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Sufficiency is a widely used concept for reducing the dimensionality of  a data set. 
Collecting data for a sufficient statistic is generally much easier and less 
expensive than collecting all of  the available data. When the posterior 
distributions o f  a quantity of  interest given the aggregate and disaggregate data 
are identical, perfect aggregation is said to hold, and in this case the aggregate 
data is a sufficient statistic for the quantity of  interest. In this paper, the 
conditions for perfect aggregation are shown to depend on the functional form of  
the prior distribution. When the quantity of  interest is the sum of  some 
parameters in a vector having either a generalized Dirichlet or a Liouville 
distribution for analyzing compositional data, necessary and sufficient conditions 
for perfect aggregation are also established. 
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1 Introduction 

Sufficiency is a widely used concept for reducing the dimensionality of  a data set. 
Sufficiency implies that a reduced data set contains all useful information in the 
corresponding original data set. In most cases, collecting reduced data is much 
easier than collecting the corresponding original data, hence more convenient and 
less expensive. For instance, in flipping a coin, recording only the number of  
heads or tails in a sequence of  tosses is generally easier than keeping track of  the 
outcome of  each toss. 

Let the quantity of  interest ~ be a function of  some parameters in {01, 02, ..., 
Ok}, and let the data corresponding to k and the 0j be aggregate and disaggregate 
data (denoted by AD and DD), respectively. For instance, let 0j represent the 
market share o f  company j for some particular product, and let ~F be the set of  all 
companies that produce the product of  interest in a particular country. Then 
Z = Zj~v0 j will be the market share for that country. In this case, let Qj be the 

number o f  units of  the product produced by companyj  (say, in a year). Then the 
aggregate data set is AD = {Z,, j Qj, Z j~v Q j}, and the d isaggregate data set is DD 
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: {Qj for all j}. If the posterior distributions for the quantity of interest in 
Bayesian analyses using the aggregate and disaggregate data are identical, then 
perfect aggregation holds. 

Although collecting aggregate data is generally less costly than collecting 
disaggregate data, the results of an aggregate analysis can be inaccurate when 
perfect aggregation does not hold. Mosleh and Bier (1992) showed that using 
only aggregate data to estimate system reliabilities when disaggregate data are 
available can lead to significant aggregation error in both series and parallel 
systems. However, when perfect aggregation holds, the information resulting 
from an aggregate analysis will be accurate. Thus, the conditions for perfect 
aggregation are useful in determining whether collecting disaggregate data is 
necessary. 

In this paper, perfect aggregation and sufficiency will first be shown to be 
equivalent. We will then focus on finding conditions for perfect aggregation for 
some multivariate distributions that are applicable in analyzing compositional 
data. In many problems involving nonnegativity and unit-sum constraints, 
analysts generally use Dirichlet distributions as prior distributions for Bayesian 
analysis for reasons of convenience. However, the Dirichlet prior is quite 
restrictive, especially with regard to its covariance structure. In this paper, we 
consider not only Dirichlet distribution, but also generalized Dirichlet and 
Liouville distributions, both of which include Dirichlet distribution as a special 
case. 

In section 2, we will show that perfect aggregation and sufficiency are 
equivalent, and that the conditions for perfect aggregation depend on the 
functional form of a prior distribution. Some properties of Dirichlet, generalized 
Dirichlet, and Liouville distributions will be presented in section 3. These 
properties will then be used in section 4 to establish necessary and sufficient 
conditions for perfect aggregation when a prior distribution is one of these three 
distributions. In section 5, an application to the market shares of yogurt products 
in midwestern United States of America will be given. Conclusions and 
directions for future research are addressed in section 6. 

2 Perfect aggregation 

Bayesian analyses of a quantity of interest using aggregate and disaggregate data, 
respectively, are referred to as aggregate and disaggregate analyses (Bier, 1994). 
Without loss of generality, suppose that the joint distribution o f e  = (el, t32, ..., Ok) 
is frO). Let the quantity of interest k be a function of some of the parameters in 
8, and let A be the set of indices of those parameters; i.e., k = ~(0  , j~  A) for 

some function ~. In an aggregate analysis, an aggregate prior f(k) is first derived 
from the prior f(e); then the aggregate prior is updated using the aggregate data 



267 

to obtain an aggregate posterior f()v[AD). By contrast, in a disaggregate analysis, 
we first update the prior frO) using the disaggregate data to obtain a posterior 
distribution f(01DD); then a disaggregate posterior f()vlDD) is derived from the 
posterior distribution f(01DD). If the aggregate and disaggregate posteriors are 
identical, then perfect aggregation holds. Perfect aggregation has also been 
referred to as exact aggregation (Simon and Ando, 1961) and total consistency 
(Ijiri, 1971). 

Definition 1. Let DD be a set of samples from a distribution with an unknown 
parameter X. A function T of DD is said to be a sufficient statistic for )v if the 
conditional distribution of DD, given T(DD) = AD, is independent of )v for all 
AD; i.e., if L(DDLAD, X) = L(DDIAD). 

According to the Neyman factorization criterion (Zacks, 1971), the 
likelihood function L(DDI)v) can be factorized into 

L(DDrX) = L(AD[X)f(DD) 
if and only if the aggregate data AD is a sufficient statistic for ~. Thus, the 
aggregate data AD will be sufficient for X given DD if and only if L(ADIX) oc 
L(DDIX) (Lee, 1989). Sufficiency therefore depends on the functional form of 
the likelihood function L(DDIX ). 

Definition 2. Let the quantity of interest )v be a function of some parameters in 0 
= (0~, 02 . . . . .  Ok), and let AD and DD be aggregate and disaggregate data, 
respectively. Then perfect aggregation holds if the posterior distributions 
f()vlAD) and f()vlDD) are identical. 

Theorem 1. Perfect aggregation is equivalent to sufficiency. 
Proof If perfect aggregation holds (i.e., f()vlAD ) = f(~IDD)), then we have 

f(Xl DD) - L(DD I )Qf(X) = L(DD [AD, ~)L(AD I )~)f(~. ) 
f(DD) f(DD) 

L(AD I X)f(X) 
f(~. I AD) - 

f(AD) 

L(DD I AD, X) = 1 

f(DD) f(AD) 

f(DD) 
L(DD [ AD,)Q - f(AD)'  (1) 

Since the right-hand side of equation (1) does not depend on )~, function 
L(DDIAD, ~.) must be independent of)~; i.e., L(DDIAD , ~.) = L(DD[AD). 

Alternatively, if the aggregate data AD are a sufficient statistic for )~ given 
the disaggregate data DD, then L(DD]AD, X) = L(DDIAD), which implies 
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f(Pv, DD) L(DD [ )v)f(X) 
f()v[ DD) - - -  - 

f(DD) IL(DD ] ~v)f(X)d~v 

f(DD [ AD)L(AD [ )Qf(Z) 

If(DD I AD)L(AD ] X)f(X)dX 

L(AD ] X)f()0 f(YL AD) 

IL(AD [ X)f(X)dZ f(AD) 

(by sufficiency) 

- f(k ]AD). 

Thus, perfect aggregation holds if the aggregate data AD are a sufficient statistic 
forÜ. • 

Note that the likelihood function L(DDIX ) can be expressed as 

• ~[/o,,j~A~:x f(DD, )v, 0)d0 f(DD, X) 
L (DDIZ) -  - -  - 

f(x) f(x) 

J~(o,.j~A>x f(DD, 0)d0 
= (2) 

f(x) 
In expression (2), both f(DD,0) and f()v) depend on the functional form of the 
prior distribution frO). Furthermore, since the aggregate data AD are sufficient 
for )v if and only if condition L(ADI)0 oc L(DD])0 holds, the conditions for 
perfect aggregation will also depend on the functional form of the prior 
distribution frO). 

Example 1. Consider a two-component Bernoulli system in which the 
components are independent and connected in parallel. Let 0j be the failure 
probability of component j for j = 1, 2; hence, the system failure probability is 
given by )~ = 0102, and we have A = {1, 2}. Suppose that component 2 is tested 
only when component 1 fails. Let Mo be the number of tests of component 1, and 
let MI and M2 be the number of failures of components 1 and 2, respectively. So, 
we have Mo > M1 > M 2 ,  and the aggregate and disaggregate data are {Mo, M2} 
and {M0, M1, Mz}, respectively. It has been shown that perfect aggregation 
holds if and only if0j has a beta distribution with parameters aj and bj forj = 1, 2 
such that al = a2+b2 (Bier, 1994; Gupta and Nadarajah, 2004). Since the 
aggregate data set is {M0, M2}, we have 

L(AD, ~.) = (M°/}vM2 (1 -- )v)M"-M2 . M 2  

If 0j has a beta distribution with parameters aj and bj for j = 1, 2, then by 

expression (2), it can be shown that L(DDI ?v)oc xM~ (1--t.) M' M=, hence the 

aggregate data AD is a sufficient statistic for the system failure probability ~, 
when a~ = a2+b2 . • 

Since the definitions of sufficiency in both ffequentist and Bayesian analysis 
are equivalent, the property L(AD]X) oc L(DDF)v ) can in principle be used to find 
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conditions for perfect aggregation. However, both J~ f(DD, 0)d0 and 
(0.JEA)=X 

f@) in expression (2) are generally difficult to obtain from frO). Thus, the 
property L(AD[X) oc L(DD[X) is often not helpful in finding the conditions for 
perfect aggregation for a specific prior distribution frO). Another approach to 
identify conditions for perfect aggregation when function • is the sum of  some 
parameters in 0 will be presented in section 4. 

3 Some probability distributions defined on the unit simplex 

In this section, we will introduce some multivariate distributions that can be used 
as prior distributions for compositional data that are subject to unit-sum and 
nonnegativity constraints. Note that these distributions have different covariance 
structures. In the rest of  this paper, let the number of  possible outcomes of  an 
experiment be k+l ,  and let 0j be the probability that a trial of  the experiment 
results in outcome j. Hence, we have 01+02+...+0k+~ = 1. 

3.1 Dirichlet distribution 

Definition 3. A parameter vector 0 = (0t, 0 2  . . . . .  Ok)  has a k-variate Dirichlet 
distribution with parameters % > 0 forj  = I, 2 ..... k+l if it has density 

frO) F(cq + c~ 2 + ... + C~k+ ~ ) = H07~-1(1 _ 01 _Ok) .... 1 
r(C}{ l )I~(c}{ 2 ) . . . I ~ ( c ~  k+l ) ,=1 J - - " "  

for 01+02+...+0k -< 1 and 0j _> 0 for j = 1, 2 . . . . .  k. This distribution will be 
denoted Dk(Ctl, (X 2 . . . . .  (Xk; (~k+l ) ,  

The properties of  the Dirichlet distribution can be found in Wilks (1962). 
In addition, the general moment function given in Lemma 1 below can also be 
used to prove the results in Lemma 2. 

Lemma 1. I f  0 = (01, 02, ..., Ok) - Dk(Cq, C~2 . . . . .  C~k; C~k+l), then the general 
moment function of  0 is given by 

k fk+l 1 J='HF(c~J + rj)F(jZ, c~j 
r I r 2 r k _ 

E(01 02 '"0k ) - -  k fk+l k 3" 
F I F ( % ) F |  2 % + Z r ) j=l \j=l j=l J 

Lemma 2. Let 0 = ( 0 1 ,  0 2  . . . . .  Ok)  be a parameter vector having a k-variate 
Dirichlet distribution Dk(Cq, c~2 ..... C~k; C~k+l). 
(1) The marginal distribution of  (0~, 02 . . . . .  Q) for any s < k is an s-variate 

Dirichlet distribution Ds(cq, c~2 ..... cq; C%+1+C%+2+...+C~k+~). 
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(2) Variable 01+02+,. .-+-0k has a beta distribution with parameters 0-1+O,2-F...-F0-k 
and o-k+*. 

Definition 4. Let 0 = (0~, 02 ..... Ok), and let Vs : 1-0t-...-0~ for some s < k. Then 
(01, 02 . . . . .  Q) is said to be neutral if it is independent of  (Q+I/V~, 0s+2/V~, ..., 
0k/V~). If  (01, 02, ..., Q) is neutral for all s < k, then 0 is said to be completely 
neutral. 

Connor and Mosimann (1969) showed that every permutation of  the 
parameters in a vector having a Dirichlet distribution is completely neutral. This 
implies that the order of  the parameters in a vector having a Dirichlet distribution 
is arbitrary. For example, suppose that (0~, 02, 03) - D3(0-1, 0-2, 0-3; 0-4), and let 04 

= 1 - 0 1 " 0 2 - 0 3 .  Then (03, 01, 02) ~ Ds(0-s, 0-1, 0-2; 0{,4), (02, 04, 01) ~ 0 3 ( 0 - 2 ,  (J'4, (J'l; 
O-S), and so on. Hence, part (1) o fLemma 2 can be generalized as follows: 

Lemma 3. Let 0 = (01, 02 ..... Ok) follow a k-variate Dirichlet distribution Dk(0-1 ,  

0-2 ..... o-k; o-k<). Then the marginal distribution of  (0°, ,0,1 ~ ..... 0n, ) for s < k, 1 < 

nt < n2 < ... < ns < k is an s-variate Dirichlet distribution Ds(0-n, ,o-n, ..... 0-< ;8),  

where 8 = ( %  +~2  + . . . + % ) -  (an, +o-n: + ' "+C~n, ) '  

Note that any two parameters in a vector having a Dirichlet distribution are 
negatively correlated, and that the 0j are marginally beta distributed for all j. 
Although the Dirichlet distribution is relatively tractable, a Dirichlet prior will 
often not be realistic in practice. For instance, in the case studied by Castillo et 
al. (1997), the unemployment proportions of  the 17 regions of  Spain are assumed 
to have a Dirichlet prior. However, it may be reasonable for the unemployment 
proportions in adjacent regions to be positively correlated, since people living in 
one region may work in a neighboring region. Thus, the Dirichlet distribution 
may not be a wholly appropriate prior for this case. 

3.2 G e n e r a l i z e d  D i r i c h l e t  d i s t r i b u t i o n  

Definition 5. A parameter vector 0 = (01, 02, ..., Ok) has a k-variate generalized 
Dirichlet distribution with parameters % > 0 and 13j > 0 for j  = 1, 2 ..... k if it has 
density 

k F(% +!3,) %, 
f(o) = n o, (1-Ol - . . . - o j ) ' ,  

,;, r ( % ) r ( ~ , )  

for 01+02+...+0k ~ 1 and {}j _) 0 forj  = 1, 2, ..., k, where 7j = 13j -0-j+J - 13j+~ for j  

= 1, 2 ..... k-1 and Yk = [3k-1. This distribution will be denoted G D k ( 0 - 1 ,  O,2 . . . . .  o-k; 

[31, 132 . . . . .  13k). 
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For a parameter vector 0 = (0~, 02 ..... Ok), let Z 1 : 0 1 ,  and let 0j = 0/Vj.1 for 
j = 2, 3 . . . . .  k, where Vj.1 = 1-0r...-0j.~. I f  the Zj are independent, then 0 is 
completely neutral. Connor and Mosimann (1969) assumed that each of  the Zj 
has a beta distribution with parameters % and 13j, and derived the density function 
for the generalized Dirichlet distribution as shown in Definition 5. Wong (1998) 
used the concept of  complete neutrality to derive the general moment function for 
the generalized Dirichlet distribution (as given in Lemma 4), and then to establish 
the property given in Lemma 5. 

Lemma 4. Let 0 = (0~, 02 . . . . .  Ok) be a parameter vector having a k-variate 
generalized Dirichlet distribution GDk(Oq, or2 . . . . .  %; [31, [32 . . . . .  [30. Then the 
general moment function of(0~, 0e ..... Ok) is 

. . . . . .  k r ( %  +!~) r (% + r~)r([3, +8, )  
E(0~ 0 2 ...O k ) : H 

,-t F(ot )F([3,)F(o~ +[3, + r, +&,) 

where 8j = r~+l+ri+2+...+rk forj  = l, 2 ..... k-l ,  and 8k = 0. 

Lemma 5. Let 0 = (01, 02 . . . . .  Ok) be a parameter vector having a k-variate 
generalized Dirichlet distribution GDk(Cq, c~,2 . . . . .  (3~k; [31, [32 ..... ]30. The marginal 
distribution of  (0~, 02 . . . . .  0s) for any s < k is an s-variate generalized Dirichlet 
distribution GDs(Cq, (x 2 ..... U.s; [31, [32 ..... [3s). 

When [3j = %<+]3j< for j = 1, 2 . . . . .  k-l ,  the generalized Dirichlet 
distribution reduces to a Dirichlet distribution. I f  (0~, 02 ..... Ok) has a generalized 
Dirichlet distribution, then (0~, 02 . . . . .  0k) is completely neutral. However, this 
does not mean that every permutation of  (0t, 02 ..... Ok) is also completely neutral. 
For instance, if (01, 02, 03) - GD3(CZl, 0,2, or3; [3i, [32, [33) and [31 ~ ct2+[32, then (02, 
0~, 03) will not have a generalized Dirichlet distribution. So, when (0~, 02 ..... Ok) 
has a generalized Dirichlet distribution, the order of  the Oj is generally not 
arbitrary. 

In a generalized Dirichlet distribution, 0~ is always negatively correlated 
with the other parameters. However, 03 and 0m can be positively correlated for j, 
m > 1 (Lochner, 1975). In particular, if there exists some m > j such that 0j and 
0m are positively (negatively) correlated, then 0j will be positively (negatively) 
correlated with 0i for all i > j. Since the generalized Dirichlet distribution has a 
more general covariance structure than the Dirichlet distribution, this makes the 
generalized Dirichlet distribution more practical and useful than the Dirichlet 
distribution, but it is substantially less tractable. 

3.3 Liouville distribution 

Definition 6. A parameter vector 0 = (01, 02 . . . .  , 0k) has a k-variate Liouville 
distribution with parameters % > 0 for i = 1, 2 ..... k and density generator g(u) if 
it has density 
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k 

f(O) = Cog(U) r l  0 ~' 
J= I J 

for 01+02+...+0k --< 1 and Oj > 0 for j  = 1, 2 . . . . .  k, where u = 01+02+...+0k and Co is 
a normalizing constant. This distribution will be denoted Lk(g(u); oq, u, 2 . . . . .  O(,k), 

Let Z ~ Dk.t(cq, c% . . . . .  c%.1; c%), and let U defined on [0,1] be an 
independent parameter with probability density function f(u). Fang et al. (1990) 
showed that 0 = UZ has a Liouville distribution Lk(g(u); cq, c~: . . . . .  c%), where 

g(u) oc u t~<)f(u) and c~ = (Xl--(~2+...q-C~k. This result can be used to derive the 

general moment function of  the Liouville distribution, as given in Lemma 6 
below. 

Lemma 6. Let btr be the r th moment of  U; i.e., gr = E(Ur) • I f 0  has a Liouville 

distribution Lk(g(u); cq, C~2 . . . . .  CZk), then the general moment function of  0 is 

k r ) F ( ~  o~j) FI F(c~j + 
J=l J ~ j = l  

rl r2 r k 
E(01 02 ""Ok ) = bt' k k ' 

where r = r~+r2+...+rk. 

When the density generating variate U has a beta distribution with 

parameters 7 and co such that 7 = cq+c~2+...+c% by Lemma 6, we have 

g ( u ) = ( 1 - u )  ~< and 

r, r: r k F ( 7  
E(0102.. .0 k = r(r 

k k )  
+ c o ) F ( y + r )  H F ( c ~  +rj)F(j_21% 

+ co + OF(y)  k ( k 
gl F ( a  ) D  E a  + r  ) j=l J k j=l  J 

k 

FIF(otj  + rj)F(o¢ l +c,  2 + ' " + ~ k  +co) 
J=l 

k 

1-IF(o~j)F(ot I +¢z~ + . . .+or  k + c o + r )  
J= 1 

which is the general moment function of  the Dirichlet distribution Dk(Cq, c~2 . . . . .  

C~k; co). This means that when the density generating variate U has a beta 

distribution with parameters y and co, the Liouville distribution will reduce to a 
Dirichlet distribution if 7 = Cq+CXa+...+C~k. The following lemma proposed by 
Sivazlian (1981) presents some properties of  the Liouville distribution. 

Lemma 7. Let 0 = ( 0 1 ,  0 2 ,  . . . ,  O k )  be a parameter vector having a k-variate 
Liouville distribution Lk(g(u); oq, c~a .. . . .  C~k). Then 

(1) Subvector (01, 02 . . . . .  es) for any s < k has an s-variate Liouville distribution 

l -o Ls(h(u); cq, c~2 . . . . .  %), where h(u) = g(u +~)z .... + .... + . . . .  Jdz. 
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(2) Variable 01+02+...+0k has a univariate Liouville distribution Ll(g(u); 
c~+c~2+...+c~k). 

Fang et al. (1990) showed that the covariance of  0i and Oj in a parameter 
vector having a Liouville distribution is 

Cog(01' 0J) = ~lQ~J ( ~ - - ~  ~--+-1 ~2 [A( / C~ for i a j, 

where c~ = Cq+C~+...+ak. Since c~, a,, and % are all positive, we have 

where c~ = Var(U).  Thus, for any i ~ j, 0, and Oj will be positively correlated if 

and only if the variate U has a coefficient of  variation greater than 1/~-~.  Note 

that if there exist i ~: j such that 0, and 0j are positively (negatively) correlated, 
then 0m and 0t must be positively (negatively) correlated for any m ~ t. 

Wong (1998) notes that the generalized Dirichlet distribution allows 
different degrees of  uncertainty about parameters with the same mean. This 
cannot happen for the Dirichlet distribution, nor for the Liouville distribution 
(except for parameter 0k+~). Hence, the generalized Dirichlet distribution is 
substantially more flexible than the other two distributions considered here, 
although it is generally somewhat less tractable. 

4 Conditions for perfect aggregation 

When the prior distribution of a parameter vector is assumed to have a 
multivariate distribution defined on the unit simplex, the quantity of  interest is 
often the sum of  some parameters in the vector. Hence, the case where 
~ =  Z~A0 J is likely to be widely applicable when 0 has a multivariate 

distribution defined on the unit simplex. For instance, in the model ofmult ibrand 
purchasing behavior developed by Chatfield and Goodhardt (1975), each brand 
of  regular ground coffee has several package sizes. Purchase rates for the 
package sizes of  each brand were computed across a group of  customers. I f  we 
are interested in the purchase rate of  one particular brand, the quantity of  interest 
will be the sum of  the purchase rates of  the various package sizes of  that brand. 

Let DD = {y~, Y2 .... .  Yk+l} be the disaggregate data collected for parameter 
vector 0 = (01, 02, ..., Ok). Then the aggregate data will be AD = {n, Yo}, where n 
- y~+y2+...+yk+~ and Y0 = Z j ~ y j .  Suppose that the likelihood function of  the 

disaggregate data L(DDI0) follows a multinomial distribution. This implies that 
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all tests are independent. Since we have )v = Zj~A0 J, the likelihood function of  

the aggregate data L(ADI)v) will follow a binomial distribution. Note that the 
posterior density f(01DD) is proportional to the product L(DDI0)f(0). It is not 
difficult to show that the Dirichlet, the generalized Dirichlet, and the Liouville 
distributions are all conjugate to the multinomial likelihood function. Thus, we 
give the following results without proof. 

Lemma 8. When 0 = (01, 02, ..., Ok) - Dk(oq, o~2 . . . . .  O~k; C(k+l) and L(DD[0) 
follows a multinomial distribution, the posterior density f(0[DD) is D k ( 0 q '  , O~ 2 . . . . .  

%'; C~'k+ ~ ), where % ' =  %+yj forj  = I, 2 ..... k+l.  

Lemma 9. When 0 = (01, 02 . . . . .  Ok) - GDk(O~I, oc2 . . . . .  Otk; [31, [32, "" ,  [3k) and 
L(DD[0) follows a multinomial distribution, the posterior density f(01DD) is 
G D k ( ~ I ' ,  oc2', . . . .  c%'; 131', [32', .... [3k'), where % = %+Ya and [3a ~= [3 j+y j+ l+ . . .+Yk+l  for 
j = l , 2  ..... k. 

Lemma 10. When 0 = (01,  02 . . . . .  Ok) - Lk(g(u); 0~1, 0% . . . . .  (~k) and L(DDI0 ) 
follows a multinomial distribution, the posterior density f(0[DD) is Lk(h(u); o~l, 

c~2', .... %) ,  where % ' =  %+3~i forj  = 1,2 ..... k, and h(u) = g ( U ) ( 1 - U )  y~+~ . 

In the rest of  this section, we will assume unless indicated otherwise that A 
is a subset of  {1, 2 ... . .  k}. I f k + l  is in A, then results similar to those presented 
below can be obtained by analyzing the conditions for perfect aggregation for 1-~, 
instead of  X. 

When 0 has a Dirichlet distribution, Lemmas 2, 3, and 8 can be used to 
show that both the aggregate and the disaggregate posteriors will have the same 
(beta) distribution (Azaiez, 1993). Thus, perfect aggregation always holds when 
0 has a Dirichlet prior. However, perfect aggregation does not always hold for 
the generalized Dirichlet and the Liouville distributions. 

4.1 Generalized Dirichlet distribution 

Recall that if 0 has the generalized Dirichlet distribution GDk(Cq, c~2 . . . . .  C~k; [31, 
[32 .. . . .  [3k) and [3j = %+t+[3j+l for j = 1, 2 . . . . .  k-l ,  then the generalized Dirichlet 
distribution reduces to a Dirichlet distribution. In this case, by part (2) of  Lemma 
2, 0~+0:+...+0k will have a beta distribution with parameters Cq+C~z+...+C~k and [3k. 

Theorem 2. Let the distribution of 0 be the generalized Dirichlet distribution 
GDk(C~l, ob . . . . .  0%; [31, [32 . . . . .  [30, and lct q = max{j, j ~ A}. Suppose that 
L(DDI0) follows a multinomial distribution. Then perfect aggregation holds if 
and only if[3j = c~j+l+[3a+ 1 forj  = I, 2 .... , q-1. 
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Proof 
Sufficiency: 
In an aggregate  analysis,  by L e m m a  5, (0~, (32 . . . . .  0q) has a q-variate general ized 
Dirichlet distribution. Since [3j = %+~+13j+~ for j = 1, 2, ..., q - l ,  the joint  
distribution o f  (0~, 02 . . . . .  0q) reduces to the Dirichlet distribution Dq(~l, ~2 . . . . .  

% ;  [3q). By  L e m m a  3 and part (2) o f  L e m m a  2, the aggregate  prior  is a beta 
distribution with parameters  Z,c~c~ J and ZjCa.j<qCCj +13q. Updat ing this prior 

with the aggregate  data, the aggregate posterior  f()viAD) is a beta  distribution 
with parameters  Z~Ac % +Yo and ZjCA.j,qC~ j +13q + n - Y 0 .  Alternat ively,  in a 

disaggregate  analysis,  by L e m m a  9, the posterior  o f  0[y is a general ized Dirichlet  
distribution with parameters  %' and ]3j' for j = 1, 2, ..., k, where  ccj = ccj+yj and 13j' 
= 13~+ yj+l+...+yk+l. Since [3j = %+1+13j+1 for j = 1, 2 . . . .  , q - l ,  we have 

13] = 13j + y~+, + ... + Yk+, = C¢]+, + !3]+ I fo r j  = 1, 2 . . . . .  q-1. By  L e m m a  5 and part  

(2) o f  L e m m a  2, the disaggregate  posterior  f(Pv[DD) will be a beta distribution 

with parameters  £i~Ac,; and 2j~.A,j<q(J. ] -}-[~'q . Since 2 , ~ a ]  = Z , ~ a j  + Yo and 

32j~A.j<qC~' j + 13'q = 52 ~a.j<qO~ j + f3q "Jr n - -  Y0' perfect  aggregat ion holds. 

Necessi~: 
Let n~, n2, ..., n~ be the indices in zX, and let nt < n2 < ... < ns = q. Then the 

disaggregate  poster ior  mean o f  X given DD will be E(X I DD)  = ZI=IE(0o, I D D ) .  

None  o f  the indices between n~.l and ns are included in A. Let Z1 = el and Zj = 
0j / (1-0r . . . -0j .0  fo r j  = 2, 3 . . . . .  k. Then the disaggregate  poster ior  mean  of)~ will 
be a sum o f  terms including 

n,_ I -I 
E(0 n , ] DD)  = E(Z,~ , I DD)  n E ( 1 - Z j  I DD)  • '- j=l 

,- o~_,-I [3j + 6j< = otn , + Yn,_, H 

..... -{-13n, ' - { - a n , ,  J=l C(j + ~ 3 j  + l ~ j  

and 
C~n, +Yn, n, I t3j +Sj+~ 

E(0~, [ D D )  = H 
%, +~o, +ao~ ~-, % +f3j +a  s ' 

where 8j = yj+yj+l+...+yk< for j = 1, 2 . . . . .  k+ l .  Since perfect  aggregat ion holds, 
the moment s  o f  the disaggregate  posterior mean E(;LIDD ) must  depend on the 
disaggregate  data DD only through the aggregate  data AD. Hence,  the 
disaggregate  poster ior  mean E(;LIDD ) should depend only on AD and the 
parameters  in the prior distribution for e, and this must be true for any possible 
DD corresponding to AD. 
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Note in particular that the term 6°, does not appear in the aggregate data, 

which means the disaggregate posterior mean E(XIDD) cannot depend on 8n, if 

perfect aggregation holds. The factors that depend on 8n, in E ( 0 ~ )  are 

13n ,+8,, ,  and c~n, + [ 3  +8 , ,  in the numerator and denominator,  respectively. 

These two terms must be exactly the same (hence cancel each other out) to have 
perfect aggregation for all possible disaggregate data sets corresponding to AD = 
{n, Yo}; i.e., c~o +]3n, +~5~, = 13~_~ +~5~, which implies that [3~, ~ =c%, +13~, • 

By the same argument, we will have 13j = c~j+l+13j+l for j = n~.t, n~.~+l . . . . .  n~-l. 
Similarly, by comparing E(0 ..... ) with E(0 ..... ) + E ( 0 ~ , ) ,  we will have 13j = 

c*j+l+13j+l for j = n~.2, n~.2+l . . . . .  n~.t-1 if perfect aggregation holds and 13j = 
c~j+l+13j+~ for j = n~_l, n~.l+l . . . . .  n~-l. This process continues until E(0n, ) is 

reached. Since E(Pv[DD) should not depend on the 8j for j = 2, 3 . . . . .  nl if perfect 
aggregation holds, we will have 13j = c~j+l+13j+l for j = 1, 2 . . . . .  n~-l. Thus, if 
perfect aggregation holds, we must have [3j = (xj+~+13j+l for j  = 1, 2, ..., q-1. * 

By Theorem 2, it is possible to have perfect aggregation if 13j ~ aj+l+13j+l for 
some j _> q, so the joint  prior o f  0 need not be a Dirichlet distribution. Note  also 
that the aggregate prior being a beta distribution is not sufficient to ensure that 13j 
= %+~+13j+~ fo r j  = 1, 2 .. . . .  q-1. For example, suppose that 13j = c~j+~+13j+~ fo r j  = 
4, 5 . . . . .  q- l ,  J3j = %+!33, !33 = c~:+132, and 132 = c~4+134. Then by Lemma 4 and 
Lemma 5, it can be shown that Z j~0 j  has a beta distribution with parameters 

Zj~ac~j and Zj~a.~<qCt +[3q. Although this aggregate prior is the same as the 

aggregate prior when 13j = c~j+l+13j+l for j = 1, 2 .. . . .  q-l ,  perfect aggregat ion does 
not hold in this case. 

Let f~ = {1, 2 . . . . .  k+l} ,  and let r = max{j,.i c f2\k}. I f k + l  e A, then we 
have ?v = 1 - Z ~ A 0  J . In this case, the conditions for perfect aggregation will be 13j 

= etj+~+!3j+~ for j = 1, 2 . . . .  , r-l ,  because the aggregate and disaggregate posteriors 
for 1-)v will be the same (beta) distribution if13j = %,J+13j+l fo r j  = 1 ,2  .. . .  , r-1. 

4.2 Liouville distribution 

Theorem 3. Let the distribution o f  0 be the Liouville distribution Lk(g(u); cq, 
of,2 . . . . .  (~k).  Suppose that L(DDI0 ) follows a multinomial distribution. Then 
perfect aggregation holds if and only if there exists some co > 0 such that 

g ( u )  = (1 - u )  ~ ' .  
Proof Assume without loss o f  generality that zX = {1, 2 ..... s} for some s < k. 
Sufficiency: 
As discussed in section 3.3, when g ( u ) =  (1 -  u) ~ ~ for some co > 0, the Liouville 

distribution reduces to a Dirichlet distribution, hence perfect aggregation holds. 
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Necessity: 
In a disaggregate analysis, by Lemma 10, the joint posterior of(O~, 02 . . . . .  Ok) is a 
Liouville distribution Lk(hl(u); ch+y~, 0~2+y2, ..., O~k+Yk), where 

h~(u) = g ( u ) ( 1 - u )  y~+' . Then by part (1) of  Lemma 7, the joint density of  (01, 

02 ..... 0s)IDD is L~(h2(u); oh+yi ..... cq+y 0, where 
k 

£ u  .r)z,=~+ ~, +, 0-, d. r h2(u ) = h , ( u +  

i o = g(u + "c)(1 - u - 1;) y~'' ~" ~+'(~'+Y') ld'c. 

By part (2) o f  Lemma 7, the disaggregate posterior is Ll(h2(u); ~l+U.z+...+O~s+Y0). 

Let v = %<+C~s+2+ ...+C~k. Then h2(u ) = I g ( ~ ) ( 1 - ~ ) Y < " ( ~ - u )  . . . .  Y<'-Yk+'-ld,. 

Since the value of  h2(u) depends on the value ofyk+l, we will here write hz(U,yk+l) 
instead of  h2(u). However, the distribution of the density generating variate in 
the disaggregate posterior must not depend on the value of  yk<, because perfect 

holds. In particular, h2(u,O ) = I g ( ~ ) ( ~ - u )  . . . .  Y<'-ld'[ and aggregation 

h 2 (u,1) = I g(~)(1-  z ) ( z -  u) . . . .  y<,-2 d~. Using integration by parts, we have 

h2(u,1 ) _ 1_ ¢(T_u)V+ n y,> l [g(~)_g(~) ,( l_z)]d,~.  
v + n  Y0 -1  da 

In order to have the same density generator, hz(u, O) must be proportional to h2(u, 
1): i.e., hz(u, O) - Cxh2(u, 1) for some constant C. Since this equation must hold 
for all possible values o f n  and Yo, we will have 

C 
g(~) - [g(z) - g (z)'(1 - z)] 

v + n - y  o -1  

C - ( v + n - y  o -1 )  
=> log(g(~)) = log0 - z) 

C 
=> g('c) = (1 - z)o,-i, 

v + n - y  o - 1  
where m -  As given in section 3.3, when g (~)=  ( 1 -  ~)~-~, we 

C 
have 

f (u)  = Cog(U)U v 1 = C 0 u 7  l(1 _ U)m-I, 

where Co is a normalizing constant and 7 = cq+cz2+...+C~k. Since f(u) is a 
probability density function and T > O, co must be greater than zero. i 

Theorem 3 implies that perfect aggregation will hold for the Liouville 
distribution only when the Liouville distribution reduces to a Dirichlet 
distribution. So, unless the density generating variate has a beta distribution with 
parameters 7 and m such that T = cq+%+. . .+%,  perfect aggregation will not hold. 
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When the density generating variate U has a beta distribution with 
parameters ? and co, by Lemma 10, the posterior density f(01DD ) is Lk(h(u); CEl, 
ct2, ..., Ctk'), where % = %+yj for j = 1,2 ..... k, and 

h(u)=g(u)(1 u) yH uV-~(1 u) ~+v~+'~ 

The density function of U in the posterior distribution f(0IDD) is 
f(u [ DD) ~c u c~+n v~+'-lh(u) = U'/+n-Yk+~-I ( l - - U )  ¢°*yx+L-I , 

which implies that the density generating variate U given DD has a beta 
distribution with parameters ?+n-yk+l and co+Yk+I. The disaggregate posterior 
mean of?~ will then be 

j~O.j 
E(X]DD) = ZE(0,~ I DD) = E(UIDD) 

(y+n--yk+~)(2C~ +Yo) 
]cA 

: , (3) 
(7 + co + n)(c~ + n - Yk+l ) 

Hence, it is easy to calculate the disaggregate posterior mean E()qDD) when the 
density generating variate U has a beta distribution. When U does not follow a 
beta distribution, the disaggregate posterior mean E(~IDD) generally does not 
have a simple closed-form expression like expression (3). 

5 An il lustration 

In the marketing study proposed by Balachander and Ghose (2003), Table 1 
shows the market shares of yogurt products in midwestern United States of 
America. Let 0t through 09 be the parameters corresponding to the nine market 
shares, as shown in the first column of Table 1. Note that the first four yogurt 
products are produced by the same company Dannon. Suppose that this company 
is interested in estimating its whole yogurt market share instead of the market 
share of each yogurt product. This quantity of interest can be represented as )~ = 
0~+02+03+04. 

In conducting a survey, let yj be the number of  customers favoring the 
yogurt product corresponding to parameter 0j. Suppose that 0 = (01, e2 . . . . .  08) 
follows the Dirichlet distribution D8(117.7, 19.7, 35.8, 1.2, 185.1, 81.8, 114.1, 
98; 346.5), and that the aggregate data set is {n, Yo} = {1000, 250} (i.e., after 
investigating the preference of 1000 customers, 250 of them favor the yogurt 
products produced by the Dannon company), where n = y~+y2+...+y9 and Y0 = 
y~+y2+y3+y4. It can be shown that the aggregate posterior of 7, is a beta 
distribution with parameters 424,4 and 1575.5. Since perfect aggregation holds 
when the market shares have a Dirichlet distribution, the disaggregate posterior 
of)~ Will also be a beta distribution with parameters 424.4 and 1575.5 no matter 
what the disaggregate data corresponding the aggregate data AD = { 1000, 250} 
are. 
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Table 1. The market shares of yogurt products in midwestern 
United States of America. 

Parameter Product Market share 
0~ Dannon low-fat 11.77 
0 2 Dannon non-fat 1.97 
03 Dannon flesh flavors 3.58 
04 Dannon mini-pack 0.12 
05 Nordica low-fat 18.51 
06 Wells-Bunny low-fat 8.18 
07 Weight Watcher's 11.41 
0s Yoplait non-fat 9.80 
09 Yoplait 34.65 

Next, suppose that the market shares 0, through 138 have the generalized 
Dirichlet distribution GDs(16.6, 4.6, 1.3, 1.1, 20.3, 5.4, 26.3, 8.5; 124.4, 201.4, 
30.1,764, 70.3, 36.9, 102.6, 30.1). This distribution has the same mean values 
for all market shares as the Dirichlet distribution D8(117.7, 19.7, 35.8, 1.2, 185.1, 
81.8, 114.1, 98; 346.5). Since the aggregate prior is not closed form, it is 
difficult to evaluate the aggregate posterior mean of)~ in this case. Consider two 
possible disaggregate data sets D D  1 = {220, 10, 10, 10, 150, 100, 100, 100, 300} 
and DD2 = {10, 10, 10, 220, 150, 100, 100, 100, 300} corresponding to the 
aggregate data set {n, Y0} = {1000, 250}. By Lemma 9, the joint posterior 
f(0IDD~) is the generalized Dirichlet distribution GD8(236.6, 14.6, 11.3, 11.1, 
170.3, 105.4, 126.3,108.5; 904.4, 971.4, 790.1, 1514, 670.3, 536.9, 502.6, 
330.1), hence the d isaggregate posterior mean of)v given D D~ is 

E(Pv[DD~) = 0.2074 + 0.0117 + 0.0110 + 0.0056 = 0.2357. 
The same argument can be used to show that E(XIDD~) = 0.1676, which is 
approximately 71% of E()vIDD 0. 

Finally, suppose that the market shares 0~ through 0s have a Liouville 
distribution Ls(g(u); 117.7, 19.7, 35.8, 1.2, 185.1, 81.8, 114.1, 98), and that the 
density generating variate U has a beta distribution with parameters y = 153.5 and 
~0 = 81.4. Since 7 ¢ o~ = 653.4, perfect aggregation does not hold even though the 
mean values of the market shares in this example are the same as those in 
Ds(l17.7, 19.7, 35.8, 1.2, 185.1, 81.8, 114.1, 98; 346.5). Since the aggregate 
prior is again not closed form, it is difficult to evaluate the aggregate posterior 
mean of Z,. By expression (3), the disaggregate posterior mean for Z depends on 
the disaggregate data only through Yg. Hence, we consider two possible cases: Y9 
= 50 and y9 = 500. When y9 = 50, the disaggregate posterior mean of~, is 

(7 + n - Y9)(0% +Y0) 1103.5 x 424.4 
E(k[ Y9 = 50) = = = 0.2365. 

(7 +m + n)(o~+ n -  y9) 1234.9 x 1603.4 
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Similarly, when y9 = 500, we have E(~ly9=500)  = 0.1947, which is about 82% of 
E(0[yg:50). 

By Theorem 2 and Theorem 3, perfect aggregation does not hold for either 
the generalized Dirichlet distribution GDa(16.6, 4.6, 1.3, 1.1, 20.3, 5.4, 26.3, 8.5; 
124.4, 201.4, 30.1, 764, 70.3, 36.9, 102.6, 30.1) or the Liouville distribution 
Ls(g(u); 117.7, 19.7, 35.8, 1.2, 185.1, 81.8, 114.1, 98)with U -  beta(153.5,81.4). 
Moreover, our examples have shown that different disaggregate data sets 
corresponding to the same aggregate data set can give rise to significantly 
different values for the disaggregate posterior means of X. 

6 Conclusions and d i r e c t i o n s  for  f u t u r e  research 

When perfect aggregation holds, the aggregate data AD will be a sufficient 
statistic for the quantity of interest ;~. Since both f(DD, 0) and f(?~) for the 
disaggregate likelihood function L(DDI)~) depend on f(0), the conditions for 
perfect aggregation will depend on the functional form of the prior distribution 
f(0). In this paper, we consider the case where ;~ is a sum of some parameters in 
0, and assume that L(DD[0) follows a multinomial distribution to find conditions 
for perfect aggregation when the prior distribution f(0) is either a Dirichlet, a 
generalized Dirichlet, or a Liouville distribution. 

As pointed out in section 3, the covariance structures of the Dirichlet, the 
generalized Dirichlet, and the Liouville distributions are quite different. When 
the parameters are all negatively correlated and each parameter has a beta 
distribution, the Dirichlet distribution can be an appropriate prior. If the 
parameters are all positively correlated, then the Liouville distribution may be a 
more appropriate choice. Finally, if some but not all of the parameters are 
positively correlated, then the generalized Dirichlet distribution can be a 
reasonable prior. 

When perfect aggregation holds, collecting disaggregate data will not be 
necessary. If the joint distribution of 0 is a Dirichlet distribution, then perfect 
aggregation always holds. However, when the joint distribution of 13 is either a 
generalized Dirichlet or a Liouville distribution, the conditions for perfect 
aggregation are fairly restrictive. The aggregation error for these two 
distributions is almost inevitable, and two different disaggregate data sets 
corresponding to the same aggregate data set can yield significantly different 
disaggregate posterior means for )~, as illustrated in section 5. However, when 
the aggregation error is small, it may not be worthwhile to collect disaggregate 
data. Thus, an estimate of the aggregation error can be helpful in choosing 
between aggregate and disaggregate analyses, and methods for estimating 
aggregation error should be developed. 
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In general, identifying necessary conditions for perfect aggregation is much 
harder than identifying sufficient conditions. The general moment functions of 
the three multivariate distributions discussed in this paper are available in closed 
form, which greatly facilitates the identification of necessary conditions for 
perfect aggregation. However, when the general moment function of a 
multivariate distribution is not closed form, the method used in this paper to 
identify conditions for perfect aggregation will no longer be applicable. Thus, 
other methods for finding conditions for perfect aggregation should also be 
studied. 
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