.5 55.4 34.1 49.4

4 52.2 40.9 6.6 13 24 4.8 54.7 41 49.5

5 70 26.5 3.5 15.7 25 2.6 45.2 52.2 59.2

6 66.5 32.2 1.3 16.3 26 11.4 52.7 35.9 60.1

7 43.1 55.3 1.6 18 27 6.7 46.9 46.4 61.7

8 53.4 36.8 9.8 18.7 28 6.9 49.7 43.4 62.4

9 15.5 54.4 30.1 20.7 29 4.0 44.9 51.1 69.3

10 31.7 41.5 26.8 22.1 30 7.4 51.6 40.9 73.6

11 65.7 27.8 6.5 22.4 31 4.8 49.5 45.7 74.4

12 70.4 29 0.6 24.4 32 4.5 48.5 47 78.5

13 17.4 53.6 29 25.8 33 6.6 52.1 41.3 82.9

14 10.6 69.8 19.6 32.5 34 6.7 47.3 45.9 87.7

15 38.2 43.1 18.7 33.6 35 7.4 45.6 46.9 88.1

16 10.8 52.7 36.5 36.8 36 6.0 48.9 45.1 90.4

17 18.4 50.7 30.9 37.8 37 6.3 53.8 39.9 90.6

18 4.6 47.4 48 36.9 38 2.5 48 49.5 97.7

19 15.6 50.4 34 42.2 39 2.0 47.8 50.2 103.7

20 31.9 45.1 23 47.0

(The compositional data are given by proportions times 100)

In this paper, we introduce a Bayesian approach to analyse compositional data assuming
different model structure for the error: the ALR transformation and their generalization
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given by the Box-Cox transformation assuming correlated errors with multivariate normal
distributions which generalizes the results of Iyengar and Dey (1996, 1998) for uncorrelated
errors and also assuming the exponential power distribution (see for example Box and Tiao,
1973, p. 157) for the transformed ALR data assuming uncorrelated errors.

The paper is organized as follows: in section 2, we introduce the additive log-ratio (ALR)
transformation for compositional data; in section 3, we introduce a Bayesian analysis for the
compositional data considering the ALR transformation, the Box-Cox transformation and
assuming an exponential power distribution for uncorrelated errors; in section 4, we present
a Bayesian analysis for the Artic lake compositional data introduced in Table 1 and finally
in section 5 we introduce some concluding remarks.

2 Compositional Data Assuming an Additive Log-Ratio

(ALR) Transformation

To model compositional data, let us assume the regression model (see for example, Iyengar
and Dey, 1996, 1998) given by

yi = α + Θzi + εi (1)

where zi is a (p × 1) vector of covariates associated to the i th sample; α is a (g × 1) vector
of intercept parameters, Θ is a (g × p) matrix of regression parameters; εi is a vector of
errors and yi = (yi1, · · · , yig)

′ is a (g × 1) vector of compositional data where g = G − 1
and G is the number of compositional components. The compositional data is given by
yik = H (xik/xiG), for i = 1, · · · , n , k = 1, · · · , g, where H(·) is a transformation function

to have real components such that xik > 0 and
G
∑

k=1

xik = 1.

The additive log-ratio (ALR) transformation is given by

yik = H

(

xik

xiG

)

= log

(

xik

xiG

)

(2)

where i = 1, · · · , n , k = 1, · · · , g.
The ALR transformation (2) is a special case of the Box-Cox transformation,

yik = H

(

xik

xiG

)

=

{

(xik/xiG)λk−1
λk

if λk 6= 0

log (xik/xiG) if λk = 0
(3)

where λk is an unknown parameter, i = 1, · · · , n , k = 1, · · · , g.
As a special case, let us consider the compositional data of Table 1. Assuming the ALR

transformation with yi1 = log (xi1/xi3) and yi2 = log (xi2/xi3) , where xi1 denotes the sand
proportion, xi2 denotes the silt proportion and xi3 denotes the clay proportion for the i th

water depth and the model (1), we have,
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{

yi1 = α1 + θ1Zi + εi1

yi2 = α2 + θ2Zi + εi2
(4)

where i = 1, · · · , n, Zi is a covariate representing the water depth, yi = (yi1, yi2)
′ is the

response vector and εi = (εi1, εi2)
′ has a bivariate normal distribution N (0,Σ) with the

variance-covariance matrix given by,

Σ =

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

(5)

and ρ is the correlation coefficient between εi1and εi2.
Assuming the model (4) , the likelihood function for v1 = (α1, α2, θ1, θ2, σ

2
1, σ

2
2, ρ)́ is given

by,

L (v1) =
n

∏

i=1

f (yi|v1) (6)

where yi = (yi1, yi2)
′ has a bivariate normal distribution N (µi,Σ) where µi = (µi1, µi2)

′,

with µ1i = α1 + θ1Zi, µ2i = α2 + θ2Zi and Σ is the variance-covariance matrix given in (5)
for i = 1, · · · , n.

3 A Bayesian analysis for the compositional data

For a Bayesian analysis for the compositional data of Table 1, assuming the ALR transfor-
mation model (4) with a bivariate normal distribution for the errors εi = (εi1, εi2)

′, let us
assume the following prior distributions for the parameters:

(i) θk ∼ N
(

ak, b
2
k

)

, ak, b
2
k known;

(ii) αk ∼ N
(

ck, d
2
k

)

, ck, d
2
k known;

(iii) σ2
k ∼ IG [ek, fk] , ek, fk known; (7)

(iv) ρ ∼ U [−1, 1] ,

for k = 1, 2, where N (µ, σ2) denotes a normal distribution with mean µ and variance
σ2; IG (a, b) denotes an inverse gamma distribution with mean b/(a − 1) and variance
b2/

[

(a − 1)2 (a − 2)
]

, a > 2 and U [c, d] denotes an uniform distribution in the interval
[c, d].

Other choices for the prior distributions could be considered as an inverse Wishart dis-
tribution to account for the covariance structure assuming σ2

k dependent, but the use of an
inverse gamma distribution for σ2

k and an uniform prior for the correlation coefficient ρ gives
a great flexibility for practical use. In this way, we could incorporate prior opinion of experts
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or to use standard empirical Bayesian methods to choose the values for the hyperparameters
of the prior distributions.

Assuming prior independence among the parameters, the joint posterior distribution for
v1= (α1, α2,θ1, θ2, σ

2
1, σ

2
2, ρ) is given by

π (v1 | D) ∝
{

2
∏

k=1

exp

[

− 1

2b2
k

(θk − ak)
2

]

}

×
{

2
∏

k=1

exp

[

− 1

2d2
k

(αk − dk)
2

]

}

×
{

2
∏

k=1

(σ2
k)

−(ek+1)e−fk/σ2
k

}

(

σ2
1

)

−n/2 (

σ2
2

)

−n/2
(1 − ρ2)−n/2 (8)

× exp

{

− 1

2(1 − ρ2)

[

1

σ2
1

n
∑

i=1

ε2
i1 −

2ρ

σ1σ2

n
∑

i=1

εi1εi2 +
1

σ2
2

n
∑

i=1

ε2
i2

]}

where D denote the data, εi1 = yi1 − α1 − θ1Zi and εi2 = yi2 − α2 − θ2Zi for i = 1, · · · , n.
To get the posterior summaries of interest, we have difficulties to obtain samples from

the posterior distribution for v1 given in (8) directly using analytical or numerical approxi-
mations. In this way, we use Markov chain simulation methods (the generalized Metropolis
algorithm and the Gibbs Sampler).

The conditional posterior distributions needed for the Gibbs sampling algorithm (see for
example, Gelfand and Smith, 1990) are given in an Appendix 1, section 6.1, at the end of
this paper.

Observe that the assumption of correlated errors should be considered for a Bayesian
analysis of composition data assuming the ALR transformation model (4) with a bivariate
normal distribution for the errors, since in applied work we have this structure for composi-
tional data. However, in some situations, we could assume in a second stage of the Bayesian
analysis, uncorrelated errors, when we observe that zero is included in credible intervals
for ρ. Assuming ρ = 0 (independent errors), the conditional posterior distributions for the
Gibbs sampling algorithm have known distributions, given by,

i) π(θk | ν(θk), D) ∼ N

{

akσ
2
k + b2

k

∑n
i=1 Ziu

(k)
i

σ2
k + b2

k

∑n
i=1 Z2

i

,
b2
kσ

2
k

σ2
k + b2

k

∑n
i=1 Z2

i

}

where k = 1, 2 and u
(k)
i = yik − αk ; i = 1, · · · , n;

ii) π(αk | ν(αk), D) ∼ N

{

ckσ
2
k + d2

k

∑n
i=1 ξ

(k)
i

σ2
k + nd2

k

,
d2

kσ
2
k

σ2
k + nd2

1

}

(9)

where k = 1, 2 and ξ
(k)
i = yik − θkZi ; i = 1, · · · , n.
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iii) π
(

σ2
k | v(σ2

k
), D

)

∝ IG

[

ek +
n

2
, fk +

1

2

n
∑

i=1

ε2
ik

]

where k = 1, 2 and εik = yik − α − θkZi ; i = 1, · · · , n;
Since the conditional distributions for θk, αk and σ2

k are well known distributions, we use
the Gibbs sampling algorithm to simulate samples for joint posterior distribution for θk, αk

and σ2
k, k = 1, 2.

In many applications of compositional data, the ALR transformation could not be well
fitted by the data. In this case, we could consider the Box-Cox transformation (3) .

Assuming the Box-Cox transformation (3) we have y
(λ1)
i1 =

[

(xi1/xi3)
λ1 − 1

]

/λ1 if λ1 6= 0

and y
(λ1)
i1 = log (xi1/xi3) if λ1 = 0; also y

(λ2)
i2 =

[

(xi2/xi3)
λ2 − 1

]

/λ2 if λ2 6= 0 and y
(λ2)
i2 =

log (xi2/xi3) if λ2 = 0.

With y
(λ1)
i1 and y

(λ2)
i2 in place of yi1 and yi2 in model (4), and also assuming a bivariate

normal distribution N (0,Σ) for the errors εi = (εi1, εi2) where Σ is given in (5), the likelihood
function for v2= (λ1, λ2, α1, α2, θ1, θ2, σ

2
1, σ

2
2, ρ) is given by,

L (v2) ∝
(

σ2
1

)

−n/2 (

σ2
2

)

−n/2
(1 − ρ2)−n/2

(

n
∏

i=1

yλ1
i1

) (

n
∏

i=1

yλ2
i2

)

(10)

× exp

{

− 1

2(1 − ρ2)

[

1

σ2
1

n
∑

i=1

ε2
i1 −

2ρ

σ1σ2

n
∑

i=1

εi1εi2 +
1

σ2
2

n
∑

i=1

ε2
i2

]}

where εi1 = y
(λ1)
i1 −α1−θ1Zi, εi2 = y

(λ2)
i2 −α2−θ2Zi, i = 1, · · · , n;

{
∏n

i=1 yλ1
i1

}

and
{
∏n

i=1 yλ2
i2

}

are the products of jacobians (see Box and Tiao, 1973).
For a Bayesian analysis, let us assume the prior distributions (7) for θ1, θ2, σ

2
1, σ

2
2, α1, α2

and ρ, and

λk ∼ N
(

gk, h
2
k

)

, gk, h2
k known (11)

for k = 1, 2.
Assuming prior independence among the parameters, the conditional posterior distribu-

tions needed for the Gibbs sampling algorithm are given in Appendix 1, section 6.2 at the
end of this paper.

Observe that, using Gibbs with Metropolis-Hastings algorithms, we find the posterior
summaries of interest for λ1, λ2 and all other parameters of the model. If zero is included
in the credible intervals for λ1 and λ2 we could reanalyze the data assuming the ALR
transformation model. That is, we get better inference results for the compositional data.

We also could consider other distributions for the errors εi1 and εi2 in the ALR transfor-
mation model (4), to get better inference results for the compositional data.
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In this case, let us assume independent errors εi1 and εi2 for the ALR transformation
model (4) with exponential power distributions (see for example, Box and Tiao, 1973) given
by,

π (εik|σ1, β
∗

k) =
ω (β∗

k)

σk

exp

{

−c (β∗

k)

∣

∣

∣

∣

εik

σk

∣

∣

∣

∣

2
1+β∗

k

}

(12)

where −∞ < εik < ∞ , c (β∗

k) =

{

Γ[ 3
2(1+β∗

k)]
Γ[ 1

2(1+β∗

k)]

}
2

1+β∗

k

, ω (β∗

k) =
{Γ[ 3

2(1+β∗

k)]}
1
2

(1+β∗

k){Γ[ 1
2(1+β∗

k)]}
3
2

and σj > 0,

−1 < β∗

k ≤ 1 and k = 1, 2.
Some special cases of model (12) are given by,
(i) If β∗

k = 0, we have normal distributions for εik with mean zero and variance σ2
k,

k = 1, 2;
(ii) If β∗

k = 1, we have double exponential distributions for εik;
(iii) If β∗

k → −1, we have uniform distributions for εik in the interval
[

−
√

3σk ,
√

3σk

]

,
k = 1, 2.
The likelihood function for v3= (α1, α2, θ1, θ2, β

∗

1 , β
∗

2 , σ1, σ2) is given by

L(v3) ∝
n

∏

i=1

ω (β∗

1)

σ1

exp

{

−c (β∗

1)

∣

∣

∣

∣

εi1

σ1

∣

∣

∣

∣

2
1+β∗

1

}

×ω (β∗

2)

σ2

exp

{

−c (β∗

2)

∣

∣

∣

∣

εi2

σ2

∣

∣

∣

∣

2
1+β∗

2

}

, (13)

where εi1 = yi1 − α1 − θ1Zi, εi2 = yi2 − α2 − θ2Zi, ω (β∗

1) and c (β∗

1) are given in (12).
Let us assume the following prior distributions for the parameters:

(i) θk ∼ N
(

ak, b
2
k

)

, k = 1, 2, ak, b
2
k known;

(ii) αk ∼ N
(

ck, d
2
k

)

, k = 1, 2, ck, d
2
k known;

(iii) σ2
k ∼ IG [ek, fk] , k = 1, 2 ek, fk known; (14)

(iv) β∗

k ∼ U [−1, 1] , k = 1, 2.

Observe that if β∗

k = 0 (normal distributions for the errors), the conditional distributions
for θk, αk and σ2

k needed for the Gibbs sampling algorithm are given in (9).
A great simplification in the simulation of samples for the joint posterior distribution of

interest is to use the software WinBugs (Spiegelhalter et al., 1999) where we only need to
specify the likelihood function and the prior distributions for the parameters.
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4 Analysis of the Data of Table 1

To analyze the Artic lake data set of Table 1, let us assume the ALR transformation model
with prior distributions (7) with a1 = a2 = c1 = c2 = 0, b2

1 = b2
2 = d2

1 = d2
2 = 100000;

e1 = e2 = f1 = f2 = 1000.
Observe that we are considering very large values for the variances of the prior distribu-

tions, indicating prior ignorance about the parameters of the model. With this choice for
the hyperparameters of the prior distributions, we get similar inference results considering
standard frequentist methods. With good prior opinion, we could consider more informative
prior distributions and more accurate Bayesian inference results.

Using the software WinBugs we simulated two parallel Gibbs sampling chains where we
discarded the first 5000 iterations (”burn-in samples”) to eliminate the effect of the initial
values.

With a total of 5000 iterations, the chain started essentially in equilibrium, so the ”burn-
in” can be stopped. We also considered the samples 100th, 200th, 300th, · · · to eliminate the
correlation among the samples.

In Figure 1, we have the plots for the Gibbs sampling algorithm. We observe convergence
of the algorithm using these standard graphical methods. In Figure 2, we have the plots for
some estimated autocorrelation functions. We observe approximately uncorrelated Gibbs
samples.

The convergence of the Gibbs sampling algorithm also was monitored using the Gelman
and Rubin (1992) method that uses the analysis of variance technique to determine if further
iterations are needed.

In Table 2, we have the posterior summaries for the quantities of interest. We also have in
Table 2, the potencial scale reduction index of Gelman and Rubin. We observe convergence

of the Gibbs sampling algorithm since
√

R̂ < 1.1 in all cases.

Table 2: Posterior summaries (ALR transformation model)

Parameters Mean 95% Credible interval R̂
α1 2.690 [1.8350 ; 3.4830] 1.001
α2 1.9600 [1.4950 ; 2.4420] 1.003
θ1 −0.0624 [−0.0772 ;−0.0474] 1.001
θ2 −0.0245 [−0.0330 ;−0.0162] 1.002
σ2

1 1.7730 [1.1270 ; 2.7800] 0.999
σ2

2 0.5849 [0.3710 ; 0.9175] 1.004
ρ 0.8380 [0.7220 ; 0.9160] 1.010

Assuming the Box-Cox transformation model with adequate choices for the hyperparame-
ters of the prior distributions (7) and (11) to have flat prior distribution for the parameters
and following the same simulation steps as considered for the ALR transformation model,
we have in Table 3, the posterior summaries for the quantities of interest. We also observe
convergence for all parameters since R̂ < 1.1 for all cases.
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Figure 1: Sampled values for the parameters (ALR transformation model)

Table 3: Posterior summaries ( Box-Cox transformation model)

Parameters Mean 95% Credible interval R̂
α1 2.3150 [1.544 ; 3.198] 0.999
α2 0.8948 [0.699 ; 1.146] 0.994
θ1 −0.0638 [−0.078 ;−0.049] 1.001
θ2 −0.0105 [−0.014 ;−0.007] 1.001
σ2

1 1.4360 [0.902 ; 2.252] 1.001
σ2

2 0.0466 [0.022 ; 0.092] 0.996
λ1 −0.1782 [−0.295 ; − 0.052] 1.000
λ2 −0.9405 [−1.251 ; − 0.643] 1.002
ρ 0.8202 [0.692 ; 0.908] 1.010

From the results of Table 2 and Table 3, we observe that the water depths have significa-
tive effects on the proportions of the compositional data, since zero is not included in the
95% credible intervals for θ1and θ2.

Assuming independent errors for the ALR transformation model (4) with exponential
power distributions (12), we also considered adequate choices for the hyperparameters of the
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Figure 2: Estimated autocorrelation functions (ALR transformation model)

prior distributions (14) to have flat prior distributions for the parameters. In Table 4, we
have the posterior summaries of interest. We also have in the Table 4, the potential scale
reduction indexes of Gelman and Rubin.
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Table 4: Posterior summaries ( exponential power distributions for the errors)

Parameters Mean 95% Credible interval R̂
α1 2.611 [1.661 ; 3.612] 1.001
α2 1.511 [0.990 ; 2.077] 1.003
θ1 −0.061 [−0.078 ;−0.046] 1.001
θ2 −0.018 [−0.027 ;−0.0105] 1.002
σ1 1.809 [1.706 ; 3.249] 1.003
σ2 0.487 [0.248 ; 0.952] 1.000
β∗

1 0.192 [−0.418 ; 0.900] 1.010
β∗

2 0.769 [0.293 ; 0.993] 1.002

Assuming uncorrelated errors in the ALR transformation model (4) with normal distri-
butions for the errors (β∗

1 = β∗

2 = 0), we have in Table 5, the posterior summaries of interest.
It is important to point out that the computing times for each simulation using the

WinBugs software was very small (close to 20 minutes in each case).

Table 5: Posterior summaries ( normal distributions for the errors)

Parameters Mean 95% Credible interval R̂
α1 2.675 [1.816 ; 3.513] 1.001
α2 1.962 [1.475 ; 2.447] 0.998
θ1 −0.063 [−0.078 ;−0.047] 0.998
θ2 −0.025 [−0.034 ;−0.0158] 0.998
σ1 1.828 [1.147 ; 2.897] 1.003
σ2 0.603 [0.379 ; 0.9520] 0.997

For model selection, we can use some existing adequacy measures as the Deviance In-
formation Criterion (DIC) (Spiegelhalter et al., 2000) or the Bayesian Information Criterion
(BIC) that are aproximations for the Bayes factor.

Carlin and Louis (2000) introduced a modification of the BIC criterion given by,

BICi = −2E [ln(L (θi|x,Mi)] + pi ln (n) (15)

where i indexes model; n is the sample size and pi is the number of parameters under model
Mi. Larger values of BIC indicate better models. Smaller values of DIC indicates better
models.

In Table 6, we have the Monte Carlo estimates for the adequacy measures based on
the simulated Gibbs samples for the following models: M1 (ALR tansformation model with
correlated errors); M2 (ALR transformation model with uncorrelated errors); M3 (Box-Cox
transformation model with correlated errors) and M4 (exponential power distribution for the
ALR transformation model with uncorrelated errors).
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Table 6: Adequacy measure for the models
Models DIC BIC

M1 178.483 26.994
M2 229.492 24.644
M3 127.244 30.166
M4 221.262 25.904

From the results of Table 6, we conclude that model M3 (Box-Cox transformation model
with correlated errors) is better fitted by the compositional data of Table 1 (smaller value
for DIC and larger value for BIC).

5 Concluding Remarks

We consider in this paper, the modeling of compositional data in the transformed space and
on the simplex. Usually, additive log-ratio (ARL) transformation model is considered to ana-
lyze correlated compositional data. Some generalizations of the ARL transformation model
are considered assuming an exponential power distribution and the Box-Cox transformation
with correlated errors. These results generalizes the results obtained by Iyengar and Dey
(1996). We also consider different prior distributions for the errors.

We observed that the Bayesian methodology can be successfully employed to analyse
compositional data using Markov Chain Monte Carlo methods, especially using some exis-
ting software. In this case, the software WinBugs (Spiegelhater et al., 1999) gives a great
simplification to simulate samples for the joint posterior distribution of interest for the
compositional data. The codes of the WinBugs program are available under request for the
first author.

It is important to point out that we could incorporate prior opinion of experts at the
model building stage which yields more accurate inferences. Other possibility is to use
empirical Bayesian methods.

The use of differents stages in the Bayesian analysis starting with a more general model
like the Box-Cox transformed model or using the exponential power distribution for the
errors, could be a good alternative to find better models to analyse compositional data. The
Bayesian approach also has other strong advantages over other existing inference methods.
Among these advantages, we have:

(i) The Bayesian approach does not rely on asymptotic results commonly used in the
frequentist approach.

(ii) The presence of a great number of covariates is not a problem for the Bayesian
approach based on Markov Chain Monte Carlo.

(iii) One important point in the statistical analysis for compositional data: the presence
of missing values. This problem is easily handed in the Bayesian framework.

(iv) The Bayesian approach presents many Bayesian discrimination methods that can be
used the search of a better model to analyse compositional data.
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6 Appendix 1

6.1 Conditional posterior distribution for the Gibbs sampling al-
gorithm (correlated errors in ARL model)

The conditional posterior distributions obtained from 8 are given by,

i) π
(

θ1 | v(θ1), D
)

∼ N
{

uθ1 , σ
2
θ1

}

where uθ1 =
a1σ2

1σ2(1−ρ2)+σ2b21
∑n

i=1 Ziu
(1)
i −σ1+b21ρ

∑n
i=1 ZiB

(1)
i

σ2[σ2
1(1−rho2)+b21

∑n
i=1 Z2

i ]
; σ2

θ1
=

b21σ2
1(1−ρ2)

σ2
1(1−ρ2)+b21

∑n
i=1 Z2

i

; u
(1)
i = yi1−

α1 and B
(1)
i = yi2 − α2 − θ2Zi; i = 1, · · · , n ; v(θ1) is the vector of all of parameters except

θ1 and Zi is the covariate;

ii) π
(

θ2 | v(θ2), D
)

∼ N
{

uθ2 , σ
2
θ2

}

where uθ2 =
a2σ2

2σ1(1−ρ2)+σ1b22
∑n

i=1 Ziu
(2)
i −σ2+b22ρ

∑n
i=1 ZiB

(2)
i

σ1[σ2
2(1−ρ2)+b22

∑n
i=1 Z2

i ]
; σ2

θ2
=

b22σ2
2(1−ρ2)

σ2
2(1−ρ2)+b22

∑n
i=1 Z2

i

; u
(2)
i = yi2−

α2 and B
(2)
i = yi1 − α1 − θ1Zi; i = 1, · · · , n;

iii) π
(

α1 | v(α1), D
)

∼ N
{

uα1 , σ
2
α1

}

where uα1 =
c1σ2

1σ2(1−ρ2)+σ2d2
1

∑n
i=1 ξ

(1)
i −σ1d2

1ρ
∑n

i=1 C
(1)
i

σ2[σ2
1(1−ρ2)+nd2

1]
; σ2

α1
=

d2
1σ2

1(1−ρ2)

σ2
1(1−ρ2)+nd2

1
; ξ

(1)
i = yi1−θ1Zi and

C
(1)
i = yi2 − α2 − θ2Zi; i = 1, · · · , n;

iv) π
(

α2 | v(α2), D
)

∼ N
{

uα2 , σ
2
α2

}

where uα2 =
c2σ2

2σ1(1−ρ2)+σ1d2
2

∑n
i=1 ξ

(2)
i −σ2d2

2ρ
∑n

i=1 C
(2)
i

σ2[σ2
1(1−ρ2)+nd2

1]
; σ2

α2
=

d2
2σ2

2(1−ρ2)

σ2
2(1−ρ2)+nd2

2
; ξ

(2)
i = yi2 − θ2Zi and

C
(2)
i = yi1 − α1 − θ1Zi; i = 1, · · · , n;

v) π
(

σ2
1 | v(σ2

1), D
)

∼ (σ2
1)

−(e1+1)e−f1/σ2
1Ψ1(v) (16)

where Ψ1(v) = exp
{

−n
2

ln(σ2
1) − 1

2(1−ρ2)

[

1
σ2
1

∑n
i=1 ε2

i1 − 2ρ
σ1σ2

∑n
i=1 εi1εi2

]}

, εi1 = yi1 − α1 −
θ1Zi and εi2 = yi2 − α2 − θ2Zi ; i = 1, · · · , n;

vi) π
(

σ2
2 | v(σ2

2), D
)

∼ (σ2
2)

−(e2+1)e−f2/σ2
2Ψ2(v)

where Ψ2(v) = exp
{

−n
2

ln(σ2
2) − 1

2(1−ρ2)

[

1
σ2
2

∑n
i=1 ε2

i2 − 2ρ
σ1σ2

∑n
i=1 εi1εi2

]}

, εi1 = yi1 − α1 −
θ1Zi and εi2 = yi2 − α2 − θ2Zi ; i = 1, · · · , n;

13



vii) π(ρ | v(ρ), D) ∝ (1−ρ2)−
n
2 exp

{

− 1

2(1 − ρ2)

[

1

σ2
1

n
∑

i=1

ε2
i1 −

2ρ

σ1σ2

n
∑

i=1

εi1εi2 +
1

σ2
2

n
∑

i=1

ε2
i2

]}

.

Since we do not have known forms for the conditional distributions for σ2
1, σ2

2 and ρ, we
cannot use the Gibbs sampling to generate samples for σ2

1, σ2
2 and ρ. In this case, we use

the Metropolis-Hastings algorithm (see for example, Roberts and Smith, 1993).

6.2 Conditional posterior distribution for the Gibbs sampling al-
gorithm (Box-Cox transformation)

i) π
(

λ1|v(λ1), D
)

∝ exp

{

− 1

2h2
1

(λ1 − g1)
2

}

Ψ1 (v)

where

Ψ1 (v) = exp

{

− 1

2(1 − ρ2)

[

1

σ2
1

(

n
∑

i=1

y
(λ1)2
i1 − 2α1

n
∑

i=1

y
(λ1)
i1 − 2θ1

n
∑

i=1

Ziy
(λ1)
i1

)

− 2ρ

σ1σ2

n
∑

i=1

y
(λ1)
i1 D

(2)
i + λ1

n
∑

i=1

ln yi1

]}

and D
(2)
i = y

(2)
i2 − α2 − θ2Zi, i = 1, · · · , n.

ii) π
(

λ2|v(λ2), D
)

∝ exp

{

− 1

2h2
2

(λ2 − g2)
2

}

Ψ2 (v) (17)

where

Ψ2 (v) = exp

{

− 1

2(1 − ρ2)

[

1

σ2
2

(

n
∑

i=1

y
(λ2)2
i2 − 2α2

n
∑

i=1

y
(λ2)
i2 − 2θ2

n
∑

i=1

Ziy
(λ2)
i2

)

− 2ρ

σ1σ2

n
∑

i=1

y
(λ2)
i2 D

(1)
i

]

+ λ2

n
∑

i=1

ln yi2

}

and D
(1)
i = y

(1)
i1 − α1 − θ1Zi, i = 1, · · · , n.

The conditional posterior distributions for θ1, θ2, σ
2
1, σ

2
2, α1, α2 and ρ are given in (16)

with yi1 and yi2 replaced by y
(λ1)
i1 and y

(λ2)
i2 , respectively.
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