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Abstract: In their paper on a computationally intensive MCMC method for
palaeo-climate reconstruction from multivariate pollen counts, Haslett at al (2006)
encountered substantial zero inflation; a database of 7815 14-dimensional counts
contained 36% zeroes. This paper introduces a new model for such zero-inflated
multivariate count data in a spatial context. Specifically, we show that a spatial
Gaussian process can be conveniently used to create a zero-inflated mixture of
the Multinomial.
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1 Introduction

1.1 The Data

The data analysed in our reconstructions of the Holocene palaeoclimate are
fossil pollen counts data, pollen surface sample counts data and modern
climatic data. The latter two components together provide what are often
referred to as the ‘training data’. The climatic data consists of measures of
three aspects of climate, two of which are temperature related. For further
details see Haslett et al (2006).

1.2 Reconstructing the Palaeo-Climate

The basis for palaeoclimate estimation from data such as this is straightfor-
ward. Variations in climate drive variations in vegetation, in turn leading to
changes in the pollen assemblage accumulating in the sediments. Individual
plant taxa have their ‘preferred’ climates: thus changes in past climate can
be estimated from changes in the pollen assemblages.
Reconstructing the palaeoclimate may be considered as analogous to locat-
ing the fossil pollen assemblage in climate space due to a set of response
surfaces and is motivated by the approach used in Huntley (1993).
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1.3 Response Surfaces

The response surface approach is used to model the way that individual
plant taxa respond to changes in climate. The interpretation of the response
here is the propensity to contribute pollen to the assemblage sample in
given climatic conditions. The responses are constrained to sum to one
over all taxa and are thus proportions. Climate-induced changes to these
proportions reflect changes in the vegetation composition local to the pollen
sediment sample. The surfaces are constructed from the training data.
We adopt a non-parametric approach to modelling these surfaces. Climate
space is discretized onto a regular grid. The components of the surfaces are
thus the unobserved latent proportions of the plant taxa at that point in
climate space. The responses at the grid-points are modelled stochastically
and the data-points which lie off the grid-points are calculated determin-
istically from weighted averages of the neighbouring grid-point values. For
further details see Haslett et al (2006).

2 Statistical Models and Algorithms

2.1 Simple Bayesian Model for Response Surface Components

The model for the proportions p is obtained via the Bayesian paradigm:
posterior ∝ likelihood × prior

π(p|data) ∝ π(data|p) × π(p)

where the data are the counts y and the modern climate measurements. We
sample from the posterior probability for the proportions using a Metropolis-
Hastings Markov Chain Monte Carlo algorithm.
In the simplest model, the likelihood for the counts given the proportions
is Multinomial. We then choose a Gaussian spatial process prior to model
the responses as smooth functions in climate space.
In order to specify an appropriate prior on the p values, we model indepen-
dent Gaussian processes x in d dimensional Real space <d(or the positive
subset thereof) and use a link function f(x) (see Section 2.2) to transform
to the d + 1 dimensional simplex space `d+1.

x ∼ N(µ, Σ) and p = f(x)

As the Gaussian processes are taken to be independent, the covariance
matrix Σ is diagonal. However, the transformation to the simplex space
constrains the proportions to sum to one and thus does introduce some
dependence across p. The model is then:

π(p|data) ∝ Multinomial(y|n, p) × π(p) (1)
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where n is the total count at a particular site in climate space and
π(p) = Jacobian(x|p)π(x), depending on the choice of f .
To model extra-climatic variation (a much richer approach), the Gaussian
processes would not be modelled as independent. However this would intro-
duce too many extra parameters into the covariance matrix Σ and would
dominate the already burdensome computational overhead.

2.2 Link Functions from Real to Simplex Space

The link function used in Haslett et al (2006) was the linear rescaling
of the positive x ∈ <+ values to transform to the simplex space. This
method does not necessitate the calculation of a Jacobian, however it does
involve constraining all x to be positive. A seemingly more natural class of
alternatives is suggested in Aitchison (1986). These are the logistic normal
class and the primary example is the additive logistic normal distribution
for p:

pi =
exi

1 +
∑d

j exj

for i = 1, . . . , d (2)

and ‘fill up value’ pd+1 = 1 −
∑d

i pi where x are unconstrained Gaussian
processes in < space. This leads to the Jacobian jac(x|p) =

∏
i(pi)

−1

2.3 Zero-Inflation of the Data

However, this model for the compositional random variables puts no prob-
ability mass on zero values for elements of p. The data is massively zero-
inflated, so such a model will therefore be subject to errors in the estima-
tion of the model parameters. The model must be augmented to account
for these extra zeros in a meaningful way.
In order to model these zeros they are categorised into two groups based on
the source of the zero count, specifically structural and sampling zeros (see
Ridout et al (1998).) Structural zeros occur when a taxon is absent from
a sampling point in climate space: i.e. the plant simply does not grow in
that climate. Sampling (or counting) zeros occur when the taxon is present
but not observed. i.e. it does grow in that climate but by chance was not
present in the particular sample of pollen counts.

2.4 Computational Issues

For computational convenience Haslett et al (2006) adopted the Dirich-
let Multinomial (or Compound Multinomial) distribution (Dey and Maiti
(2002)), often used to model overdispersed multivariate count data. This
model arises naturally in multi-level models as a Dirichlet mixture for the
main compositional parameter p of the Multinomial. In that paper the
main Dirichlet parameter itself was treated as spatially varying, modelled
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via a Gaussian spatial process. Other models for spatially varying composi-
tional data (e.g. Tjelmeland and Lund (2003)) are also based on Gaussian
processes. The logistic normal distribution of Aitchison (1986) provides a
natural alternative to the Dirichlet.
However, such models for compositional random variables put no probabil-
ity mass on zero values for elements of p. They provide a crude model for
massively zero-inflated data such as this. More focused alternatives (such
as Lee et al (2006)) use latent binary variables for the mixture and are
natural, but dramatically increase the computational load as the distri-
butions are not conjugate; in the context of Haslett et al (2006) a further
7815 x 14 binary random variables are introduced. Marginalising over these
dominates the computation.

2.5 Alternative Models

Alternatives for modelling these zeros without resorting to many additional
latent variables were therefore explored.
Three new models for zero-inflated data without the use of binary latent
variables were built and an intercomparison between the three and the
binary latent variables approach to mixing was performed. The first two are
close cousins and involve an augmentation of the prior for the x ∈ < values
and the third is similar in spirit to a detection limit approach, involving
the addition of a single extra ‘threshold’ parameter.

1. A discontinuous spike at zero is added to the prior for x. The prior
is now of ‘spike and slab’ form, with the slab of Gaussian form and
positive only for positive x. Negative values of x are impossible. The
linear link function is used to construct p as per Haslett et al (2006).
The distribution is now semi-continuous.

2. Negative x are allowed, but the linear link function is changed so that
only positive values of x are used to construct p. Negative x imply
that p is zero. This is equivalent to an absence. i.e. the taxon has
no propensity to produce pollen at this climate. The link function
is now pi = I(x ∈ <+) xi∑

i
(xi)

The interpretation is that there is an

underlying process governing vegetation response to climate that can
be negative but we only observe positive counts. Negative x are then
being sampled from the prior as the likelihood is flat for these values.
The x values are modelled rather than the ps.

3. Detection limit approach. The additive logistic normal link function is
used and one one extra variable is added. This represents a threshold
value that the response by the plant taxon must exceed before it
contributes pollen to the assemblage. The link function now becomes:

pi = (1 + a)
exi

1 +
∑d

j exj

− a for i = 1, . . . , d
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TABLE 1. Toy Problem fit Results: Model Comparison

MODEL Error Computation Time

Spike and slab prior on x ∈ <+ 3.74e-4 21.14
Unconstrained x ∈ < modelled 3.96e-4 22.35
Detection Limit FLAG FLAG
Binary Latent Variables 3.73e-4 83.52

3 Investigation via a Toy Problem

A toy problem was constructed in order to test if any of the three new
models could compete with the accepted binary in terms of accuracy and
to ensure that convergence and running time were superior. The advantage
of using a toy problem is that the values of p used to generate the toy data
are known and so true errors may be computed.

3.1 Generation of Toy Data

In the toy problem, a one dimensional ‘climate’ space was used. Random
Gaussian response curves for two taxa were created with negative values
mapped to zero (absence / no response). Counts from a binomial distribu-
tion were then generated from these curves. 50 datapoints and 50 equally
spaced grid-points were used. The total count at any location was taken to
be 400. An example reconstruction of the response curve used to generate
the data using the unconstrained x model is shown in Figure 1.

4 Results

A summary of results for the toy problem is presented in Table 1. The
measure of error is an average sum of squared distances to the true un-
derlying response curve for 1000 realisations from the posterior for each
model, collected with a separation of 100 iterations following a burn in of
200,000 iterations. The computation time is in seconds.
It is important to note that the models only differ from each other at
the points where one taxon is contributing all the counts and the other is
absent. A comparison at these locations in climate space of the trace plots
for the MCMC output is shown in Figure 2.

5 Conclusions

The model with a discrete spike at zero in the prior for the proportions
is slightly faster to implement than the uncontrained modelling of the x
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FIGURE 1. Example response curve with fitted 95% HPD regions for the uncon-
strained x model.
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FIGURE 2. Example trace plots for the 4 models for a taxon absent in this region.

processes and gives a more accurate result. The binary latent variables
model is the slowest but gives the most accurate result. However, the results
contain just one measure of error.
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Perhaps the best way to gain insight into the differences between the models
is to examine the MCMC output directly. The trace plots for the binary
latent variables model for zero response are the most accurate with the
fewest and smallest excursions from zero.
Although the implementation of Metropolis-Hastings updates for the semi-
continuous prior in the spike and slab type model is straightforward, the
MCMC theory is undeveloped. Other future work includes applying all
models to the real dataset.
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