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SUMMARY 
The simplex plays an important role as sample space in many practical situations where 
compositional data, in the form of proportions of some whole, require interpretation. It is 
argued that the statistical analysis of such data has proved difficult because of a lack both 
of concepts of independence and of rich enough parametric classes of distributions in the 
simplex. A variety of independence hypotheses are introduced and interrelated, and new 
classes of transformed-normal distributions in the simplex are provided as models within 
which the independence hypotheses can be tested through standard theory of parametric 
hypothesis testing. The new concepts and statistical methodology are illustrated by a 
number of applications. 

THEREare many practical problems for which the positive simplex 

forms the whole, or a major component, of the sample space. For such problems, concepts of 
independence must often play an important role in any form of statistical analysis. The 
simplex, however, has proved to be an awkward space to handle statistically; the difficulties 
appear to lie in the scarcity of meaningful definitions of independence and of measures of 
dependence and in the absence of satisfactory parametric classes of distributions on Sd.It is the 
aim of this paper to introduce a number of concepts of independence in the simplex, to relate 
these to some existing concepts, and to develop within the framework of rich new parametric 
classes of distributions appropriate statistical methods of analysis. 

To motivate all the concepts introduced and to provide illustrations of the statistical 
methodology developed we shall use data sets in two very different areas of application, 
geology and consumer demand analysis. We hope that the expert reader will see these 
examples for what they are, attempts at providing potential statistical insights into these and 
similar disciplines rather than presumptuous criticism by a novice of interpretations already 
laced on the articular data sets. 

Geology. The geological literature abounds with problems of the interpretation of chemical, 
mineral and fossil compositions of rock and sediment specimens. Each composition of each 
specimen is a set of some three to twenty proportions summing to unity and so can be 
represented by a point in an appropriately dimensioned simplex. We concentrate on three 
published geological data sets chosen to illustrate, as simply as possible, various aspects of our 
analysis. 

Example 1: Skye laoas. Thompson, Esson and Duncan (1972), in their Table 2, give the 
chemical compositions of 32 basalt specimens from the Isle of Skye in the form of percentages 
of 10 major oxides. A typical percentage vector in S9is thus 

SiO, A1,03 Fe203  MgO CaO Na,O K 2 0  TiO, P 2 0 5  MnO 

46.31 14.18 12.32 12.74 9.62 2.51 0.34 1.53 0.16 0.18 

For this example we shall discuss classes of parametric models for describing the experienced 
@ 1982 Royal Statistical Society 0035-9246/82/44139$2.00 
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pattern of variability, investigate the adequacy of such models and test a number of 
independence hypotheses for such sets of proportions. 

Example 2: Glacial tills in North-Central New York. As part of a study of the composition of 
glacial till samples Kaiser (1962) presents, within his Table 1, the percentage compositions in 
terms of four pebble types, together with the total pebble count, of 93 till samples. Typical 
sample information thus takes the form 

Percentage composition Total 
Red sandstone Grey sandstone Crystalline Miscellaneous pebbles 

67.2 31.5 0.3 1 .O 387 

In addition to the composition in S3we have here an abundance or size associated with each 
sample. Interest may then be in the extent, if any, to which composition depends on size. 

Example 3: Arctic lake sediments. Coakley and,  Rust (1968) give, in their Table 1, the 
compositions in terms of sand, silt and clay percentages of 39 sediment samples at different 
water depths in an Arctic lake, with typical entry 

Sediment composition in percentages Water 
Sand Silt Clay depth (m) 
10.5 55.4 34.1 49.4 

Of interest here is the question of quantifying the extent to which water depth is explanatory of 
compositional pattern. 

An appreciation of the difficulty imposed by this confinement of data points, such as the 
compositions in the above examples, to a simplex is inherent in the comments of Pearson 
(1897) on spurious correlations, and in geological circles the difficulty has since become known 
as the constant or bounded sum problem and the problem of closed arrays. As our allalysis 
unfolds we shall cite various attempts to overcome this difficulty, and, in identifying reasons for 
limited success, we shall discover a means of overcoming most of the difficulties. 

Consumer demand analysis. An important aspect of the study of consumer demand is the 
analysis of household budget surveys, in which attention focuses on expenditures on a number 
of mutually exclusive and exhaustive commodity groups and their relations to total 
expenditure, income, type of housing, household composition, and so on. 

Example 4: Hong Kong household expenditure budgets. The set of household expenditure 
data available to us is from a pilot selection of 199 Hong Kong households, used as a 
preparatory study for a large-scale household expenditure survey by the Hong Kong Census 
and Statistics Department. From this set we have for simplicity selected subgroups of 41 and 
42 households in two low-cost housing categories A and B. For each household information is 
available on number of persons, household composition, total household income, and monthly 
expenditures in nine commodity/service groups. The contents of these commodity groups are 
fully defined in the monthly Consumer Price Index Report of the Hong Kong Census and 
Statistics Department. To keep our illustrative analysis simple we have avoided the problem of 
zero components by combining two pairs of commodity groups to obtain the following seven: 
(1) housing, (2) fuel and light, (3) foodstuffs, (4) transport and vehicles, (5) tobacco, alcohol and 
miscellaneous goods, (6) services, (7) clothing, footwear and durable goods, and by replacing 
the few remaining zero expenditures in these groups by HK$0.05, half the lowest recordable 
expenditure. 

In the investigation of such data the pattern or composition of expenditures, the 
proportions of total expenditure allocated to the commodity groups, can be shown to play a 
central role, and indeed some economists (Working, 1943; Leser, 1976; Deaton, 1978; Deaton 
and Muellbauer, 1980) have investigated such a budget-share approach. Since each pattern of 
expenditures is again represented by a point in the simplex, questions such as "To what extent 

http:HK$0.05
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does the pattern of expenditure depend on the total amount spent?" and "Are there some 
commodity groups which are given priority in the allocation of expenditure?" obviously 
require adequate models to describe patterns of variability in the simplex and careful 
definitions of independence structure in the simplex for their satisfactory resolution. 

2. PARAMETRICCLASSESOF ONDISTRIBUTIONS S d  
2.1. Fundamental Operations on Compositions 

As a first step towards the introduction of new classes of distributions and independence 
concepts we establish a suitable terminology and notation for certain mathematical operations 
in the simplex which help in the study and manipulation of compositional data. 

Spaces and oectors. Let Rd denote d-dimensional real space, Pd its positive orthant and S d  
its positive simplex (1.1).The symbols, w, x and y are reserved for vectors in Pd, S d  and Rd, 
respectively, although we shall occasionally have to use other symbols for such vectors. Any 
vector or point x in S d  is termed a composition and any collection of such vectors, 
compositional data. We use the symbol x d + ,always in the sense 

to denote the fill-up value. The notation x") = (x, ,  ...,x,) allows focusing on leading subvectors 
with the dimension of the subvector indicated by the superscript. Thus x") with c < d  is a 
subvector of x or equivalently x ' ~ ) ,and x ( ~ + "is the augmented x vector (x , ,  ..., x,, xd+ ,). The 
subvector (x,+,,...,x d +,) obtained by deletion of x") from x ' ~ + ' )is denoted by x(,,. We use 
T ( X ' ~ ) )to denote the sum x ,  +...+x,  of the elements of any vector or subvector, such as x"). 

Basis of a composition. In our household expenditure example the d-dimensional budget- 
share composition x ' ~ + ' )is derived from the actual amounts spent w ' ~ + "  on the d +  1 
commodity groups through an operation C: Pd+l  + S d  defined by x ( ~ + ' )= whereC ( W ( ~ + ' ) )  
xi  = w ~ / T ( w ( ~ + ' ) )= 1,...,d + 1).For convenience we term such a vector w ' ~ +  E Pd+(i when it 
exists, the basis of the composition x ( ~ + ' ) .  

Subcomposition. Often in the study of geochemical compositions attention is directed 
towards the relative proportions of a few oxides. For example, a popular diagrammatic 
representation treats the relative proportions 

in S 2  as triangular coordinates in a CNK ternary diagram. We can formalize this process of 
focusing on a subset of components as follows. Any subvector, such as x"), of a composition 
x ( ~ + ' )can play the role of a basis in PCfor a composition C(x"))in Sc-'.Such a composition is 
termed a subcomposition C(x")) of x '~") .  

Amalgamation. In a household expenditure enquiry there may be reasons for combining 
some commodity groups, to form new amalgamated groups. If we suppose that the 
composition has been ordered in such a way that combinations are between neighbouring 
components, the formal general process can be set out as follows. Let the integers c,, .... c k + ,  
satisfy 

0 = c,<c,<...<ck<ck+, = d + l  
and define 

t j =  xcj_,+,+.. .+xc,  ( j  = 1,...,k + l ) .  

Then t ( k + ' ) ~S k  and so is a k-dimensional composition which we term an amalgamation of 
x '~ ' ' ) .It is obvious that the transformation from x ' ~ + ' )to t ( k+ ' )can be represented by a matrix 
operation t ( k + l )= from S d  to S k ,where A consists of 0s and Is, with a single 1 in each 
column. 

Partition. The amalgamation just discussed involves a separation of the vector x ( ~ + ' )into 
k + 1 subvectors. When considering such an amalgamation we may often be interested also in 
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the k + 1 subcompositions associated with these subvectors. The jth such subcomposition, 
s j€  Sd]where dj = c j - c j ,  -1, has components 

where the (dj+ 1)th component is the fill-up value. An extremely useful feature is that the 
transformation from Sdto 

specified by 
P ( x ' ~") (f; ~ 1 ,  + = Y sk + l )  

is one-to-one, with Jacobian DX(~)/D(~:  s,, ..., s,, ,)= td,' ... t?:; and with inverse P - '  given by 
x C j l+ r  tjsjr (r = 1,...,dj; j = 1,..., k + 1). We shall refer to P ( x ( ~ + ~ ) )  = as a partition oforder k of 
the composition x ( ~ + ' ) .  Thus a partition directs attention to an amalgamation together with its 
associated subcompositions. 

Independence notation. In discussing statistical independence we use the II notation of 
Dawid (1979). Thus C(x('))lLC(x(,,) denotes independence of the two subcompositions, and 
C(X(~))_~LC(x(,,)1 T(x(')) denotes their conditional independence, given the sum, x1 +...+x,.We 
use IIw(~+')to indicate that w ( ~ + ' )consists of independent components. 

2.2. The Dirichlet Class 
Undoubtedly the only familiar class of distributions on Sdis the Dirichlet class with typical 

member Dd(a) having density function 

where a or a ( d + l ' ~P d + l  is a (d+ 1)-vector parameter and 

is the Dirichlet function. A major obstacle to its use in the statistical analysis of compositional 
data is that it seldom, if ever, provides an adequate description of actual patterns of variability 
of compositions. The reasons for this are not difficult to find. First, the isoprobability contours 
of every Dirichlet distribution with ai>1 (i = 1,...,d + 1)are convex, and so the Dirichlet class 
must fail to describe obviously concave data patterns such as in Fig. 1. More importantly, the 
Dirichlet class has so much independence structure built into its definition that it represents, 
not a convenient modelling class for compositional data but the ultimate in independence 
hypotheses. This strong independence structure stems from a well-known relationship between 
the Dirichlet and gamma classes, which can be expressed in the terminology of compositional 
data as follows. 
D l .  Any Dirichlet composition in Sdcan be expressed as the composition of a basis of d + 1 

independent gamma-distributed quantities, each with the same scale parameter. 
There are many ways of expressing the strong internal independence structure of Dd(a) 

without reference to a conceptual external basis. For our purposes here we can collect most of 
these into a single general result concerning any partition of a Dirichlet composition. 
D2. 1f x ( ~ + "is Dd(a) then, for partition (2.6), t _ l L ~ ~ l l . . . ~ ~ s , + ~ ,  with t of Dk(y) form and sj of 

~ ~ ~ ( p ~ y ~ )form ( j  == 1,...,k +  1) where P ( c ~ ( ~ + l ) )  (y; PI, ...,fik+ 
We shall show later the relevance of these two properties to various concepts of 

independence in the simplex. 
The realization that the Dirichlet class leans so heavily towards independence has 

prompted a number of authors (Connor and Mosimann, 1969; Darroch and James, 1974; 
Mosimann, 1975b; James and Mosimann, 1980; James, 1981) to search for generalizations of 
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FIG.1. A concave data set and the 95 per cent prediction region of a fitted additive logistic normal distribution. The 
points are the subcompositions C ( N a , 0 + K 2 0 , F e 2 0 , , M g O )  of 23 aphyric Si-poor basalt-benmoreites from the 
AFM diagram of Fig. 7 of Thomson, Essen and Duncan (1972). 

the Dirichlet class with less structure. Their efforts have met with only iimited success and it 
remains an open problem to find a useful parametric class of distributions on Sdwhich 
contains the Dirichlet class but also contains distributions which do not satisfy any of the 
simplex independence properties already appearing in the literature or to be introduced in this 
paper. 

In our view the way out of the impasse is simply to travel by a different route, escaping from 
the awkward constrictions of S d  into the wide open spaces of Rd through suitably selected 
transformations between Sdand Rd. 

2.3. Transformed Normal Classes 
The idea of inducing a tractable class of distributions over some awkward sample space 

from a proven and well-established class over some simpler space is at least a century old. 
McAlister (1879),faced with the "awkward" sample space P', saw that if he considered y in R' 
to be N(p,02) then the transformation x = exp(y) would induce a useful "expnormal" 
distribution A(p, 02)on P': he, of course, expressed the idea in terms of the inverse, logarithmic, 
transformation and we are stuck with the name lognormal. Over the century there has been a 
continuing interest in transformations to normality, intensified in recent years following the 
work of Box and Cox (1964) and the increasing availability of tests of multinormality, as in 
Andrews, Gnanadesikan and Warner (1973). It seems surprising therefore that the idea of 
moving from multinormal distributions Nd(p,  Z )  on Rd to a class f Nd(p ,Z )of distributions on 
S d by a suitable transformationf Rd+Sdhas been so slow to emerge. Our surprise must be 
even greater when one such transformation, the additive logistic transformation a,: Rd +S d  
defined in Table 1, is already heavily exploited in other areas of statistical activity, such as 
logistic discriminant analysis (Cox, 1966; Day and Kerridge, 1967; Anderson, 1972)and in the 
analysis of binary data (Cox, 1970). 

Aitchison and Shen (1980) have identified as the logistic-normal class those distributions 
induced on S d  from the class of Nd(p,C)distributions on Rd by the transformation a,. The 
earliest explicit mention of this class we have traced is in a personal communication to 
Johnson and Kotz (1972, p. 20) by Obenchain, who does not seem to have developed the idea 
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TABLE 1 
Elementary logistic transformations from Rd to S d  

Name and 

notation Inverse 


yi = log- Xi 

X d + l  

Multiplicative exp(y , )  ( i =  1, ...,d)  
md x i j =h1 { I  + e x p ( ~ $ , ) }  = ( i = d + l )  

Hybrid " 1  = exp ( y l ) / { l  +e x p ( y 1 ) }  X 1
yi = log ----

1+ exp (y i ) } { I  + t exp ( y j )  I 
I -x,  

j =  1 j= 1 
X i  

J I i  = log 
= exp  (J',), ( i  = 2, ...,d)  

j = 1  

further. Aitchison and Shen (1980) cite a number of earlier implicit uses, particularly as a 
vehicle for the description of prior and posterior distributions of vectors of multinomial 
probabilities which are naturally confined to a suitably dimensioned simplex. Leonard (1973) 
started a thorough investigation of this use of the class over simplex parameter spaces. The first 
use of the class for describing patterns of variability of data appears to be for probabilistic data 
in a medical diagnostic problem by Aitchison and Begg (1976) and for compositional data by 
Aitchison and Shen (1980), who discuss a number of useful properties and demonstrate the 
simplicity of its application in a variety of problems. Our interest here in logistic-normal 
distributions is in their membership of a wider class of transformed normal distributions on the 
simplex and their use in relation to the independence concepts of subsequent sections. 

The additive logistic transformation a, is by no means the only transformation from Rd to 
S d ,and may be quite unsuited to particular investigations. Table 1 gives two other elementary 
transformations, the multiplicative logistic m, and the hybrid logistic h,. All three trans- 
formations a,,m,, h, have Jacobian DxlDy given by x ,  x ,  ...x,,,. We shall see that such 
elementary transformations can act as the building blocks of much more complicated 
transformations. An obvious comment is that the exponential function used in the definitions 
is not an essential feature; it could be replaced by any one-to-one transformation from [W1 to 
P1, though there are few transformations as tractable. 

There are two main ways of building further useful transformations. 
Linear transformation method. The fact that the Ndclass on Rd is closed under the group of 

non-singular linear transformations implies that any one of the elementary transformed- 
normal classes on S d  will have a related closure property (Aitchison and Shen, 1980). In 
practical terms this means that we could replace y',' by Qy',), with Q non-singular, in any one 
of the elementary transformations and formally obtain a new transformation but with the 
assurance that we are remaining within the same class of distributions on S d .For example, 
with a, and 
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otherwise, we obtain a new transformation 
d 

xi{1 + x e x p  x y j)}=exp  x y j ,) yi=log(xi /xi+,)  ( i = l ,  ...,d). 
1 ( j r k  (j" 

involving ratios of adjacent components of the composition. 
Partition transformation method. When a partition P(x'~+"), as defined in (2.6), is under 

consideration a relevant transformation from Rd to Sdmay be constructed as follows. Let 

fo: R d + S k ,  f j :  Rdj+Sdj  ( j =  1, ..., k+1)  

be any k+  2 suitably dimensioned elementary transformations from Table 1. The compound 
f = (fO; fl, ...,f k +  ') is a one-to-one transformation 

and the inverse transformation P p '  then takes us further on to Sd to complete a 
transformation P p l f  from Rd to Sd.We denote this resultant transformation shortly by 
(fo; fl, ...,f k +  The choice of f j  ( j  = 0, ...,k + 1) from among the appropriately dimensioned 
elementary transformations obviously offers a multitude of transformations from Rd to Sd.The 
choice in any particular application should clearly depend on the situation under 
investigation. 

Any statistical weapon designed to overcome such a resistant fortress as the simplex is 
unlikely to gain acceptance before undergoing proving tests as to its suitability to the terrain. 

Goodness-of-Jit tests. If x ' ~ + ' )follows a fNd(p,X) distribution in Sdthen y'd) =f ' ( x '~ " ) )  
follows a Nd(p,X) distribution in Rd. We can thus test the goodness of fit of any transformed- 
normal class to a compositional data set by applying the now extensive battery of multivariate 
normal tests, as for example in Andrews, Gnanadesikan and Warner (1973), to the transformed 
data set. 

For d-dimensional compositional data sets we have applied Kolmogorov-Smirnov and 
Cramer-von Mises tests in their Stephens (1974) versions to all d marginal distributions, to all 
id(d- 1) bivariate angle distributions, and to the distribution of d-dimensional radii. For the 
Skye lava compositions we have tested in this way both the additive aN9 and the multiplicative 
mN9 logistic-normal models. For the additive version not a single one of the battery of 92 tests 
gives a significant indication of non-normality at the 5 per cent significance level; for the 
multiplicative version only one of the marginal tests gives evidence of any departure fr0.m 
normality, at the 1 per cent significance level. Application of the battery of tests to another 20 
data sets of different geological types similarly encourages the view that transformed-normal 
distributions may have an important practical role to play in the analysis of compositional 
data. 

The ability of transformed-normal distributions to cope with concave data sets in Sdis 
illustrated in Fig. 1 where the 95 per cent prediction region of a fitted additive logistic-normal 
distribution, constructed by transformation of the corresponding elliptical region in R2, neatly 
contains the data points. 

Two caveats are worth recording. First, testing for multivariate normality and trying to 
detect outliers are two highly interrelated activities (Gnanadesikan and Kettenring, 1972); 
delicate judgements may occasionally have to be made between rejection of an apparent 
outlier to justify multivariate normal modelling and retention of suspect data with con-
sequently more complex modelling. Secondly, in multivariate normal regression modelling, 
multivariate normality of the vector residuals, not of the regressand vectors, is the hypothesis 
under scrutiny. Thus in Example 3 the sediment compositions show significant departure from 
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logistic-normality, whereas in the appropriate regression analysis on the explanatory water 
depth, reported later in Section 7.3, the residuals survive such scrutiny. 

Genesis models. Many of the natural and sampling processes by which compositions are 
determined are extremely complex; see, for example, the description by Chayes (1971, p. 44) for 
some geological sampling. Just as some support for normal and lognormal modelling can be 
provided by additive and multiplicative central limit theorems so we can postulate a process of 
random modifications to compositions which lead, through central limit theory arguments, to 
transformed-normal distributions for compositions. The underlying concept is that of a 
perturbation w ( ~ + ' )E Pd+ l, whose effect on a composition x ( ~ + ' )E Sdis to produce a perturbed 
composition 

W O X  = C(U'~X1,...,Wd+l Xd+l). 

Successive perturbations will, wIZl,... on an initial composition xIol produce a sequence of 
compositions x~ l l , x~21 ,  = xIr-,,(r = 1,2, ...) and satisfying ..., related by xIrl wIrl0 

It is then clear that suitable conditions on the perturbations could lead, for large r, to 
approximately additive logistic-normal or a~~ distributions for xIrl. 

4. EXTRINSICANALYSIS INDEPENDENCEOF 

4.1. Introduction 

We distinguish between two forms of structural analysis of compositional data: 


(1) extrinsic analysis, where compositions in Sdhave been derived, or are conceptualized as 
arising, from bases in P d t l  and interest is in the relation of composition to basis; 

(2) intrinsic analysis, where there is no basis and so interest is not directed outside the simplex 
but in the composition per se. 

In this section we consider two independence concepts of extrinsic analysis. 
One general point should first be made. It will be obvious that most of the independence 

concepts introduced and their properties could be presented in a weaker moment form 
involving correlations. Since a main aim is to develop tests of hypotheses within transformed 
normal models, where independence and zero correlation coincide, we have not considered it 
worthwhile to interrupt the narrative to draw such fine distinctions when they exist. 

4.2. Compositional Invariance 
In Examples 2 and 4 the compositions arise from actual bases in the form of quantities of 

different types of pebbles and expenditures in different commodity groups. Questions such as 
"Is pebble-type composition independent of the abundance of the pebbles?" and "To what 
extent is the pattern of household expenditure dependent on total expenditure?'direct us 
towards investigation of the relationship between the composition x = C(w) and the total size 
t = T(w) of a basis w E Pd+l .  This leads naturally to the following independence concept. 

DeJnition: compositional invariance of a basis. A basis w E Pd+ is compo~itionally invariant 
if C(w)-lL T(w). 

This concept has appeared under a variety of guises: as the Lukacs condition in a 
characterization of the Dirichlet distribution (Mosimann, 1962), as additive isometry in the 
analysis of biological shape and size (Mosimann, 1970, 1975a, b), as proportion invariance in 
the study of F-independence (Darroch and James, 1974). 

The development of a satisfactory parametric test of compositional invariance seems to have 
been delayed by two model-building deficiencies of the multivariate lognormal class Ad+'@, R), 
a natural first-thought contender for the role of modelling the variability of bases in Pd+' .  
(1) If w is Ad''@, R )  there is no simple, tractable form for the distribution of T(w) and so 

investigation of C(w)li  T(w) is difficult. 
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(2) A multivariate lognormal basis w can be compositionally invariant only if w has a 
degenerate, one-dimensional distribution with covariance matrix R = cov (log w) a scalar 
multiple of the matrix U d + ,  consisting of unit elements and so of rank 1 (Mosimann, 
1975b). 
Thus not only from a point of view of tractability but also on logical grounds, study of 

compositional invariance within multivariate lognormal modelling of the basis is doomed to 
failure. Since non-degenerate compositional invariance is obviously a logical possibility the 
message to the practical statistician is clear: he must do better in his modelling. With 
transformed normal classes the answer is easy. Since interest is in x t we need not insist on 
finding an elegant model for the joint distribution of (t,x) but concentrate on the conditional 
distribution p(x I t) using a transformed normal regression form such as fNd(a+Pt ,C)  or 
f Nd(a+ fl log t, X).Then compositional invariance is simply the parametric hypothesis P = 0. 
Moreover, testing this hypothesis on a data set consisting of n bases, and hence of n pairs of 
corresponding compositions and sizes, is standard methodology in multivariate analysis of 
dispersion (Morrison, 1976, Chapter 5). This regression approach seems appropriate since we 
would surely want, in the event of !rejecting the hypothesis of compositional invariance, to study 
the basis further by trying to describe the nature of the dependence of composition on size. 

Glacial tills. We have tested compositional invariance for the 93 pebble samples of Example 
2 in both the aN 3(a +Pt, C) and aN3(a +P log t, C) models with very similar results. Using the 
generalized likelihood ratio criterion as in Morrison (1976, p. 222) we obtain values 2.74 and 
3.05 for the test statistics, each to be compared against 7.81, the upper 5 per cent x 2  (3) point. 
Thus there is no evidence against compositional invariance in these glacial tills. Two 
comments should be made. First, while two of the marginal tests indicate evidence of departure 
from additive logistic normality the other tests show no such evidence. Secondly, zero 
components in 14 of the samples were replaced by proportions 0.0005, half the lowest recorded 
value, before analysis. We shall return to this problem of zeros in Section 7.4. 

Household expenditure budgets. Incorporating compositional analysis directly into the 
analysis of household budgets has many advantages and provides opportunities for new forms 
of investigation. Modelling as above with p(x / t) of aNd(a +p log t, C) form has interesting 
consequences. First, the sometimes troublesome Engel aggregation condition (Brown and 
Deaton, 1972, p. 1163) that, for each household, total expenditure should equal the sum of all 
commodity expenditures, is automatically satisfied. Secondly, the hypothesis of compositional 
invariance, P = 0, has a direct interpretation in terms of the income elasticities 
e, = 2log w,/S log t of demand (i = 1, ...,d + I), if for simplicity we identify household total 
expenditure with household income. In expectation terms P,  = ei-e,, ,(i = 1, ...,d), so that 
compositional invariance corresponds to equality of all d +  1 income elasticities. Thirdly, 
whether or not there is compositional invariance, the modelling can clearly be extended to a 
full consumer demand analysis by the incorporation of commodity prices and other 
explanatory variables such as household type and household composition into the mean 
parameter of the aNd distribution. Indeed such an extension can be shown to be identical with 
the Houthakker (1960) indirect addilog model of consumer demand (Brown and Deaton, 1972, 
equation 1 15). 

There is, however, an important extra flexibility in the present compositional approach, for 
we are not restricted to the additive logistic transformation but could equally use other forms, 
for example, directed towards the investigation of whether households place priorities in 
allocation of expenditures on some commodity groups. 

In the above discussion we have identified household total ex~enditure t with household 
income s. This is not an essential feature of the modelling since we could approach it through 
the conditioning 

with perhaps the reasonable assumption that x s 1 t leading to the above focus on p(x / t). 
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Application of the test of compositional invariance gives observed values of 36.4 and 39.0 
for the test statistics for household types A and B respectively, each to be compared against 
upper x2(6) values, and hence highly significant. Thus for both types A and B the hypothesis of 
compositional invariance is firmly rejected, not surprisingly when we recall that the hypothesis 
is equivalent to the equality of the income elasticities for all commodity groups. More 
interestingly, from the estimated values of pi the relationship pi= ei-ed+, provides us with an 
ordering of the commodity groups in terms of increasing magnitude of income elasticity, that is 
in conventional economic jargon from necessity to increasing luxury groups. For household 
type A this ordering is as follows: housing; fuel and light; foodstuffs; transport and vehicles; 
alcoholic drinks, tobacco and miscellaneous goods; services; clothing, footwear and durable 
goods. For household type B the ordering is identical except that the groups 4 and 5 are 
interchanged. While these orderings seem reasonable for Hong Kong it should be clear that 
any satisfactory analysis must involve the introduction of concomitant explanatory variables 
such as household size and the use of data from the eventual household expenditure survey 
rather than from specially selected pilot households. We hope to report on a more detailed 
analysis elsewhere. 

4.3. Basis Independence 
Even when no basis actually exists a number of authors, conscious of the difficulties of 

defining independence concepts for compositions, have seen a method of escape through the 
relating of the compositional property to that of independence of an imaginary basis. Their 
various forms of this idea can be simply expressed as follows. 

Definition: basis independence. A composition x(,) E Sdis said to have basis independence if 
there exists a basis w ' ~ + ' ) EP d t l  with ~ L w ( ~ + ' )  = C(W(~+')).and such that x ' ~ )  

Since every Dirichlet-distributed composition has basis independence, by property D l  of 
Section 2.2, the Dirichlet class has obviously no fruitful r61e to play in the investigation of this 
independence property. 

Attention has concentrated on assessing null correlations, the spurious correlations that 
would arise in the raw proportions solely from the process of forming proportions from 
conceptual, independent basis measurements, and subsequently on comparing sample corre- 
lations against these null values (Chayes, 1960, 1962, 1971; Mosimann, 1962; Chayes and 
Kruskal, 1966; Darroch, 1969). Many awkward features and pitfalls of this direct correlational 
approach have been pointed out: see, for example, Aitchison (1981a) who, after emphasizing 
the limitations of inferences about bases from compositions imposed by the fact that a 
composition x'~") determines a basis w'~") = tx(,+') only up to a multiplicative factor t, 
provides an overall test by showing that basis independence is associated with a particularly 
simple covariance structure of logratios of the raw proportions: 

cov {log (x'~)/x,+ ,)) = diag {A,, ...,A,} + A,+,  U,, (Ai >0, i = 1,...,d + I), (4.1) 

where U, is the d x d matrix of units. Even a simplified approach, however, has merit only so 
long as it proves impossible to provide an equivalent intrinsic concept. Since we have now 
discovered a simple way of defining the illusive concept of almost-independence within the 
composition itself we proceed immediately to this new concept. 

It has long been appreciated that there must be at least one pair of correlated components 
in any composition x (~+ ' ) .  An obvious first problem in studying independence in Sdis 
therefore to find a structure which most closely approaches the unattainable goal of ~ L x ' ~ " ) .  
The following definition embodies such a concept. 

Dejinition: complete subcompositional independence. A composition x ( ~ + "has complete 
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subcompositional independence if, for each possible partition of x'~"', the set of all its 
subcompositions is independent. 

Every Dirichlet composition has complete subcompositional independence, by D2 of 
Section 2.2. Note also that complete subcompositional independence is automatically satisfied 
by any composition of dimension d = 1 or 2, since partitions involve one-component 
subvectors such as x,  which have trivial subcompositions such as C(x,) = 1. 

For a composition x ( ~ + ' 'with complete subcompositional independence, C ( X ( ~ ) ) ~ L  C(x,,,) for 
b 5 c. Moreover, since every subcomposition based on a two-dimensional subvector such as 
(x,,x2) is a function only of the ratio xl/x2, complete subcompositional independence implies 
independence of every pair of ratios xi/xj and xk/x, with i, j, k, 1 all different and, a fortiori, of the 
logratios log(xi/xj) and log(xk/x,). This implication can be fully expressed in terms of the 
special form for the covariance structure 

C, = cov {log (x'~'/x,+ ,)) = diag ( 4 ,  ...,2,) +2,. ,U,, (5.1) 

where l )  has the following interpretations: 

/7.i = cov {log (xj/xi), log (xk/xi)}, Li + /7.j= var {log (xi/xj)} (5.2) 

where i, j, k are unequal. This attractive form for the covariance structure suggests that 
additive logistic-normal modelling may be useful. This approach is further encouraged by the 
easily proved equivalence result, that, for an additive logistic-normal composition, complete 
subcompositional independence and covariance structure (5.1) are equivalent. 

The similarity of (5.1) to (4.1) confirms that we have found an intrinsic counterpart of the 
doubtful extrinsic concept of basis independence. The difference lies only in the restrictions 
placed on A(d+", the positivity in form (4.1) being relaxed to the extent that need only 
ensure positive-definiteness of form (5.1). 

Within this framework of the aNd(p,C) class for the composition x'~"), testing for 
complete subcompositional independence becomes testing the parametric hypothesis that the 
covariance structure is of form (5.1). Note that this hypothesis places id(d- 1)- 1 constraints 
on the parameters. No exact test of the hypothesis has been found but the familiar Wilks (1938) 
asymptotic generalized likelihood ratio test gives a reasonable substitute. This compares 

n{log ( I 2, I / I 2, I ) + trace (2; 'V)-d), 

where V is the sample covariance matrix of the transformed vector 10g(x '~ ' /x~+ ,) and 2, and 
2, are the maximum likelihood estimates of C under the hypothe$s and model, against the 
appropriate upper percentile of ~ ~ { + d ( d -  1)- 1). The estimate C, is simply V but the 
computation of 2, requires a suitable numerical maximization procedure. We have used a 
modification of the Marquardt (1963) mixture of Newton-Raphson and steepest ascent 
methods, exploiting the special forms taken by 1 C, 1, Xi' and the positive-definiteness 
constraint. The details are tedious and unimportant to our context: any reader interested may 
obtain a program in BASIC from the author. 

Skye lavas. For the Skye lava data of Example 1 with n = 32 and d = 9 we obtain the value 
325 for the test quantity (5.3) to be compared against upper x2(35) values, with consequent 
sound rejection of the hypothesis of complete subcompositional independence. 

6. INTRINSIC PARTITIONANALYSIS: OF ORDER ONE 
6.1. Introduction 

In their considerations of geochemical compositions geologists almost invariably concen- 
trate on a few low-dimensional subcompositions, often with some amalgamation and 
represented in ternary diagrams such as AFM for C(Na20 +K 2 0 ,  Fe203 ,  MgO). Such partial 
analyses inevitably raise questions about possible loss of information and one relevant form of 
analysis is to ask the extent of the dependence of the subcomposition on other aspects of the 
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complete composition. We suspect that an underlying reason for some of the subcom- 
positional approaches has been the absence of suitable and readily available methodology for 
their undoubtedly special multivariate problems with a consequential need to project down 
into dimensions which can be inspected by eye. We hope that transformed multinormal 
modelling on the simplex will encourage full multivariate analyses of geochemical data. It 
should also throw some light on the validity of past choices, and the optimization of future 
choices, of subcompositions. More positively, with this methodology and with the concepts of 
intrinsic independence about to be introduced, it may be possible for the geologist to formulate 
his questions about subcompositions more precisely. For example, if he wishes to ask what 
factors affect the relative proportions of iron and manganese oxides in specimens, part of his 
investigation must concern the relationship of the subcomposition C(Fe0 +Fe203, MnO) to 
the other aspects of the whole composition. There may, of course, be other contributory factors 
external to the composition such as water content. We shall see later that these could be 
investigated within a multivariate regression model for compositional data. Here we 
concentrate only on compositional factors. 

As nothing more than an illustration of the analytical possibilities we consider for Example 1 
the popular AFM subcomposition, actually used by Thompson, Esson and Duncan (1972); it is 
then natural to reorder the components, make a division of the complete vector as follows 

(A = Na,O +K,O, F = Fe203,M = MgO I MnO, P205 ,  TiO,, CaO, A1203, SiO,) (6.1) 

and thus direct interest to this partition of order one of the composition now in S8. 
More generally then our interest is in a partition (x(", x(,,) of x'~"' and in the extent of 

interdependence of the amalgamation t = {T(x(')), T(x(,,)) = (t, 1 -t) and the associated left 
and right subcompositions s1 = C(x(") and s, = C(x(,,). We can form altogether ten inde- 
pendence hypotheses, falling into four types (i) s , L s ,  1 t; (ii) s,lLt; (iii) s,L(s,,t); (iv) 
s , L s , L t ;  types (iHiii) each have two other obvious versions. Note that, by D2, the Dirichlet 
class satisfies all these ten independence properties. Only type (iii), in its versions s,lL(s,,t) and 
s,lL(sl, t), has been previously studied, following its introduction by Connor and Mosimann 
(1969) under the name of neutrality. In any particular application only some subset of the ten 
independence hypotheses is likely to be relevant and it is clearly not practicable to consider 
here all possible selections of such independence hypotheses. We have therefore chosen to 
concentrate on six hypotheses; these, we believe, are appropriate to a large number of 
applications, can be fully illustrated by the application specified above, and display interesting 
relationships which throw light on the concept of neutrality. 

6.2. Related Concepts of Independence 
For convenience of reference the definitions of the six forms of independence are set out 

formally in Table 2, their implication relationships are completely summarized in the Venn 
diagram of Fig. 2, and a lattice of interest in our illustrative application is shown in Fig. 3. Our 
main purpose in the text is then to motivate the concepts, to describe modelling within which 
tests can be devised and to provide a rationale for the multiple-hypothesis testing situation of 
the lattice. 

Subcompositional inuariance. In the relation of a composition to its basis the concept of 
compositional invariance, independence of the composition C(w) and the total size T(w) of the 
basis w as defined in Section 4.2, plays an important role. There is a simple and useful intrinsic 
counterpart of this concept for subcompositions, namely subcompositional invariance, defined 
as independence of a subcomposition from the share of the available unit which is taken up by 
its components. Thus s, has subcompositional invariance, denoted by 9 , ,  when s 1 L t .  There 
is, of course, another possible subcompositional invariance associated with the partition, 
namely s,lL 1 - t or equivalently s,lLt, and denoted by 9 , .  
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TABLE2 

Some forms of independence for the partition (x''), x(,,) of x ( ~ + "  


Notation Definition Parametric hypothesis 

Subcompositional invariance 
J'l C(X('~)1 T(x(") P I  = 0 

Conditional subcompositional independence 
% C(xcJ) C(x(,,) / T(x(") XI, = 0 

Neutrality 
.( (left) +I P1  = 0 , Z l 2 = 0 

1 1,l ,(right) C(X,<~)x(?I P2 = 0, X12 = 0 

Partition independence 
9 {C(X("), c ( ~ ( ~ j ) ,  p1 =O, pz =O, X12 =O T ( x ( ~ ~ ) }  

Conditional subcompositional independence. The subcompositional invariances 9, and 9, 
are not concerned with the relationship of s,  and s,. A question of some interest concerning the 
two subcompositions s,  and s,, if, for example, 4, and 9, do not hold, is whether their 
dependence on each other may be only through the total amounts t and 1 -t being assigned to 
each. 'This leads naturally to the concept of conditional subcompositional independence 
defined as s , lLs ,  I t and denoted by %'. We note that this hypothesis is symmetric in s,  and s, 
so that % requires no distinguishing suffices in contrast to 9, and 9 , .  

Neutrality. Connor and Mosimann (1969) introduced the concept of neutrality which in 
our notation may be expressed as C(x(,,)At x"). This question of whether the subcomposition 
on the right is independent of the entire subvector on the left was motivated by a biological 
problem of whether turtle scutes compete for space along the plastron during their 
development. The concept has been the source of a number of developments by Darroch and 
James (1974),Darroch and Ratcliff (1970, 1971, 1978), James (1975),James and Mosimann 
(1980), Mosimann (1975a, b), but much of the statistical analysis of neutrality has been 
hampered because until recently no parametric class ofdistributions on the simplex had been 
found rich enough to accommodate both neutrality and non-neutrality. 

Since there is a one-to-one transformation between x"' and (s,, t) ,  neutrality as defined 
above can be expressed as s, At (s,, t). We term this neutrality on the right and denote it by .M,, 
to distinguish it from JV,,  neutrality on the left where the independence property s,lL(s,, t )  
involves the relationship of the subcomposition on the left to the entire subvector on the right. 
Since s , lL t  and s , lLs ,  1 t e s , l L ( s , ,  t )  we obtain the very simple relationships 4 , n %  = JV,,  
J2n %' = . l;. These, together with other similar relationships, are recorded in Fig. 2. 
Subcompositional invariance and conditional subcompositional independence are weaker 
forms of independence than neutrality and may thus be appropriate forms for investigation in 
situations where neutralitv is rejected. 

Partition independence. We have been discussing above various forms of independence 
involving s,, s, and t ,  and it is natural to go to the ultimate form s , lLs , lLt .  We term thit 
partition independence, denote it by P,and note the relation 4,nAf, = 9depicted in Fig. 2 

Note that for d = 1 all the independence properties introduced are trivially satisfied. For 
d = 2 and partition ( x , ,  x ,  1 x,), satisfaction of %, 4, and A", is again automatic; for 
the partition ( x ,  I x,, x,) the concepts are identical with +? = ,", = A",. It is only for d 2 3 
that we have a real distinction between the various concepts. 
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1 I 

FIG.2. Diagrammatic representation of the relationships between independence properties for a partition of order one. 

6.3. Modelling and Testing 
The problem we now face is how to model the partition (t;s,, s,), and hence the original 

composition, in such a way that the independence hypotheses just discussed become 
appropriate parametric hypotheses. Since W involves conditioning on t it is natural to try to 
accommodate all the hypotheses within a conditional model for (s,, s2 1 t).For example, we can 
adopt additive logistic modelling for s, and s, with mean vector parameters dependent on t or 
some transform of t.  With 

y1 =ac--ll(s,)=log{s','-')/s,c}, y 2 = a ~ ~ 1 c ( s 2 ) = l o g { s ( z d - c ) / ~ 2 , d ~ c + 1 }  

and z = log { t / ( l  - t ) )  we can take our model M with conditional model for (y,, y, I z)  of the 
following form: 

All the independence hypotheses considered are then easily identified with constraints on 
the parameters p,, p,,C,,. For example, 9,requires y , L z  and so has parametric counterpart 
p2 = 0; and M2requires the further condition y , l y 2  1 z or El,= 0 and so is identical to the 
parametric hypotheses p, = 0, C,, = 0. All these parametric counterparts are listed for 
convenience beside the definitions in Table 2. 

Since the hypotheses under test impose linear constraints on mean vector and simple 
restrictions on covariance matrices the generalized likelihood ratio test statistic again takes the 
form (5.3) with approximate critical values given through asymptotic theory as up er x 2  
percentiles with appropriate degrees of freedom qH for hypotheses H.The derivation of iHand 
qH for the various hypotheses and of C, is routine; for easy reference we provide the 
computational forms in Table 3. 

6.4. Testing a Lattice of Hypotheses: An Application 
If only one of the independence hypotheses already discussed is under scrutiny then the 

appropriate test procedure set out in Section 6.3 applies. If, however, we have under 
investigation a number of the hypotheses then we must consider more carefully our strategy, 
such as order of testing. In the lattice of hypotheses set out in Fig. 3 for the partition (6.1) of the 
Skye lava compositions, the model is at the highest level with hypotheses at deeper levels 
corresponding to more and more constraints on the parameters. Viewed from the bottom of 
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TABLE3 
Maximzlm likelihood estimates of X associated with independence hypotheses 

Maximum likelihood 

estimate ofZ with 


Hypothesis H submatrices in the Degrees of 

or model M order Z l 1 , Z l 2 , Z Z 2  freedom q,  


M $ 1 1 ,  g12> g 2 2  

$1 S l l l  F12,  Z22 c-1 
.el ? I D  Z 1 ~ > s 2 2  d - c  
't x 1 1 ,  0 ,  Z22 ( c - l ) ( d c )  
,1", S I I ,0 , 2 2 2  ( c - l ) ( d - c + 1 )  
. l ,  211,0, s 2 2  c(d -c )  
9 S l l ,  0 , s22  c(d-c)+c- 1 

Required matrix computations 

nS, j  = f: ( yc - j , ) ( y , , - j j )  (i ,j = 1,2); nS,,  = (z,-z)'; 
r = 1  r = 1  

nS, ,  = 1 (y,,- j , )  ( z ,- z ) ;  pi = S,/S,,, (i = 1,2); 
r = l  

g i j= S i , - p i  p j S z 2 , (i,j = 1,2). 

FIG.3. Latt~ce for Skye lava analysis showing values of test statistics with associated degrees of freedom in brackets. 

the lattice the hypothesis P is the simplest explanation of the relationship of C(x("), C(x(,,) and 
T(x("),namely mutual independence. As we move up the lattice, for example to JV",, we have to 
introduce more parameters, namely p,, to provide an explanation of the pattern of variability, 
and to +? further parameters, namely p,. 

For such multiple-hypothesis testing, a sensible approach is to adopt the simplicity 
postulate of Jeffreys (1961, p. 47): in order to move from a simple explanation, such as 9,to a 
more complex explanation, such as JV,, we require to reject the simpler explanation through 
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an appropriate significance test. In other words, to justify the introduction of more parameters, 
we require a mandate, provided by significant rejection, to allow us to move to a higher level in 
the lattice. Thus our procedure would involve the following steps. First test 9within M. If we 
cannot reject 9 then there is nothing to justify moving from the simple explanation 9.If we 
reject 9then we move up to the next level, testing each of ,I.', and J V ,  within M. If we cannot 
reject both then we have a feasible explanation at this level. If we reject both then we move to a 
test of % within M, and so on. Note that the tests are all of a hypothesis H within M and the 
mechanism of these tests has already been described in Section 6.3. 

For our geochemical partition the values of the test statistics with their bracketed degrees 
of freedom are shown at the appropriate nodes of the lattice. All the hypotheses of the lattice 
are rejected at significance levels well below 0.1 per cent. However we care to interpret the 
lattice, the C(A,F, M) subcomposition has clearly neither subcompositional invariance nor is it 
conditionally independent of the complementary subcomposition. Further analysis, not 
reported here, shows that it is also not (absolutely) independent, defined as s,lLs,, of the 
complementary subcomposition. Thus any analysis of AFM which subsumes that this 
subcomposition is independent of other apsects of the composition is surely suspect. 

7. FURTHERASPECTS ANALYSISOF INTRINSIC 
7.1. Partial Subcompositional Independence 

In the extrinsic approach to compositional structure some geologists, for example 
Sarmanov and Vistelius (1959),consider forms of partial basis independence under such terms 
as concretionary and metasomatic. These have satisfactory intrinsic counterparts whose form 
we can now indicate briefly in terms of a partition (x('),x(,,)or (t;  s,,s,) of order one. 

Definition: partial subcompositional independence restricted by x"'. A composition x ( ~ + "has 
partial subcompositional independence restricted by x") if s,  / s, and s2 has complete 
subcompositional independence within Sd-' .  

Since the amalgamation t = ( t ,1 - t )  is not involved in the definition we can investigate 
such partial subcompositional independence within a model for the joint distribution of (s,,s2). 
Taking this to be of transformed normal form {ac--l,(s,), a>',(s,)) and hence with covariance 
matrix 

X = cov {log (xi/x,) (i = 1 ,  . . .,c - 1); log (x,+ J x d+ ,) ( i  = 1 ,  . . .,d -c))  (7.1) 

we can specify partial subcompositional independence as the parametric hypothesis 

in term of the obvious partitioning of X.Such a formulation brings this form of independence 
within the scope of the test procedures developed in Section 6. Moreover, the fact that partial 
subcompositional independence is seen as the conjunction of two less stringent hypotheses, 
unconditional subcompositional independence s,-l s, and complete subcompositional inde- 
pendence of s, within Sd- ' ,  open up another means of probing compositional structure 
through a lattice approach. 

7.2. Independence up to Level c 
There are a number of situations, where a specific ordering of the d + 1 components has 

been made and already embodied in x ' ~ + ' ) ,and where interest is in considering independence 
properties for partitions of order one at a sequence of levels c. Since we consider here only 
independence in the form %, .Y,and we drop the suffix 2 to allow us to emphasize the level c 
at which division has been made. Thus Vc ,  XC, dtTcdenote V ,Y2,JV", at level c. We recall the 
basic relation V c n Y c= hac,and, for any one of these hypotheses, say H,, define the 
corresponding concept Hc up to level c as follows. 
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Dejinition: independence property up to level c. A composition x ' ~ + ' 'has independence 
property H up to level c if H ,  holds for k = 1,..., c. 

It follows from the relationship that WcnYc = ,I"'. For the special case when c = d -1 (or 
equivalently d) we use the term complete. 

Dejinition: complete independence property. A composition x'~"' possesses the complete 
independence property H if Hd- l  holds. 

Thus, for example, complete neutrality (Connor and Mosimann, 1969) requires 
C(x(,,)-l x"' for c = 1,..., d -1. The investigation of neutrality at different levels is best pursued 
in terms of the multiplicative logistic transformation. This approach has been adopted by 
Aitchison (1981b) to provide a suitable parametric statistical framework within which to test 
.1;,1̂ ' and lattices of hypotheses involving these. Adopting a mNd(p,X) model we see that 
the hypotheses ,1,,2"' and ,in,-' correspond to the following covariance matrix structures 

where C,, is of order c x c. The numbers of constraints imposed by the three hypotheses are 
c(d -c), c(d -&c+ 1)) and 3d(d - 1). If V is the estimated covariance matrix associated with d- 
dimensional vectors y, (r = l ,  ..., n) defined in the m, entry of Table l then the test statistics 
(Aitchison, 1981b) associated with 1;,1 ' and , l n d '  are again of form (5.3) with 

where V,,, V,, are obvious submatrices of V in a (c,d -c) partitioning and v,, is the (i, j)th 
element of V. Note that in all these tests the term trace (2;' EM)= d so that the test statistic 
reduces to n log ( 1 g, / / / 2, 1 ). 

Since Ye and ,I, (c> 1) are quite distinct hypotheses we might expect J' and ,1 'to be distinct 
and, since ,1" c9',to be able to devise a model for which Yc holds but ,1" does not. We have 
failed to produce such a model and are beginning to conjecture that, within the framework of 
transformed normal modelling, 3'- ,Vc, though so far we have failed to prove the conjecture. 

That there is a distinction between %"and, 1 "can be readily seen for the case d = 3. Since W, 
and g3are trivially satisfied for any compositional distribution, model (6.2) with c = 2 and 
o,, = 0 supports W, and hence complete conditional subcompositional independence, 
whereas ,I.', does not hold unless /3, = 0. We have not so far found any practical problem to 
which the idea of %" seems relevant and have not therefore pursued the modelling problem 
further. 

Skye lavas. From the strong rejection of complete subcompositional independence and the 
neutrality hypotheses A', there can be little surprise in discovering that tests of neutrality 
associated with an ordering such as (6.1) of the entire compositional vector lead to rejections. 
Simply as an illustrative example for numerical comparison therefore we show in Table 4 

TABLE4 

Test results for neutrality hypotheses for Skye lavas 


Level Tesr  s t a t i s t ~ c  Degrees of freedoin 
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values of the test statistics, as described above for testing ./lrcup to all possible levels c for this 
ordering together with the corresponding degrees of freedom at each of the seven levels. Since 
the comparison is against upper chi-squared values at the degrees of freedom shown, the 
neutrality hypotheses up to all levels for this ordering are strongly rejected. To those who regard 
hypothesis-testing as a means towards arriving at a model for subsequent analyses we reiterate 
the important fact that rejection of all these hypotheses still leaves transformed normal models 
on the simplex as possible describers of patterns of variability of non-neutral compositional 
data. 

7.3. Compositional Regression Models 
On finding a subcomposition s,, such as AFM, dependent on complementary aspects t and 

s, of the complete composition we may wish to assess the conditional distribution p(s, I t ,s,). 
This aspect of estimation, essentially regression analysis in transformed normal modelling, has 
already been illustrated for sediment compositions by Aitchison and Shen (1980) and need not 
be detailed here. Rather we present briefly examples where we may wish to explore the 
dependence of a composition x ( ~ + " ESdon concomitant information z. 

Arctic lake sediments. In Example 3 for each Arctic lake composition the associated depth z 
is provided. There is, through the transformed normality approach, an obvious way of 
modelling to allow investigation of the dependence of composition on depth, namely to take 
p ( ~ ( ~ + ' )Z) =f Nd(g(z),Z), where the regression function g(z) can be investigated in the usual I 
multivariate regression form. In our model M we have taken f to be a, and g(z) to include terms 
in z, z2, logz and (logz)'. We have then worked through a lattice of increasingly complex 
hypotheses along the lines of Section 6.4, and found that linear regression is certainly rejected, 
but that hypotheses of the form g(z) = u +P log z, or quadratic regression g(z) = u +pz +yz2 are 
equally good fits and cannot be rejected. Moreover the residuals based on either of these fitted 
regressions pass the complete battery of multivariate normal tests. 

Household budgets. As another illustration of the simplicity of regression techniques we 
might extend the model of Section 4.2 to include the possibility of compositional dependence 
on household size, for example with the regression function of the form 

a +p log (total expenditure) +y log (household size). 

If we then investigate the lattice with nodes at P = 0, y = 0, at P = 0 and at y = 0 we find that 
the hypothesis y = 0 is the only one that cannot be rejected. Moreover, fitting of this accepted 
regression function leaves residuals which survive the battery of goodness-of-fit tests. 

7.4. The Problem of Zero Components 
Throughout the paper attention has been confined to the strictly positive simplex. The 

reason is the obvious one that we cannot take logarithms of zero. And yet zero components do 
occur in a number of applications, for example, when a household spends nothing on the 
commodity group "tobacco and alcohol" or a rock specimen contains "no trace" of a 
particular mineral. In the absence of a one-to-one monotonic transformation between the real 
line and its non-negative subset the problem of zeros is unlikely ever to be satisfactorily 
resolved. A similar problem occurs in lognormal modelling and, as there, ad hoc solutions 
naturally depend on the frequency and nature of the zeros. 

If there are only a few zeros of the no-trace type then replacement by positive values smaller 
than the smallest traceable amounts will allow an analysis. In such circumstances it will always 
be wise to perform a sensitivity analysis to determine the effect that different zero replacement 
values have on the conclusions of the analysis. For example, in the investigation of 
compositional invariance in glacial tills in Section 4.2 we replaced 14 zero proportions by 0.0005 
obtaining the value 3.05 for the test statistic in the aN3(u +p log t ,X)modelling. For other 
replacement values 0.001, 0~00025,0~00001 and 0.000001 the values of the test statistic are 3.93, 
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2.46, 2.01 and 1.54 all leading to the same conclusion of no evidence against compositional 
invariance at the 5 per cent significance level. 

If there is a moderate number of real zeros it may be worth considering the device of three- 
parameter lognormal modelling (Aitchison and Brown, 1957, p. 14),whereby a constant, either 
known or to be estimated, is added to every observation. One compositional counterpart 
would be to apply the transformations, not to x(,+ 'I, but to C ( X ' ~ + ~ ) + T ( ~ + ~ ) )  iswhere T(,+ 

either chosen or estimated. For example, for the case d = 1 and an additive logistic model we 
are considering the model with log {(x+z, ) / ( l  + z ,  - x )  of N1(p,  a 2 )  form, which is a four- 
parameter lognormal model of Johnson (1949).Clearly if has to be estimated there are 
substantial estimation and interpretation problems even for small d. 

If there is a substantial number of zeros mostly in a few components and if amalgamations 
of components are ruled out, then some form of conditional modelling separating out the zero 
may be possible. For example, if the zeros are confined to the last component then the 
conditional distribution of C(X',))on x,+, might be modelled by taking l ~ g ( x ( ~ - ' ) / x , )to be 
N d  ' ( a  +Pxd+,,C )  with the marginal distribution of x,+, having a mass probability at zero 
and log { x ,+ ,/(l -x ,  + ,)} following N1(p,  a2)  for x ,  + ,>0. 

7.5. Partitions of Higher Order 
For a partition of order one we saw there are ten different independence hypotheses and 

that careful selection of hypotheses relevant to the practical problem is of primary importance 
to a successful analysis. The choice of relevant hypotheses for a higher order partition 
(t;  s,, ..., s,, ,) is even more crucial and we have no space to discuss it at length here. A brief 
look at a partition of order 2 should, however, indicate the potentialities of transformed 
normal modelling. 

Suppose that for a partition (t;  s1,s2,s3) of order 2 we wish to investigate the extent of 
subcompositional invariance with respect to the sums t,, t,, t ,  and also whether the 
amalgamation t',) = ( t , ,  t,, t,) displays complete neutrality. If we model in terms of the 
transformed partition (z;  y,, y,, y,) of (m,; a,,, a,,, a,,) type we might use conditional modelling 
P ( Z )  P(Y Y,, y3 I Z )  with P(Y,, y2, y3 I Z )  of multinormal form 

and p(z) of N2(y,f2) form. It must now be clear that there could be a large number of 
hypotheses of interest. 

As an example of a simple lattice approach we refer to Fig. 4 where forms of hypotheses of 
total subcompositional invariance, (s,, s 2 , s 3 ) - l t  or parametrically P ,  = 0 (h = 1,2,3), and of 
complete neutrality of t(3',namely o,,= 0 ,are brought together. The testing of such a lattice is 
straightforward following the lines of Section 6.4. It is also clear that the total subcom- 
positional invariance hypothesis could be broken into interesting hypotheses such as P ,  = 0 at 
a higher level of the lattice. Note that in the selection of the transformation we used m for the 
amalgamation since interest was in complete neutrality. Had an objective been to study 
neutrality within the subcompositions then m transformations could have replaced the a 
transformations actually used in the modelling. 

There remain many loose ends to our transformed normal package. We hope that 
discussion in the Society tonight will reveal many statistical fingers anxious to tie up, to add to, 
even to repack, the package and to address it for delivery to new areas of application. The 
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FIG.4. Lattice for testing subcompositional invariance and neutrality for subcompositional shares 

following collection of random thoughts on the current state of the package is little more than 
an attempt to draw attention to topics of personal interest. 

(i) We have dealt only with one-way compositions. There are problems where the 
components fall naturally into a two-way classification. It would be of interest to discuss 
problems of this type and the means of analysing them. 

(ii) Of our three elementary transformations in Table 1 we have used only ad and m,. Are 
there any applications where hd is essential? What other transformations between Rd and Sd 
might find applications? To what extent will it be necessary to widen the class of 
transformations, as suggested by Aitchison and Shen (1980), through the Box and Cox (1964) 
approach, with yi = { ( X ~ / X ~ + , ) ~ - com-l}/I, (i = 1, ..., d) and I. being estimated from the 
positional data? 

(iii) Although the immediate relationship to multivariate normality usually ensures the 
carry-over of existing techniques, such as discriminant analysis, to compositional data some 
care is needed to check the validity of this transfer. For example, reduction of the 
compositional dimension through the use of principal components based on 
X = ,)} might seem a hopeful technique until it is realized that trace (C) is not cov { l~g(x(~ ' /x ,+  
invariant under a permutation of the components x,, ..., xd+,.A substantial modification to 
standard principal component analysis is required to restore the desirable invariance property. 

(iv) One embarrassment of the transformed normal approach is the galaxy of possible 
models it offers. For example, in our discussion of right neutrality in Section 6.3 either the 
model (6.2) with P2 = 0, El ,  = 0 or the model C) of Section 7.2 with C12 = 0 could be 
used. Although the problem of choice between models here is no different from similar 
problems in other areas of statistics, tests of these separate classes could prove troublesome 
because of the dimension of the parameter space. One possible line of investigation might be 
the examination of how close the models are in the same way as Aitchison and Shen (1980) 
considered the closeness of logistic-normal and Dirichlet classes. 
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(v) Conjecture about the potential of the transformed normal approach to the analysis of 
the structure of geological compositions is a fascinating subject. Geologists, for example 
Chayes (1971), assure us that the study of correlations in compositions is essential to their 
understanding and yet it appears difficult to pinpoint their precise hypotheses of interest. There 
seems little doubt that the package can play a useful r61e in descriptive geostatistics, such as in 
classification, but can the fundamental hypotheses of compositional structure now be specified 
within the concepts of this paper? 

(vi) Compositional data obviously occur in areas other than the geological and economic 
applications cited here; for example, in developmental biology if we wish to explore how the 
shape (composition) of a linear organism relates to size, the model used for the study of 
compositional invariance will obviously play a r81e. There are also problems with simplex 
sample spaces where the data are not compositions; for example, probabilistic data in S doccur 
in the analysis of subjective performance of inferential tasks (Aitchison, 1981~). More complex 
product sample spaces, such as S dx RCor S dx PC,also arise, as in medical diagnosis (Aitchison 
and Begg, 1976), and succumb to the transformed normal technique. 

(vii) There are still many distributional problems to be resolved. For example, although we 
have in rnNda model for the investigation of complete right neutrality and in a separate rnNd 
model applied to the reversal of the vector x ( ~ + ' )a means of investigating left neutrality, we 
have been unable to find a class of models which will accommodate both forms of neutrality as 
parametric hypotheses and will also have non-neutral members. Thus the battle of the 
statistical knights who search for the holy grail of a parametric class which will include the 
highly structured Dirichlet distributions and all forms of dependent distributions, is obviously 
not over. We hope, however, that transformed normal distributions may sharpen their lances 
and encourage the search. 
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Dr J. A. ANDERSON (University of Newcastle upon Tyne): It gives me great pleasure to be able to 
propose this vote of thanks to Professor Aitchison. He has been absent from our deliberations for too 
long and I am very pleased to welcome him back. Indeed, I am pleased to welcome everyone who made 
journeys of varying difficulty and ingenuity because of the rail strike. Perhaps it emphasizes Professor 
Aitchison's foresight in leaving these shores before the combined misery of the weather, transport 
difficulties and the UGC contrived to give us such an inauspicious start to tonight's proceedings. 

We have been very fortunate tonight in hearing about a breakthrough in the analysis of 
compositional data. Professor Aitchison is to be congratulated on producing a family of distributions 
which enables us not only to test hypotheses about compositional data but also to estimate parameters 
and to fit distributions. He has produced a class of working models for the practitioner and he has 
stimulated our interest in a rather neglected field. As Professor Aitchison has noted, there is a natural 
progression from several strands of his earlier work to the current paper. Like all good ideas, it is obvious 
once we see it. 

It is traditional for the proposer of the vote of thanks to find all the holes in the paper and then 
proceed to tell the audience all about them. In this case that is rather difficult because I admire the paper 
tremendously and find it rather difficult to criticize. 

A major attraction of the paper is that there is one class of models which is intended for quite general 
use. In the paper, a distinction is made between intrinsic and extrinsic analyses. In the former, we are 
concerned solely with compositions. In the latter, the basis is also defined. However, it appears that three 
kinds of sampling plan are possible. Using the notation of the paper, xd+' denotes the composition, w d +' 
the basis and T is the sum of the elements of w d f'.The three kinds of sampling are: 
1. Direct composition samplirzg. Here x d + '  is observed directly so that z d + '  and T are neither available 
nor defined. 
2. Co~zditio~zalsarnplirzg. Here, T is selected and then z d + '  observed. Clearly x d + '  is available but as T is 
fixed, the variation in z d + '  does not reflect genuine random variation. For example, in the Skye lava 
context, the size of a specimen is at choice. 
3. Con~pleterandom samplirzg. Here z d +' is observed from some random mechanism and, hence, x d +' and 
T are available as random variables. For example, in a household expenditure survey, the amounts spent 
under various headings are noted. 

It is not clear whether case 2 above is more suitable for an extrinsic or an intrinsic analysis. More 
seriously, if measurement or observational error is a material factor, then data observed either as case 2 
or case 3 above require modification of the basic transformed normal. 

Another important point for the practitioner is whether his sample compositions contain any zeros. 
This is referred to in Section 7.4 and relates to the difficulty of finding In 0. In some cases there will be no 
or few zeros and the problem is of little moment. For example, there are no zeros in the Skye lava data 
which give a good fit for the transformed normal model. However, some examples fitted in Newcastle 
with moderate numbers of zeros do not fit the transformed normal model so well. Moreover, the fit varies 
drastically with the treatment of the zeros. One possibility is to invoke again the idea of measurement 
error leading to zeros by a round-off process. This could lead to consideration of a left-censored 
distribution. In other situations, the zeros are an intrinsic part of the data, caused perhaps by a mixture of 
distributions or by contamination. I wonder whether the measures outlined in Section 7.4 are really 
powerful enough to deal with the full range of these difficulties. 

I found the treatment of compositional invariance in Section 4.2 rather restrictive. For example, it 
does not appear to be appropriate when measurement error is a feature of the data. Suppose we have an 
unobservable basis u , ,  u,, ...,ud+,, and ui = ki U,i = 1 ,  ...,d+ 1, where U = 23f=f: U i .  Suppose further 
that k = ( k , ,...,kd+,) is constant over all sample points, whereas C' varies randomly over realizations. 
Hence the basis u is compositionally invariant. Now u is unobservable but suppose that there is an 
observable basis w ,  such that wi = u i + e i , i = 1, ...,d +  1. The ei are independent error terms. Since we 
have perturbed a compositionally invariant basis by independent, measurement errors, we might require 
the basis w to be compositionally invariant also. In fact, it is not. To  see this, let .xi = wi/n/ ; then 
xi  = k i + ( e i -  k,  E ) / w  for all i, where W =  Cf:: \ci and E = CfT: ei .  

Clearly .xiand Ware not independent as they should be for compositional invariance. I conclude that 
Professor Aitchison's definition of the latter is not appropriate where measurement error is present. 

This is an important paper and my comments add little to a full and extensive discussion. It gives me 
great pleasure to move this vote of thanks. 
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Professor A. P. DAWID (University College London): I join with Dr Anderson in the pleasure I feel in 
welcoming Professor Aitchison back before us. Once again our Society can benefit from that practised 
elegance which makes the important new ideas he presents appear so obvious that we might have 
thought of them ourselves-but then we did not! 

I have only one quibble with Aitchison's approach, and that concerns his election to treat the 
D = d +  1 constituents of a mixture unsymmetrically: he imposes structure only on the first d, leaving the 
last to be determined "by default". I believe that some additional insight may be gained by retaining a 
completely symmetrical expression throughout. I shall confine attention to the logistic-normal distribu- 
tion (Aitchison and Shen, 1980), generated by the additive logistic transformation. I prefer to express this 
as follows: 

Let Y -ND(v, O), and define X by 

The constant of proportionality is not to depend on i, and can be chosen to be (C e Y ' ) ' ,  summing 
over i from 1 to D, in which case C Xi = 1, and X has a logistic-normal distribution. But, for given X, 
equation (1) does not determine the Y's uniquely, but only up to a (fixed or random) additive constant. In 
particular, the distribution of X remains the same if the parameters v and O are transformed by 
iti+ iNi+a, qiij + qiij +di+6 .  So the price of symmetry is some indeterminacy in the value and 
distribution of Y. I think tkis price is well worth paying. 

The trick in handling (1) is to work only with the corztrasts in the Y's. These are invariant under 
addition of an arbitrary constant, and knowledge of all contrasts is equivalent to knowledge of the ratios 
of the X's and thus to X itself under the condition E X i  = 1, summing over i = I, ...,D. Note that any 
contrast C a i  Y; (where C a i  = 0) in the Y's is equivalent to a log-contrast C ai log X i  in the X's. So, under a 
logistic-normal model, all such log-contrasts are normally distributed, and this is a characterization of 
these distributions. 

An important application of these ideas was made by Lindley (1964), who approximated the Dirichlet 
distribution by noting that, for such a distribution, (1) holds with the Y,  having independent log-gamma 
distributions. A normal approximation to the log-gamma allows the log-contrasts in Dirichlet 
proportions (which completely determine those proportions) to be treated as normally distributed. 

An extension of this approach handles the case of several proportion vectors (Xj), where Xj = (Xij) 
with CiXij- 1. We just put Xij x eY'>,where all the Y's have a jointly normal distribution, and confine 
attention to log-contrasts of the form CaijlogXij, where Cia i j  = 0. The (Xi) might be the various 
components (amalgamation and subcompositions) of a partition; the model allows complex dependence 
both within and between the several vectors of proportions. Again, we have a certain amount of 
acceptable indeterminacy. 

We can go on to introduce a size-variable 7; jointly distributed with the Y's. For example, 
(Y,. ...., Y,, log T) could have a multivariate normal distribution, or we could even take log T = YD or 
23 Y;. Although the Y's can be thought of as a basis for the X's, this can be a purely fictitious one, and 
there is no need to interpret C eY' as the size variable. 

Professor Aitchison recognizes some of the difficulties associated with his asymmetric definition when 
he notes that an attempt to construct principal componets from his Y's suffers from a dependence on 
which constituent is arbitrarily taken as the Dth. In a symmetric formulation, we simply require principal 
directions in the d-dimensional space of contrasts in the Y's; the principal variables are those which attain 
a stationary value for var (C ai y) under the constraints C ai = 0, C a; = 1. Equivalently, a straightfor- 
ward principal components analysis may be performed on the variables (K),  where W,= Y,-P = Zi-Z 
with Z i  = logX,. To  avoid singularity, the covariance matrix Y of W may be transformed by 
$,j-,$,j+ a. This will introduce an extra principal variable C K ,  which may be ignored. 

Another advantage of the formulation (1) is that, for certain problems, if we proceed as if we knew the 
Y's, we may discover that the quantities we have to calculate are unaffected by the indeterminacy and so 
can be calculated from the X's alone. In this case, the Reductiorz Prirzciple (Dawid, 1977) asserts that we 
should make the same inference from the X's as from the Y's. For example, suppose we have p samples, 
yielding Xij as the portion of constituent i in sample j. One possible model is Xij K e"~, with 

y j-N(v,~ ,02) all independently. 

We might wish to test the hypothesis that the samples come from a single population, so that the (Xi) 
are identically distributed. Owing to the arbitrary constant in the Y's for each j ,  this has to be expressed 
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as: itijhas the form xi+pj .  In other words, for the Y's this is the hypothesis of no interactiorz between 
sample and constituent. Assuming, for simplicity, that o2 is known, we would test this by referrring 
Cij(xj- x , - Y j +  Y,,)2/02 to ,&-,,,,-,,. But the test statistic is invariant under the indeterminacy 
transformations Y;j+Y..+cj:, and so is calculable from the X's. In fact, it is just 
Z i j ( Z i j - Z i , - Z , j + Z , , ) 2 1 ~ 2 ,wlth Z i j  = logXij. So the homogeneity hypothesis is tested by referring this 
quantity to its null x2-distribution. 

If the hypothesis is accepted, the estimate of the (common) proportion of constituent i, based on least- 
squares estimation in Y-space, is found by taking the geometric mean of the p sample proportions, and 
renormalizing so that the estimates sum to 1. 

Another important application is to account for several components of variation in compositional 
data. Thus for the Skye lava data, we might measure proportions of constituents (i) in several samples (k) 
taken in various areas (j).We could take Xijk K e " ~ ~ ,with ZiXij, = 1, and a possible model 

where cij- N(0, o;),qijk-(O, 03,all independently. (Note that the model must include the "indeterminacy 
constants" (h,,). This is analogous to a similar requirement on log-linear models for multinomial 
distributions when using a Poisson representation.) We find that the usual estimates of of, 0:: and 
contrasts in the (ai) are unaffected by the indeterminacy, and hence are calculable from the X's. Agaln, we 
can just replace xjkby l ~ g X , ~ ,  as if the logXljk satisfied the model (2), in the formulae, and proceed 
ignoring the constraints. 

I have said more than enough to demonstrate that the ideas that Professor Aitchison has put before 
us tonight have been a great stimulus to at least one person. I am sure that all of you will agree with me 
that Professor Aitchison deserves a very warm vote of thanks, which I have great pleasure in seconding. 

The vote of thanks was passed by acclamation. 

Professor G. J. GOODHARDT(City University Business School): One of the great values to the applied 
statistician of papers of this kind is that they provide us with a language in which we can set down our 
previously rather vague problems and difficulties in more precise terms and so communicate them more 
readily to the mathematical experts. For that, in particular, I welcome this evening's paper, and I would 
like to set out a problem I have to see if anyone can help. 

It arises in the study of consumer choice behaviour where I am concerned to model the mix of brands 
of a product that people buy over a period. A fruitful model has been to postulate that each consumer has 
a personal vector of probabilities (adding to one) specifying the probability that they will buy each of the 
brands conditional on their making some purchase. These probabilities themselves are, of course, 
unobservable. The data consist of the mixed multinomial distribution of the number of purchases of each 
brand made in a particular time period. The problem is to specify the distribution of this probability 
vector over the population of consumers. 

In many markets where consumers exercise a simple choice between the available brands a Dirichlet 
distribution provides a very good description of the data and all the independence properties that that 
implies make sense. However, in some markets certain groups of similar brands seem to cluster together 
and pairs of brands within a cluster are more likely both to be bought by the same consumers than pairs 
in different clusters. Such markets are referred to in the marketing literature as partitioned, and that word 
has much the same connotation as in Professor Aitchison's paper. I would like to fit to such markets a 
complex Dirichlet model in which the partition is of Dirichlet form and each of the subcompositions is 
also of Dirichlet form. In the notation of the paper we have a partition: 

P ( x ' ~ +l') = (t; S1, . . . , Sk+ ,), 

t is of form Dk(y), 

s, is of form Ddi(pj), j = 1, ..., k + 1 
Now, if 

T(Pj) = yj, j =  1, ..., k + l  
then 

x ' ~ +  is of form Dd(u) 

and there is no partitioning at all in the marketing sense 
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The kinds of problems I will have to address are: 
(i) In particular cases, can the more complex, partitioned model be justified compared with the simpler, 
non-partitioned model? 
(ii) A particular partitioning will often be suggested a priori, but can we derive a partitioning from the 
data? 
(iii) Are there ways of deciding between alternative a priori partitionings? This relates to the so-called 
"hierarchy of choice". For example, in the canned soup market where consumers choose between, say, 
Heinz Tomato Soup and Campbell's Chicken Soup, whether the partitioning is by brand or by flavour 
may be an indication of whether consumers first decide on a brand and then choose a flavour or vice 
versa. 

Professor Aitchison may be surprised to see his lofty ideas applied to such mundane problems but the 
breadth of application is a tribute to the value of his contribution. One of the advantages of working in 
Consumer Research is that there is a wealth of routinely collected data that is available for more 
sophisticated analysis, and I am grateful to our author tonight for providing further tools. 

Dr R. J. HOWARTH(Imperial College, Department of Geology): Speaking as a geologist, I am 
particularly pleased that Professor Aitchison should address himself to an area which has long caused us 
interpretational problems. We are frequently plagued by the facts that we usually have to accept as our 
statistical sample a suite of specimens gathered from where the rocks happen to be accessible and that the 
chemical compositions of the major rock-forming minerals or chemical elements are traditionally 
expressed in terms of percentages. In addition, nature has made the behaviour of rock-forming magma 
systems very difficult to understand and we often use the variation in chemical compositions as clues to 
the understanding of fundamental mechanisms. The use of methods such as the AFM ternary diagram, 
discussed in the paper, is in part as an aid to the visualization of high-dimensional space, but also because 
it is conceptually easier to relate to mineralogical changes in the rock compositions than inspection of the 
raw data. 

The geologist is often interested in three main aspects of rock composition: description of the overall 
variation, leading perhaps to questions such as "are these two suites of specimens actually distinct, or 
could they have come from the same parent magma suite?" relating chemical composition to the known 
mineralogy of the rocks; and investigation of the statistical significance of inter-element or other multi- 
attribute correlations (generally based on the Pearson linear coefficient in geological studies). The 
author's recent contribution to the investigation of null correlations of proportions should be of great 
assistance to geological studies, particularly in petrological investigations such as those exemplified by 
the Skye lavas study. 

It is particularly interesting that the confidence bound on the Skye lavas AFM diagram (Fig. 1) 
projects as a concave enclosing envelope, since in many traditional petrological studies, a petrologist 
would draw a line through the median line of this envelope and interpret it as representing a "trend" of 
chemical (compositional) variation from one end-member of extreme composition to another, in terms of 
a continuous changing suite of rocks representing chemical evolution as a product of magmatic activity. 
Its representation in terms of a multivariate normal distribution within the simplex will necessitate 
rethinking of at least some geological hypotheses. 

The relatively small number of geologists who have used statistical techniques to study compositional 
information have generally used empirical approaches such as principal components or cluster analysis 
methods and, more recently, ridge regression in an attempt to simplify the understanding of large multi- 
measurement data sets in geological studies. I would like to thank Professor Aitchison for his 
contribution to the statistical methodology at our disposal and encourage him to take a continuing 
interest in the problems of the earth sciences. 

Professor M. A. STEPHENS (Simon Fraser University): Professor Aitchison will, I am sure, receive 
congratulations on his paper, and I am pleased to add my own. The subject interests me greatly since I 
have been working with data of this type, which I have called continuous proportions. These data 
consisted of activity patterns of students; in the notation of the present paper, component x(i) of a vector 
x was the proportion of time spent in activity i. There were many students, and many activities, and 
interest focused on whether or not the activity patterns differed between groups of students; for example, 
between the sexes, or between disciplines. In the analysis, I transformed vector x to a vector v with 
v(i) = J(x(i)); the constraint that the sum of x(i) is 1 translates into making v a vector with endpoint on 
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the hypersphere of unit radius. Then distributions on the hypersphere are available to describe the data; 
for example, for activity patterns I used the p-dimensional von Mises distribution. A very simple ANOVA 

technique first developed by Watson (1956) can be used to analyse differences between subpopulations. 
The analysis is illustrated in Stephens (1980, 1982). 

So I am one of those statisticians mentioned briefly in Section 8, whose fingers are anxious to repack 
the package; some new areas for delivery are also mentioned in Stephens (1980). But the two methods of 
analysis should be complementary, and I hope to make some comparisons using Professor Aitchison's 
data sets. 

In the transformations to multivariate normality, the constraint on the proportions gets submerged, 
to bob up, presumably, in the covariance structure of the multivariate normal distribution; this can be 
handled in the analysis, once the multivariate normal can be accepted as the induced distribution. The 
techniques especially lend themslves to the questions of compositional independence which are raised 
here, and to regression on an external variable. Regression on a sphere is difficult, and an unexpected 
bonus of the paper is that it suggests techniques which might be tried also with directional data. One 
worry is that the transformations seem to have worked almost too well, judging from the goodness-of-fit 
tests of Section 3; has the hidden constraint affected these tests to give overly good results? It would be 
interesting to have further details. 

Dr N. I. FISHER (C.S.I.R.O. Division of Mathematics and Statistics, Sydney, Australia): I should like 
to congratulate the speaker on his substantial contribution to a most vexing problem-the analysis and 
interpretation of compositional data. There are two qualitatively different comments I wish to make. 

The first relates to modelling. Clearly, the speaker has been very successful in fitting simple models to 
normal-transformed data; the counterpart to the simplicity of these models is the complexity of 
corresponding relationships amongst the untransformed components. This is hardly an original 
observation. Yet, there are certain aromas rising from the murky potage of compositional data problems 
which are redolent of some aspects of problems with directional data, and herein lies the point. When 
attacking these latter problems, one is ultimately better off working within the confines of the original 
geometry (of the circle, sphere, cylinder, ...), and with techniques particular thereto (vector methods, etc.), 
in terms of perceiving simple underlying ideas and of modelling them in a natural way. Mapping from, 
say, the sphere into the plane, and then back, rarely produces these elements, and usually introduces 
unfortunate distortion. I still hold out some hope that simple models of dependence can be found, 
peculiar to the simplex (thus revealing myself as a page, if not a knight-see Section 8(vii)). Meanwhile, I 
shall analyse data with the normal-transform methods. 

The second comment concerns a common problem with geochemical data. When a rock sample is 
analysed for several elements, different techniques may be used for measuring minor or trace elements 
from those used for major elements; correspondingly, different sorts of precision attach to the various 
components. One would hope that the methods used to analyse these data would be sturdy enough to be 
relatively unaffected by such abuses. 

Professor C.  E. V. LESER (University of Leeds): If this very interesting analysis is to  be applied to 
mutually exclusive and exhaustive commodity groups, it seems surprising that the simplex is not so 
defined that x, +...+.x, = 1, in other words that the starting point is the "augmented set". The present 
treatment introduces an asymmetry, which might be justified if we were dealing with proportions of 
income rather than total expenditure, so that x,,, represents savings; however, x,,, would in this case 
not necessarily be positive or even non-negative. 

As the budget share approach represents an alternative to demand equations with logarithms of 
commodity group expenditures (or logs of expenditure shares) as dependent variables, it is not clear from 
the econometric point of view why a logarithmic transformation should then be adopted not only for 
income but also for budget shares. Some advantages of using budget shares rather than expenditures or 
their logs, which were mentioned in Leser (1963) are that zero expenditures and combination of 
commodity groups present no problems. 

Dr A. C. ATKINSON (Imperial College, London): Like several other speakers this evening, I would like 
to welcome Professor Aitchison back to these shores and to congratulate him on an interesting and 
important paper. 



166 Discussion of Professor Aitchison's Paper [No. 2, 

The models that we have heard about this evening are concerned with transformations from the 
simplex into more tractable spaces. As a couple of the comments suggest, there are other transformations 
than those involving logarithms and exponentials. Some time ago, in work on the design of experiments 
which led to optimization over the simplex, I used the trigonometric transformation x,  = sin2B,, 
x, = cos20, sin2Q2, etc. (Atkinson, 1969). This produces a space which is Euclidean, but with the 
disadvantage that the transformation is not one to one. An advantage of the transformation is that the 
problem with zero responses does not arise. 

Professor Aitchison has called his responses x. A related problem that arises where the x's sum to 1 is 
in experiments with mixtures. In his first example it might be that the chemical compositions of lava in 
the island of Skye are measured, but that interest is in some univariate response I: which might be the 
hardness of the rock. The problem of suitable models for such data does not seem to have been 
completely solved. The usual models, which are polynomial in x, are described in detail by Cornell (1981). 
The models d o  not really seem to describe the very rapid changes that there may be in the response 
towards the edge of the simplex. Gunpowder with only one component is a very different substance from 
a mixture of saltpetre, carbon and sulphur. One suggestion for an alternative model (Draper and St John, 
1977; St John and Draper, 1977) is to introduce inverse terms into the model. These lead to the kind of 
problems with zero components about which we have heard this evening. I would be interested to know 
whether Professor Aitchison has any advice on how to deal with this problem. 

Professor D. R. Cox (Imperial College, London): The paper describes an important and flexible way 
of representing and understanding distributions of compositional data. It would be interesting to know 
more about simple stochastic models for such systems. These models would presumably have to be fairly 
specific to particular applications. 

One such is the mixing and blending of textile fibres, say of different colours (Cox, 1954). Here the 
proportions of interest are the proportions, by weight, surface area or number, of the different colours as 
measured at a sample of yarn cross-sections. There is a base-line model according to which the fibres of 
different colours are arranged in independent Poisson processes. Such "ideal" mixing is not achievable 
and to a certain extent departures from the Poisson model can be interpreted physically. 

Rather similar mixing problems arise in several chemical engineering contexts. 

The following contributions were received in writing, after the meeting. 

Professor J. N. DARROCH(Flinders University): In this and other papers Professor Aitchison has 
greatly expanded both the theory of distributions on the simplex and the range of possible statistical 
analyses of compositional data. 

The independence problems at  the core of previous work are those which are fully manifested when 
d = 2, the problem there being to define independence of x l ,x2 ,  where x, >O, x 2 > 0 ,  x ,  + x 2  < 1. This 
is preferably done in such a way that, when the distribution of (xl ,x2)  is concentrated near (0, O), the 
resulting simplex independence is approximately the same as ordinary, rectangular independence. The 
main candidates for simplex independence have been neutrality and the more general F-independence, 
the latter being applicable to the simplex lattice as well as to the simplex. Once defined for d = 2, these 
concepts are easily extended to cover distributions on Sdfor d>2.  Work in this area has been 
discouraged by the realization that there are almost certainly no nice parametric families of distributions 
on the simplex which can handle dependence as well as independence. 

Professor Aitchison has brought new life to the subject by providing many ways of adapting 
multivariate normality to the simplex and by proposing new definitions of independence, notably 
subcompositional independence. By conceiving the basic variables to be ratios of x's, instead of x's, he 
has created new fields for problem formulation and data analysis. However his ideas require d >  3 for 
their proper manifestation. They have very little application to the case of d = 2 and the above- 
mentioned lack of nice families remains. 

It is possibly time to acknowledge that while there is a shortage of nice parametric families on the 
simplex, that is ones for which the normalization constant of the density function is an explicit, tractable 
function of the unknown parameters, there is an infinite choice of not-nice parametric families. There is 
no evidence that Nature confines her attention to nice families and computational constraints no longer 
compel us to do so. 
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Mr BEST J~RGESSEN (Odense University): The problem of zero components has been touched upon 
by both Professor Aitchison and some of the discussants, and is clearly an important one. One way to 
model this phenomenon is by taking the basis to have a distribution for which the components have a 
mass probability at zero. If, in particular, the components are independent, a model for basis 
independence is obtained. 

One interesting model of the latter kind is obtained by taking the distribution of the reciprocal of a 
component of the basis to have the so-called defective inverse Gaussian distribution (Whitmore, 1978), 
with probability density function 

(a2/2nct~r3)* - 0 <x < x,exp (-(a r i ~ ) ~ / 2 w x ) ,
f (x) = 

1-exp (2a6/cf1), x =  x. 

Since the defective inverse Gaussian distribution has a mass probability at infinity, the components have 
a mass probability at zero. An important property of this model is that it has a scale parameter, so that 
the distribution of the logarithm has a location pa1,ameter. It follows that this model can be analysed 
analogously to the way described by Professor Dawid, that is, if we have a linear model for the location 
parameters, as we are only interested in contrasts, we may analyse the composition vector as though it 
were the basis from which it originated. 

Dr J. T. KENT (University of Leeds): I would like to say a few words about a multivariate gamma 
distribution which can be used to define a generalization of the Dirichlet distribution. Suppose initially 
that the index parameters r, are integer multiples of 4 and set n, = 2xJ,j  = 1, ...,p +  I .  Let Z = (o,,) be a 
positive definite matrix and consider a sequence u,, u,, . . .  from the p + 1 dimensional normal distribution 
with mean 0 and covariance matrix Z. Denote the components of ui by u,, and define a p + 1 dimensional 
vector w'"+" by 

" I  

rvj= 1LL;, j =  1,...,p + l .  
i =  1 

Each u,has a gamma distribution with index r j  and scale ( 2 0 , ~ ) '  so that w'"+" can be said to have a 
multivariate gamma distribution. (The case where all the n, are equal is well known; see Krishnamoorthy 
and Parthasarathy, 1951.) Thus the composition based on w'~") ,  x'"+" = C ( W ' ~ - ' ) )gives a gen-
eralization of the Dirichlet distribution. In particular, if Z is a multiple of the identity matrix, then x'"+ ' )  

has a standard Dirichlet distribution. 
Of course, a family of distributions where the r, are restricted to discrete values has limited usefulness. 

Thus it is of interest to note that if Z is assumed to be a Markoz: matrix (i.e. C ' is tri-diagonal), then this 
multivariate gamma distribution can be defined for all real-caltled indices rj>O; see the infinite 
divisibility properties in Griffiths (1970). 

Unfortunately, it does not seem that the generalization of the Dirichlet distribution arising from this 
construction will be very tractable. Also, the Markov assumption on Z implies that there is a preferred 
ordering of the variables. 

Professor TOM LEOSARD (University of Wisconsin-Madison): My comments on this interesting and 
stimulating paper could be viewed as supplementing the ideas expressed in Section 4.3. 

Suppose there exists a basis w'" -" = (u,,...,wd+ ,) where P = (log rr.,, ...,log rvd- possesses a 
multivariate normal distribution with mean vector p and covariance matrix C. Rather then working with 
a specific set of d log-contrasts, it is often simpler to work with d +  1 multivariate logits (only identified up 
to the addition of the same scalar to each logit) and to write 

d - 1 

.uj = ei>' 1e;g ( j= 1, ...,d + I ) .  (1) 
q =  1 

Then the distribution of the logit vector may be written as 

where e d _ , is the appropriate unit vector, and q is a scalar random variable possessing any distribution 
and not necessarily independent of P. This arbitrary choice of distribution for will not affect the 
distribution of the conlposition as q cancels out in (1). 
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Note that if p satisfies (2) for some q, then (2) will also be satisfied by P+&ed+,  for any random variable 
E. Therefore "basis independence" can be redefined by asking "Is there a random variable E such that a 
basis p can be expressed as the sum of Eed+, and a random vector with independent elements?" 

Under multivariate normal assumptions, this definition is equivalent to enquiring whether the 
covariance matrix of p can be expressed in the form 

where c = (c,, c,, ...,dd+ for some choices of the variances a2, a:, ...,a:,, and the covariances 
c1, ...,cd+1. 

The covariance structure (3) implies that with y = (logx,,...,logx,+l)T, any d x 1 vector 
z = AP = Ay of log contrasts possesses covariance structure 

a similar conclusion to Professor Aitchison's result in (4.1) and (5.1). 
There are no constraints on the parameters appearing in (4) and their maximum likelihood estimates 

may be obtained explicitly under the null hypothesis; they depend upon the observed z's and the 
likelihood ratio possesses the property of invariance under appropriate choices of A. It therefore seems 
that basis independence leads to simpler statistical procedures then complete subcompositional 
independence. Moreover, I find the concept of basis independence to be more appealing; it is easy enough 
to generalize this idea, e.g. to independence of partitions. 

Professor C. A. B. SMITH (Galton Laboratory, University College London): Professor Aitchison is 
interested in knowing what transformations have been applied to proportions xi. Fisher (1947) used the 
following one in an estimation problem, although he does not explicitly say so: 

xi = (exp yi)/Xj exp yj. 

(N.B. Fisher's notation is xi for the yi used here, and R,, R,, etc., for the xi used here.) The advantage 
from Fisher's point of view is that the relations 

zxi/ayj = xi(aij -xj) 

enable him to use the yi as an intermediate step in the estimation of the xi. (But there are alternative 
simpler ways of tackling the problem considered by Fisher.) 

Mr ROBIN THOMPSON (ARC Unit of Statistics, University of Edinburgh): With regard to the use 
of principal components I wonder why E ,  = cov log(^'^+'))) cannot be used to generate the princi- 
pal components? If the invariance property is necessary then E, = cov{log(x~d+l~/h)) ,where 
(d+ 1) h = X logx,, summing over i from 1 to d + 1, can be used to generate principal components of E l  
with the required invariance property. Or  has Professor Aitchison found the need for other non-linear 
restrictions on the components? 

Professor JAMES E. MOSIMAXN,(National Institutes of Health, Bethesda, Maryland, USA): My 
reaction to this paper is a mixed one. On the one hand, the paper is stimulating and clearly presented in a 
fashion which generates interest in the analysis of scale-free dimensionless data. On the other hand, some 
aspects of the paper represent a step backwards. For example, most of the definitions of independence 
offered are applicable to any positive random vector, not just to proportions over the simplex. To  attach 
these definitions solely to proportions and the simplex, as done in this paper, is to seriously misdirect 
attention from the crucial question which both statistician and scientist must face when confronted with 
dimensionless scale-free observations; namely, what size variables are scientifically pertinent to the 
investigation? The importance of such a question when scale information is available is revealed by 
statement (2) below, and the question remains equally important when scale information is lacking 
(statement (5)). In contrast the particular expression of the data as proportions over the simplex is of 
virtually no importance in questions of independence (statements (I), (6) and (7)). By not explicitly 
treating such issues an important point is missed; namely, that previous work on transformations to the 
normal class in the analysis of size and shape variables (Mosimann, 1975a, 1978, 1979) is just as 
applicable to the proportions over the simplex as to any type of "shape vector", and that the distribution 
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of proportions in such work is the "additive logistic normal" of this paper. T o  explain these comments, I 
would like to show how the present paper is related to published work on size and shape variables. 

Using the author's notation with w of P d + '  a positive vector and T(w) = C wi, then the vector of 
proportions can be denoted by w/T(w). Similarly if we divide each co-ordinate of w by the last co- 
ordinate, w,+ ,,we obtain a vector of ratios w / ~ , +  ,. Both such vectors are "shape vectors" and both T(w) 
and w,+, are "size variables". (A size variable G is any positive-valued function, homogeneous of degree 
1, from P d + '  to P 1  (always onto), and a shape vector is any function from P d + '  to P d + '  (never onto) 
given by w/G(w).) If proportions are to make scientific sense, each co-ordinate of w will be measured in the 
same scale (length, count, ...) and expressed in the same units (millimetres, dozens, ...).When this is true, a 
size variable will have the same scale and units as each co-ordinate of w. In contrast, the co-ordinates of 
the shape vector will be dimensionless and scale-free. These scale-free co-ordinates may be statistically 
associated with size, and the study of such associations is part of the field of allometry (Huxley, 1932; 
Reeve and Huxley, 1945; Gould, 1977, and references). 

A number of results for size and shape variables (Mosimann, 1970, 1975a, b) are directly related to the 
present paper. A shape vector of a given type (say, w/T(w)) is linked by an invertible .function with any 
other type of shape vector (say w/w,+ ,). Therefore (1) if some random shape vector is statistically 
independent of a random variable h, then every shape vector is also independent of h. Thus we can speak 
unambiguously of the independence of the class "shape" and size; that is of "isometry" with respect to 
size. Another important result is (2) That "shape" can be statistically independent of at most one size 
variable. (The only exceptions are scalar multiples of that same size variable.) The choice of a size variable 
is important. The addition (or deletion) of a measurement from w results immediately in the question: 
How is the independence of d-dimensional shape (d-shape) and d-size related to the independence of 
(d+ 1)-shape and (d + 1)-size? Such a question led to the definition of "regular sequences" of size variables 
(Mosimann, 1975a, b). Examples of regular sequences are: S, = Ci wi (additive size variables); C, = w, (co- 
ordinate size variables); 

(multiplicative or geometric mean, size variables); j = 1, ...,d + 1. There are many such sequences. Some 
important results (Mosimann, 1975a, b) for a regular sequence GI, ...,G,+, are (3) there is an invertible 
function linking the vector of contiguous ratios G2/G,, ...,G,+,/G, with any shape vector. (4) The 
statistical independence of d-shape and the additive ratio S,+ ,/S, is precisely the concept of a neutral 
proportion (from the right), and the mutual independence of the size-ratios S2/S,, ...,S,+ ,ISd is precisely 
that of complete neutrality (from the right) as presented (from the left) in Connor and Mosimann (1969). 
(Definitions of neutrality with respect to any regular sequence (additive, co-ordinate, multiplicative, etc.) 
follow naturally, but as we see next there can be at most one kind of neutrality at a time). Thus (5) d-shape 
can be independent of at most one ratio G,+ ,/G, where the G's are regular. Thus if {Hj} and {G,} are both 
regular sequences, d-shape independent of G,+ ,/G, implies d-shape is not independent of H,+ ,/H,. Next 
(6) the size ratios of w and of any associated shape vector are the same. Therefore independence 
properties based on the size ratios of a particular regular sequence are invariant over all shape vectors and 
w (Mosimann, 1975b, p. 233). They are applicable to any positive random vector. Finally, although a 
shape vector w/G(w) is intrinsically constrained so that its size G is 1 (since G(w/G(w)) = G(w)/G(w)= 1 by 
homogeneity) the form of the constraint does not affect the independence or lack thereof of its size ratios. 
Therefore (7) in an essential way independence concepts based on size-ratios do not depend on the particular 
constraint used for a given shape vector. 

Now consider the author's definition of "compositional invariance" (additive isometry; shape 
independent of T(w) = S,, ,) in Section 4.2. Here the crucial choice is that of the size variable (see 
statement (2) above), not that the scale-free data are expressed as proportions (see statement (1)). The 
definition implies a clear interest in additive size. On the other hand, the definition of the additive logistic 
normal reflects no such interest. In fact the author's "additive logistic normal" distribution is nothing 
more than the distribution of the proportion vector w/T(w) associated with a ratio vector w/w,+, which 
has a multivariate lognormal distribution, and no additive neutrality can occur in a proportion vector 
with this distribution, nor in any of its subcomponents (Mosimann, 1975b, p. 224). The distribution is 
eminently suitable for testing multiplicative or co-ordinate (or any loglinear size) neutrality and isometry. 
It has been exploited in a variety of scientific analyses (Mosimann, 1975a, turtle morphology and human 
limb bones; 1978, schistosome egg counts; 1979, geographic variation in blackbirds). Thus I am myself 
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surprised at the author's surprise in believing (Section 2.3) that the notion of transformation to normality 
has not emerged in studies of proportions. 

The author's multiplicative logistic distribution allows the testing of additive neutrality in a given 
direction. This distribution results when logs of additive size ratios minus one (of the reverse permutation 
vector) are assumed to be normal. Caution is necessary since if even slight additive ratio independence 
should occur in more than one direction, Dirichlet distributions may result (James and Mosimann, 1980). 
Thus consistency problems abound in such applications, and the search for a good class which contains 
the Dirichlet and within which additive neutrality can be studied should continue. 

It should also be noted that none of the points made above depend in any essential way on w being an 
"open" or unconstrained vector. In problems where the researcher cannot specify such a w, there are still 
invertible functions relating shape vectors and the size ratios from a regular sequence. The invariance of 
the size ratios still applies. 

In closing I want to thank the author for his stimulating paper and to endorse his search for 
transformations to normality. 

Mr R. L. OBEXCHAIX (Bell Laboratories. USA): Studying methods for fitting distributions to simplex 
data was one of the first projects that I undertook when I finished graduate school and joined Bell 
Laboratories in 1969. Since I had been a student of N. L. Johnson in Chapel Hill and since the aNd 
distributions I studied could be viewed as generalizations of his S ,  curves, I sent a manuscript to 
Professor Johnson in 1970. I was initially fascinated by the observation that, unlike Dirichlet 
distributions, certain pairs of proportions can be positively correlated in the aNd family. But I ultimately 
became discouraged by what Aitchison refers to as "the problem of zero components" and, thus, never 
attempted to publish my simplex work. 

I personally view the occurrence of zero components as almost fatal to the fitting of aNd distributions 
to simplex data. After all, an aNd density must approach zero, with "high contact", at the boundary of Sd; 
observing a zero component is not only an event of probability zero but also an impossible event. And 
moving zero components too small an amount away from the boundary can cause the fitted density to 
have a local or even global mode in this region. Professor Aitchison's "sensitivity analysis' can be used to 
avoid modes near a boundary. But, for data sets with many zeros, choices among alternative approaches 
seem somewhat ad hoc. 

Professor R. L. PLACKETT(University of Newcastle upon Tyne): John Aitchison's paper is 
characterized by his usual originality and elegance. It is another illustration of the rule that the best 
developments in statistical theory have come in answer to practical needs. 

He points out in Section 4.2 that the compositions arise from actual bases in the form of discrete or 
continuous measurements. The total size may be a count, for example of pebbles or of expenditure in 
units of Hong Kong cents. There is consequently some interest in comparing the transformed normal 
class f N d  with multinomial distributions .Xbased on probabilities p,,p,, ...,pd+,  which are fixed for a 
given total size but may vary when the size does. Asymptotically, there is no conflict betweenfNd and M 
because the sample percentages under have a singular multivariate normal distribution which is 
transformed into a non-singular Nd by any of the methods to which he refers in Section 2.3. The same 
result holds when the multinomial probabilities vary in a fixed distribution, and so is not dependent on 
JH in particular. 

The class f~~may also have something to offer in the analysis of individuals grouped into families 
(Altham, 1976; Plackett and Paul, 1978). Several of the models here can be generated from moments of 
Dirichlet distributions, and a natural extension would be to consider the corresponding moments offNd. 
Explicit moments seem not so readily available as for Dirichlet but the effort could be worthwhile in view 
of the variety of shapes disclosed by Fig. 1. The applications of such models to contingency tables need to 
take account of a possible ordering in the categories. No such orderings appear in the examples from 
geology and consumer demand. Two questions arise: first, whether examples exist in which the categories 
of a composition are ordered; and secondly, what type of transformed distributions would then supply an 
appropriate model. 

The need to deal with sampling zeros is another challenge to the practical statistician to do better in 
his modelling. It looks as if a distribution over the boundary of the simplex is required as well as one 
which accounts for the interior. 
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Dr D. A. PREECE, Dr R. WEBSTER and Dr J. A. CATT (Rothamsted Experimental Station): Relations 
among the proportions of rock and soil constituents are important to earth scientists. They are used for 
matching and classifying complex natural materials, and for identifying spatial trends that reflect 
temporal trends in the processes of rock and soil formation. Earth scientists must therefore have reliable 
estimates of interrelationships, and are often aware of the limitations of correlation coefficients. 
Professor Aitchison's paper arouses interest as it seems to offer a new method without these limitations. 
Nevertheless some aspects worry us, and we should value Professor Aitchison's comments and advice. 

The first aspect concerns the errors in original data. Professor Aitchison's Example 1 is fairly typical 
of rock analyses using X-ray fluorescence spectrometry (XRF). Percentages of ten constituents are 
recorded, and their sums range from 96.97 to 100.66 per cent with an average of 98.81 per cent. The 
discrepancies from 100 per cent are in most specimens larger than the total amounts of P,O, and MnO, 
and they arise for two reasons: errors in the determinations, and the fact that not all the constituents are 
determined. Further, the determination error for any one constituent using XRF is approximately 
proportional to its total amount. So the error in the determination of SiO, is likely to be larger than the 
total amount of P,O, or MnO. Other problems arise with particle size analysis (Example 3). Here the 
percentages of coarse fractions, i.e. sand, are determined by sieving; those for the finer ones, i.e. silt and 
clay, are obtained by sedimentation and so have different errors. Further, the percentage of one of the 
constituents, namely silt, is sometimes calculated as the difference between 100 per cent and the sum of 
the percentages of the others. If this last percentage is small then the errors in the other determinations 
will make its estimate subject to a large proportionate error. Professor Aitchison's proposed method 
seems not to allow for such differences in errors; we should like to know whether it can be made to do so, 
and to what extent any failure to do so is likely to matter in practice. 

One of the aims of analysis is to identify real associations while avoiding drawing unwarranted 
conclusions, especially from negative correlation coefficients that are almost inevitable for major 
constituents. Correlation coefficients calculated for minor components of mixtures, or even between 
some minor and major components, may well provide useful information. In fact, any strong correlations 
among constituents in the Skye lavas (Example 1) are likely to reflect changes in the composition of the 
molten material with time, some elements becoming enriched together while others are depleted together 
as its composition changes. In the correlation matrix (Table D l )  for Example 1, some correlations stand 

TABLE D l  

Correlation coeflcienrs for the 32 Skye 1nz.n specimens of Thompson er al. (1972) 


SiO, 
A1203 

Fe,O, 
MgO -0.05 
CaO -0.32 -0.54 
Na,O +0.53 -0.14 -0.40 
K,O -0.47 -0.45 +0.14 -0.04 
TiO, +0.87 +0.06 -042 +0.32 -0.42 
p205 +0,78 -0.28 -0.30 +0.47 +0.02 + 0  84 
MnO +0.53 -0.57 +0.46 +0.02 -0.05 +0.39 +0.54 

Fe,O, MgO CaO Na,O K,O TiO, P,O, MnO 

out as being large and making sound geological sense. For example, the large positive correlation 
between Fe,O, and TiO, almost certainly results from both these elements occurring mainly in the 
mineral titaniferous magnetite. The large negative correlation between A1,0, and MgO probably reflects 
early crystallization of magnesium olivine (which contains no A1,0,) from the molten rock material. 
Other large correlations exist and need to be explained. All these relationships suggest that the 
correlation matrix, despite its perils, can be a valuable tool for exploring compositional data with many 
constituents. Again, we should value Professor Aitchison's comments. 

We should also be glad if Professor Aitchison could explain his method further, for geologists 
unfamiliar with advanced mathematics, by giving details of the interpretation of one of his examples as a 
model for geologists t o  use with other sets of data. 
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Dr D. M. TITTERINGTOX (University of Glasgow): The inability of t& Dirichlet distribution to 
represent non-spurious correlations among probabilities has caused a problem in developing methods, 
for the smoothing of multinomial data, more sophisticated than those referred to briefly in Section 7.4. If 
r E S k ,or its closure, denotes a set of relative frequencies,, with expected value 0, and if c E S k  is given then, 
for 0 < 1 <  1, 

represents a smoothing of r towards c. The value of 1can be chosen to minimize, for instance, a mean 
squared error criterion and, ultimately, a data-based procedure can be developed with properties 
superior to those of r. There is, as hinted by the form of (*), a strong Bayesian connection, with c 
representing a prior mean for 0 and 1 indicating the relative importance of the data. The connection is 
complete if the prior distribution for 0 is Dirichlet (Fienberg and Holland, 1973). 

The problem arises if we want to build in some feeling of prior correlations among the components of 
0. If, for instance, our objective is to smooth relative frequencies where the cells correspond to categories 
ordered in the sense that the probabilities on nearby cells are likely to be similar, then we should like this 
to be reflected in the prior. An obvious example is histogram data. As mentioned in tonight's paper, 
Leonard (1973) developed the logistic-Normal approach to the problem and his Bayesian analysis can be 
modified to give a smoothing formula of the type 

where 6,= log {8,/dk+,}, yi = log {ri /rk+ i = 1, ...,k, X denotes the data covariance matrix and w,, Eo 
contain prior means and correlations. A data-based choice for 1can be made, as with (*). This formula is 
based on the approximation y- Nk. If, instead, we consider the frequency data, n, say,, and not the 
relative frequencies, and take y, = J n ,  to be a set of independent N(w, ,+) random variables, where 
wi K dB,, i = 1, ...,k +  1, then the above formula gives an alternative smoothing procedure with 
X = +Ik+,.Prior correlations can be chosen to reflect the ordering of the categories and a natural choice 
for (w,), is 

k +  1 

( ~ 0 1 ,= 1 nj/(k+ 11,
j =  1 

for each i. 
A study of these techniques has shown that the smoothing certainly helped although, for the examples 

looked at, a kernel-based method could usually be found which was better (Titterington and Bowman, 
1982). 

I have been rather lazy in not checking the literature but I wonder if multivariate use of the Normal 
approximation to the Poisson, using the square root transformation, has proved, or might prove, useful, 
at least in extrinsic analysis. A nice feature of being able to use Normal-based methods is the availability 
of techniques for dealing with missing values (Dempster et al., 1977, Section 4.1). The Poisson-based 
approximation will be slightly more amenable than the logistic-Normal in this context. 

The AUTHOR replied briefly at the meeting and subsequently more fully in writing as follows. 
I should like to express my sincere thanks to all the discussants for their kind and encouraging 

remarks. Although statisticians are trained to cope with uncertainty and variability the determination 
with which so many ingeniously battled their way to the Goldsmiths' Theatre against the combined 
vagaries of man and nature calls for admiration as well as thanks. Since a number of discussants raise the 
same or similar issues the most convenient way to reply is by subject matter rather than by discussant. 

Historical. Mr Obenchain is too modest in his contribution. His internal Bell Laboratories report of 
1970, which he has kindly allowed me to see, contains not only the first explicit definition but also many 
of the properties of the additive logistic-normal class, as set out, for example, in Aitchison and Shen 
(1980).
\ - ~ -, 

Extrinsic and intrinsic analysis. In questioning the use of these terms Dr Anderson raises a much wider 
issue, the nature of the often complicated sampling processes (Chayes, 1971, p. 44) whereby compositions 
or bases are determined. In geostatistics this is certainly an area of study in search of a statistician more 
geologically competent than myself. For the particular question posed here I think there is a clear 
answer. The distinction between Dr Anderson's sampling processes 2 and 3 is analogous to that between 
controlled and natural experimental designs in, for example, regression analysis. Either process allows 
consideration of compositional invariance through the conditional distribution of composition on basis 
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size and the analysis is properly called extrinsic according to my definition. Even if, in the case of the 
controlled experiment, interest is in the conditional distribution of basis size on composition, strictly a 
calibration problem, we can again term the analysis extrinsic since attention is still directed outside the 
composition. 

Measurement error. Several discussants (Drs Anderson, Fisher, Preece et al.) raise important 
questions of how to deal with measurement error and what effect such imprecision may have on 
inferences. It is a nice feature of compositional data that measurement error is so self-revealing in the 
breach of the constant-sum constraint. If I had been presenting a paper on statistical diagnosis with the 
components of the feature vector all subject to a measurement coefficient of variation of 10 per cent I 
doubt if the question of the effect of this imprecision on the diagnosis would have been raised, though it 
can be answered (Aitchison and Lauder, 1980). 

Imprecision in compositional data can be satisfactorily studied through multiplicative and per- 
turbation error models. If x and X denote the vectors of true and observed proportions then the 
multiplicative error model takes the form 

X . = x . u .  ( i =  1 ,..., d + l ) ,  (1)t I t 

where the u, are positive error variables such as A(0, o;), assumed independent of xi and roughly centred 
on 1. If the o, are all equal then we have essentially equal coefficients of variation for each component 
measurement, but there is no need to make such an assumption so that the forms of imprecision 
described by Dr Fisher and by Dr Preece et al. can be accommodated. If data are available from repeated 
measurements on a composition the measurement error can be readily investigated. Even if the data are 
reported in rescaled form C(X) measurement error can still be easily analysed through the perturbation 
error model 

C(X) = x 0 v, (2) 

where v = C(u). 
Moreover, some forms of independence are equally testable with either true or observed com- 

positions. For  example, a reasonable assumption will often be that the components of u are independent. 
This implies that the perturbation v in (2) has complete subcompositional independence, which in turn 
implies that C(X) has complete subcompositional independence if and only if x has. A similar approach 
with a slightly more complicated error model leads to the equivalence of compositional invariance in true 
and observed bases. In his modelling Dr Anderson adopts an assumption of additive errors. In 
compositional data analysis this will always lead to problems. Whether errors are additive or 
multiplicative is, of course, testable given sufficient replicate data, though I suspect it may prove difficult 
to reach any firm conclusions in practice about the nature of the error. 

Zeros. There is little I can add to Section 7.4 and the constructive points raised by several discussants. 
In each application the nature of each zero must be thoroughly investigated, to determine whether it is a 
trace, measurement error rounding or an essential zero. To  the extent that the answers to these questions 
determine the approach (sensitivity analysis, conditional modelling, etc.) the methodology could be 
described as ad hoc. I d o  not see how it could be otherwise. 

Where there is a substantial frequency of zeros in any component I see no alternative to modelling 
with mass probability at  zero and conditional distributions. Such an approach has had some practical 
success in the related problems of lognormal modelling; see, for example, Aitchison (1955). Mr Jnrgensen's 
suggestion of the use of the Whitmore defective inverse Gaussian distribution is of this form. His 
proposal, however, leaves me with a number of doubts. His model for a basis seems to be defined in terms 
of the marginals for each component. While this may present no problems as far as basis independence is 
concerned, there are two questions which require answering before I can see this as a rival model. What 
multivariate inverse Gaussian form would he suggest for a basis with dependent components? What is the 
distribution of the composition formed from such a basis? 

Yet another possible approach to zeros is through Box-Cox transformations. If we are sure that x,+ ,, 
say, will always be positive, for example the proportion of expenditure on food, then we may consider 
modelling through 

yi = {(xi/xd+,)*- l } / l  (i = 1, ...,d), 

taking y'd' to be Nd. This will accommodate zeros and may be adequate for all descriptive purposes. In the 
consideration of the various independence concepts, however, it completely loses all the tractability 
advantages stemming from the logarithmic function. 
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Symmetric approach. Since submitting my paper I have been investigating a symmetric approach with 
zId+ l i  = log { d d +  l)/g(x)}, where g(x) = (x, ...x,, is the geometric mean of the components, so 
that the constraint E x i  = 1 is replaced by the constraint Xzi = 0. Thus we may consider z(,+') to be 
N ( , + ')(p,X)with uz+ p = 0 and C singular of rank d. The choice thus seemed to be between persuading 
clients to use pseudo-inverses in a symmetric approach or convincing them of the invariance of the 
asymmetric procedures. I felt that the second was on the whole the simpler choice. Professor Dawid's 
masterly demonstration of how to avoid the singularity problem in linear modelling of the logistic- 
normal mean I find convincing. Unfortunately there are many procedures where the inverse of the 
covariance matrix is necessarily involved, such as in density function estimation and discriminant 
analysis, so that my dilemma persists. Moreover the symmetric approach does not seem particularly 
suited to the study of some hypotheses of independence. For example, in the symmetric approach the 
form of the covariance matrix corresponding to complete subcompositional independence is 

which even with some simplification is much more difficult to handle than my simple asymmetric form 
(5.1). 

Professor Leonard's analysis of basis independence, in particular his form (3) for cov(1og x(,+ I)) for a 
composition with basis independence, seems identical to that in Aitchison (1981a); compare the form on 
p. 179. I also do not see how his points subsequent to (4) differ in substance from the asymmetric 
approach to testing in my 1981 paper since the particular contrast-producing matrix A selected must 
introduce asymmetry. I chose the particular A = [I,, -u,], leading to the simple logratio contrasts. Nor 
do I understand the appeal of basis independence. Its algebra is marginally simpler, the statistical tests 
are virtually identical, but the interpretation with basis independence is infinitely more difficult. If 
Professor Leonard doubts this he should follow the history of pitfalls in the geological literature. I can 
only repeat the question. If there is no real basis why invent one when a concept equivalent to basis 
independence can be defined within the composition; and if there is a real basis is there any need to 
involve compositions in the investigation of basis independence? 

Principal component analysis. Professor Dawid and Dr Thompson observe that a symmetric 
approach using the singular matrix cov [log {x(,+ li/g(x(d+li)}], where g ( . )  denotes geometric mean, is 
well suited to principal component analysis. The eigenvectors associated with the d non-zero eigenvalues 
are exactly the eigenvectors found by my asymmetric method which requires the introduction of the 
interesting concept of an isotropic covariance structure H, = I,+U, and consideration of 

[cov {log (~ '~ ' /x , ,+ - 0.1)} iHd]a = 

I had already come to this conclusion in a paper under consideration by Biometrika. Indeed there is a 
further advantage in the symmetric approach here in that it leads naturally to a method of quantifying 
the amount of the overall variability retained by the commonly practiced procedure of examining only a 
subcomposition. 

I was delighted by Dr Howarth's disapproval of the practice of some geologists who draw "trend" 
lines through data such as in Fig. 1 and then impose an interpretation along the trend. Geologists have 
also applied principal component analysis to such data sets but these all use straight line axes quite 
unsuited to many of their data sets. Logcontrast principal component analysis applied to Fig. 1 produces 
a first principal axis which nicely follows the curvature of the data. Such curved data in the simplex do 
not in themselves indicate any trend: they are no different in nature from a typical elliptical cluster in R2. 

Stochastic models. Professor Cox's example has counterparts in other disciplines, such as the 
compositions of fossil pollens or foraminifera at different levels of a core sample. One possible approach 
here is to investigate the process y(t) = log { ~ ' ~ ) ( t ) / x , +  ,(t)} as a multivariate, possibly Gaussian, process in 
Rd. 

Shape and size analysis. Dr Mosimann seems to chide me for not turning my paper into a general 
analysis of shape and size problems. There would have been little point in so doing because of the full 
accounts already given in the papers I cited, Mosimann (1970, 1975a, b), and now excellently summarized 
in his contribution to the discussion. Where I disagree fundamentally with Dr Mosimann is the extent to 
which shape and size analysis has helped or hindered the analysis of compositional data. I can only 
summarize two main points here. 
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(1) 	There are many issues concerning compositional data where questions of size play no part, for 
example, in geochemical compositions where complete or partial subcompositional independence is 
important or the purpose is discrimination, as in Section 4.3 of Aitchison and Shen (1980). To  insist 
on incorporating such procedures within the scope of size-and-shape analysis is only to complicate 
what is already simple. 

(2) Where size is of interest in compositional data it is invariably additive size which is under 
consideration, whether the size of a basis as in compositional invariance or the size of a subvector of 
the composition as in subcompositional invariance. I question Dr Mosimann's implication that 
shape-and-size analysts have already used, even implicitly, logistic-normal distributions over the 
simplex for proportions. Just because they use logratio shapes in multiplicatioe size situations seems 
to me an extremely unconvincing argument since the size constraint does not then confine the shape 
vector to the simplex. If, as he seems to claim, logistic-normals are "old hat" to size and shape analysis 
a number of repeatedly reported deficiencies of that theory become even more puzzling: the 
degeneracy of the only model proposed for the investigation of additive isometry, insistence that there 
is a shortage of classes of distributions over the simplex other than Dirichlet and its simple 
generalizations, the non-emergence of testing procedures for hypotheses of neutrality. 
Relation to  multinomial theory. Professor Plackett's problems in multinomial theory are extremely 

interesting. To  his specific questions about ordered categories the only answer I can presently provide is 
that the forms of analysis in Section 7.2 involve an ordering of the components (x,,  x,, ...,x,, ,) of the 
composition and for such orderings the logratio transformation 

y ,  = log{x,/(l -xl)}, J,, = log {x2/(l -x l  -x2)}, ... 
proves useful in compositional data analysis. Perhaps also the involvement of ordering in Dr 
Titterington's interesting comments on smoothing procedures may be of some relevance to this problem. 
His linking of missing values and Poisson-based approximations is appealing and should certainly be 
pursued. I suspect that multinomial theory may have many more contributions to make to com-
positional data analysis. For example, I have so far been unable to find a model for a two-way 
compositional distribution yielding tractable distributions for both row and column marginal com-
positions. Does the answer lie somewhere in multinomial theory? 

Other transformations. Professor Stephens proposes a transformation that goes from the d-
dimensional positive simplex to the positive orthant of the surface of the d-dimensional sphere, a device 
already advocated to me by other directional data specialists at North American seminars. While this no 
doubt provides a means of describing variability and so allows comparisons of the type discussed by 
Professor Stephens and other procedures such as discriminant analysis, the sphere is a difficult space in 
which to discuss independence and regression, as acknowledged by him. Moreover the fact that the 
surface of the sphere and the simplex are topologically different does limit the transformation to only part 
of the sphere, such as the positive orthant, and this limitation can prove a source of difficulty. Dr 
Atkinson's transformation, if converted into a one-to-one form, would be equivalent to going to the 
positive orthant of the sphere, followed by a spherical polar transformation, and so is subject to similar 
problems. Indeed it could be argued that the worker on the sphere has more to gain from visiting the 
simplex than the other way around. For example, consideration of moving from the sphere to the simplex 
has led me to suggest the use of logtan-normal, or more properly exponential-inverse-tan normal, 
distributions on the sphere. For example, for d = 2, with q5 denoting longitude and Q latitude and 
confining attention to the positive orthant, we might consider joint distributions of (q5,Q) for which 
(logtan q5, logtan 0) is N 2 ( p ,X).The independence of longitude and latitude would correspond to the 
parameteric hypothesis o,, = 0 of zero correlation in the transformed variables. 

Dirichlet generalizations. A number of discussants (Professors Darroch, Goodhardt; Drs Kent, 
Mosimann) still see hope in some forms of generalization of the Dirichlet class. For the moment, I feel a 
more hopeful line of enquiry is to investigate more fully the nature of the differences between logistic- 
normal and Dirichlet distributions. Aitchison and Shen (1980) showed that for many Dirichlet 
distributions there is a closely approximating logistic normal distribution; this fact has indeed been 
exploited in the construction of a test of Dirichlet against logistic-normal form by Shen (1982). Some of 
the tests of independence such as complete subcompositional independence when they lead to rejection 
also automatically reject the Dirichlet form. 

The  case d = 2. Professor Darroch picks up my point in Section 5 that some forms of independence 
are trivially satisfied and so of no interest for the case d = 2. There are reasons for this. For d = 1 there 
are no questions of interest about independence: the mathematical dependence x, = 1 -x l  ensures 
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statistical dependence. For d = 2 the effect of the constraint is still stifling (for example, the covariances. 
between raw proportions are completely determined by the variances of the raw proportions) so that not 
all concepts of independence will be applicable. Only for d 2 3 is it possible to see a wider range of 
definitions, and, to some extent, concentration on d = 2 has prevented this wider view. 

For d = 2 the main, possibly the only, forms of independence are of the x,  I C(x,, x,) form, namely 
neutrality for particular ordering or subcompositional invariance. As a practical means of investigating 
data sets for d = 2, I would suggest the following procedure. Test the data for Dirichlet form. If the 
Dirichlet form is rejected then there is non-neutrality of at least one of forms x,  ! C(xl,x3), 
x2 I C(xl, x3), x3 I C(x2, x 3 )  Use the neutrality tests described in Section 7.2 to obtain some indication 
of the nature of the non-neutrality. 

The constraint. A number of discussants seem to have a persistent worry about the effect of the 
constraint after the transformations. A main objective of the transformations advocated is to ensure a 
form of modelling which specifically takes full account of the constraint so that the question of continuing 
constraint effects does not arise. If one accepts a particular transformation as valid then the constraint 
can be forgotten. One may, of course, question the appropriateness of a particular transformation; but 
that is a different matter. 

Applications. It was interesting to see that the application to activity patterns considered by Professor 
Stephens is similar to that of the original application by Mr Obenchain in his 1970 report. I have myself 
used another example, 21 days in the life of a statistician divided into the three activities of work (W), 
sleep (S) and general grubbing around (G). My purpose was to use the data in the GSW triangle, rather 
like the curved set in Fig. 1, to show the absurdity of reading trend into such curvatures. A well-known 
example of this form of analysis is the diaries which a sample of British academics were asked to keep 
some years ago. 

Professor Goodhardt's problems of consumer choice are intriguing. His hypothesis (i) 
T(fij)= y j  ( j= 1, ..., k +  1) of no partition within Dirichlet modelling falls readily within the scope of 
standard parametric hypothesis testing, for example through a generalized likelihood ratio test. His more 
complex problem (iii) would involve the testing of separate families in the sense of Cox (1962) and could 
prove much more difficult because of the high dimensionality of the parameter vector. His partition- 
selection problem (ii) would seem to depend largely on a satisfactory resolution of problem (iii). 

I think that my asymmetric approach has led Professor Leser into a misunderstanding of xd+ ,,which 
is on an equal footing with x,, ...,xd as a proportion of total expenditure. The point in using total 
expenditure rather than income is to avoid having to consider the nastiness of negative saving which can 
hopefully be incorporated into some form of conditional analysis as outlined in Section 4.2. 

I may be misinterpreting the genetic application of Fisher cited by Professor Smith, but it seems to me 
an early example of the use of the generalized logistic function in multinomial modelling and not an 
example of compositional data. 

I am greatly encouraged by the comments of Dr Howarth and Dr Preece et a1 on the viability of the 
techniques for geological applications. I hope that my comments under measurement error and principal 
component analysis have gone some way to reassure them that the system is flexible enough to cope, 
particularly with measurement errors. I am currently working on an expository paper on geological 
applications and hope that this may meet the request made by Dr Preece and his colleagues. 

On the use of the correlation matrix between raw proportions I can only comment that all the 
evidence of the past two decades suggests that it leads to more problems than it resolves. For example, 
Miesch (1969) demonstrates that an apparently significant raw correlation between two oxides may have 
really arisen, through the closure process, from an actual correlation between two other oxides! The use 
of c o v ( ~ ( ~ + l ) ) ,  in my view, is a symptom of the barbecue syndrome. The barbecue is a very effective 
instrument if you are enjoying the wide open spaces (Rd) of, say, North America; but would you continue 
to use it if you were suddenly confined to an Sdhousing unit in Hong Kong? Some transformation of the 
barbecue would obviously be desirable. You might end up preparing the ingredients of your problems so 
that they can be stir-fried in that rather different, but equally effective, instrument, the wok. 
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