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A b s t r a c t  

Models  for the  analysis of mult ivariate  spatial  da t a  are receiving increased a t t en  

t ion these  days. In many  appl icat ions  it will be preferable to work wi th  mult ivariate  
spatial  processes to specify- such models.  A critical specification in providing these  
models  is the cross covariance function. Cons t ruc t ive  approaches  for developing 
valid cross covariance funct ions offer the  most  pract ical  s t ra tegy for doing this.  
These approaches  include separabili ty,  kernel  convolut ion or moving average me th  

ods, and convolut ion of covariance functions.  We review these  approaches  but  take 
as our main focus the  computa t iona l ly  manageable  class referred to as the  l inear 
model of coregionalizat ion (LMC).  We in t roduce  a fully Bayesian developmelt t  of 

the  L MC. We offer clarification of the  connect io~ betweerL joint  a~d condit ional  
approaches  to fi t t ing such models  includiltg prior specifications. However, to sub- 
s tant ial ly enhance  the usefulness of such modelliltg we propose the  notion of a 
spatially varyi~tg LMC (SVLMC) providing a very rich class of mult ivariate  no~tsta- 
t ionary  processes with simple in te rpre ta t ion .  We il lustrate t he  use of our proposed 
SVLMC with appl icat ion to more  t h a n  600 commercia l  p roper ty  t r ansac t ions  in 
three quite different real es ta te  markets ,  Chicago, Dallas and San Diego. Bivariate 

nons ta t ionary  process  models  are developed for income from and selling price of 
the  property.  
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1 I n t r o d u c t i o n  

Increasingly in spatial da ta  settings there is need for analyzing multivariate 
measurements obtained at spatial locations. For instance, with meteoro- 

logical da ta  we may record temperature  and precipitation at a monitoring 
location, with enviromnental da ta  we may record levels of several pollu- 
tants  at a monitoring site. For real estate transactions associated with 

single family homes we may record selling price and tin, e-on-market. For 
commercial property transactions we may record income and selling price. 
In each of these illustrations there is association between the measurements 
at a given location. In addition, we anticipate association between measure- 
ments across locations. This association is anticipated to become weaker 

as locations become farther apart  but not necessarily as a function of the 
(Euclidean) distance between the locations. 

V~.~ seek to build classes of models t ha t  are both rich in structure and 
feasible in computat ion in order to capture such dependence and enable 
analysis of the multivariate measurement data. Anticipating the locations 

to be irregularly spaced across the region of interest and preferring to model 
association directly, we choose to work with multivariate spatial process 
models rather than  say multivariate random field models. For the latter, 

there exists recent literature on multivariate conditionally autoregressive 
models building on the work of Mardia (1988). See, e.g., Gelfand and 

Vounatsou (2002) %r a current discussion. 

To develop multivariate spatial process models requires specification of 
either a valid cross-covariogram or a valid cross-covariance function. V~.~ 

seek full and exact inference, including prediction, from such models. This 
can be obtained within a Bayesian framework but a full distributional spec- 
ification is required and, in particular, a full sampling distribution for the 
data. We take this to be a multivariate Caussian process and so the issue 
becomes specification of the cross covariance function. 

Such functions are not routine to specify since they demand that  for 
any number of locations and any choice of these locations the resulting 
covariance matrix for the associated da ta  be positive definite. Often the 
easiest approach is through construction. Various constructions are possi- 
ble. For instance, in a series of papers, Le, Sun and Zidek ( B r o ~  et al., 

1994, Sun et al., 1998) obtain nonstat ionary multivariate spatial models in 
a hierarchical fashion. They assume an unknown joint covariance matr ix 
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for the observed multivariate da ta  which, a priori, is a random realization 
from an inverse Wishart  distribution centered about a separable covariance 
function. (See Section 2 for definition of separable covariance functions.) 

Another  possibility is the moving average approach of Ver Hoef and 
Barry (1998). The technique is also called kernel convolution and is a well- 
known approach for creating rich classes of stat ionary spatial processes. A 
primary objective of Vet Hoef and Barry (1998) is to lye able to compute 
the covariances in closed form while recent work of Vet Hoef et al. (2004) 
foregoes concern ~i th  analytic integration. Extension of the approach to 
allow spatially varying kernels yields nonst~tionary processes. Only the 
one dimensional case has received at tention in the statistics literature, as 
discussed in Higdon et al. (1999) and Higdon et al. (2002) with further 
references therein. V~.% note tha t  this work abandons explicit integration 
in favor of discrete approximation. Yet another possibility would a t t empt  
a multivariate version of local stationarity, extending ideas in Fuentes and 
Smith (2001). Finally, building upon ideas in Gaspari and Cohn (1999), 
l~fajumdar and Celfand (2004) use convolution of covariance functions to 
produce valid multivariate cross-covariance functions. 

Our primary interest is in versions of the so-called linear model of core- 
gionalization (LMC) as in, e.g., Crzebyk and U."ackernagel (1994), U."acker- 
nagel (2003), Schmidt and Gelfand (2003) or Banerjee et al. (2004). The 
LMC has historically been used as a dimension reduction method,  seeking 
to approximate a given multivariate process through a lower dimensional 
representation. Banerjee et al. (2004) propose its use in multivariate pro- 
cess construction. That  is, dependent  multivariate processes are obtained 
by linear t ransformation of independent  processes. V~:e review the proper- 
ties of such models below. 

Both from a computat ional  and an interpretive perspective there can 
lye advantages to working ~qth specification of the multivariate process 
through conditional distributions rather than the joint distributions. This 
strategy is well discussed in Royle and Berliner (1999) and Berliner (2000) 
who argue for its value in so-called kriging with external drift, extending 
Gotway and Hartford (1996). More generally, it is useful with misaligned 
data, i.e., situations where at least some components of the multivariate 
da ta  vectors are observed at only a subset of the  sampled locations. V~.Grk- 

ing ~ t h  the LMC, we note two potentially discouraging limitations of the 
conditioning approach. First, we align the parametrizat ion between the 
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conditional and joint versions. This enables suitable t ransformation of prior 
specifications from one parametrizat ion to the other. However, it reveals 
restriction on the covariance specification which arises through condition- 
ing. Second, we clarify" the inability of the conditioning approach to achieve 

general mean specifications and nugget effects for the joint modelling spec- 
ification. 

Perhaps our most novel contribution is the introduct ion of a spatially 
varying LhIC (SVLMC). This model is defined through locally varying 
linear t ransformation of the independent processes and results in a nonsta- 

t ionary process specification. Modelling the locally varying transformation 
can be done in various ways. V~:e suggest that  it is most natural  to inter- 
pret such transformation through the local process covariance and examine 
t ~ )  resulting possibilities. The first is a multivariate analogue of modelling 
heterogeneity of variance using an explanatory variable (or variables) as- 
sociated ~qth the response vector at location s. The second is to define a 
spatial process which produces random but  spatially associated covariance 
matrices for each s leading to what we have defined as a matric-variate 
spatial Wishart  process. Some discussion of the computat ional  issues asso- 
ciated with the fitting of such SVLMC's is provided. 

Finally, we present an illustration using commercial property trans- 
actions in three markets,  Chicago, Dallas, and San Diego. Roughly 200 
transactions are considered from each of these three very different markets. 
Income from and selling price of the property are the response variables; 
explanatory variables include age of the building, average square feet per 
unit in the  building, and number of units in the building. Of particular 
interest is the so-called risk-adjusted discount rate, i.e., the discount on 
price relative to income. This rate is customarily est imated at the  regional 
level. In fact, it is anticipated to vary spatially across any commercial real 
estate market  bu t  a risk surface has not been previously obtained in the 
literature. An advantage to the Bayesian model fitting approach is that ,  in 

addition to an income surface adjusted for property characteristics and a 
similarly adjusted price surface, we can also obtain an adjusted risk surface. 

The format of the paper is as follows. In Section 2 we review the various 
constructions mentioned above. Coregionalization models are introduced in 
Section 3 ~qth properties of these models presented in Subsection 3.1 and a 
discussion of the conditional modeling approach for this setting occupying 
Subsections 3.2 and 3.3. Section 4 introduces a spatially varying LMC. 
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Section 5 discusses computat ional  issues with regard to the fitting of the 
proposed models. The following section gives an example using commercial 
property transactions in three different markets. Finally, Section 7 discusses 
the paper and some possible extensions. 

2 R e v i e w  o f  m u l t i v a r i a t e  s p a t i a l  p r o c e s s  m o d e l  c o n s t r u c -  

t i o n s  

Suppose our da ta  consists of p•  1 vectors Y(s i )  observed at spatial locations 
s i, i 1 ,- . .  ,n  in a region of interest D. For our purposes D will be a 
subset of t772. V~:e seek flexible, interpretable and computat ional ly  t ractable 
multivariate models for the Y(s i )  which capture association both  ~ t h i n  
measurements at a given site and across the sites. A further objective is to 
lye fully inferential which we take to mean tha t  a likelihood, i.e., the joint 

sampling distribution of {Y(s i ) , i  = 1 , . . .  ,n} is required. In fact, we will 
adopt  a Bayesian perspective, adding a prior specification for the unknown 
parameters  in this likelihood. Full inference will proceed from the resultant 
posterior. We obtain the likelihood through multivariate spatial process 
models. 

The crucial issue is to ensure that ,  for any n and choices s l , . . . ,  s , , ,  

the resultant ~p • ~p covariance matrix, Ey i8 positive definite. The vital 
notion for doing this is the prescription of a valid cross-covariance func- 
tion, C(s , s ' ) ,  i.e., C( s , s ' )  is the p • p matrix with entries (C(s , s ' ) )  U, = 
co,;(Y,(s), Y,, 

In the  ensuing three subsections we briefly review three approaches that  
are well suited for such implementation: separable models, kernel convolu- 
tion or moving average models, and convolution of covariance models. 

2.1 S e p a r a b l e  m o d e l s  

Arguably, the most straightforward form for achieving a valid cross- 
covariance matrix is a separable one. Let T lye a p • p positive definite 
matrix and let p lye a valid univariate correlation function. Then 

C(s, s') = p(s, s ' )T,  (2.1) 

is a valid cross-covariance function. See, e.g., l\iardia and Goodall (1993) or 
Banerjee and Gelfand (2002). This form sep~rates the  spatial association 
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from the within site association. In fact, if p is stationary, then (2.1) implies 
tha t  component  variables are associated and that  association between them 
is a t tenuated  as their respective locations become more separated. It also 
implies that ,  if [9 is isotropic, we have a common range for all components  

of Y and if p is stationary, we, have a common range in any specified 
direction for all components of Y.  The resulting covariance matrix for Y 
is 2 y  = R | T where R is the .n x n matrix with (R)~j = p(s ,s ' )  and 
| denotes the Kronecker product.  This form clearly reveals tha t  Gy is 
positive defiNte. 

V~.% note that,  in a series of papers,  Le, Sun and Zidek (Brown et al., 
1994, Sun et al., 1998, etc.) employed a separable specification to create 
nonstat ionary multivariate spatial models in a hierarchical fashion. In their 
setting, they  t rea ted the covariance matrix for Y,  Gy,  as a random real- 
ization from an inverse Wishar t  distribution centered a round/ / :  | T. The 
result of this specification is tha t  Eu  is immediately positive definite. It 
is also nonstat ionary since its entries are not even a function of the loca- 
tions. In fact, 2 y  is not associated with a spatial process but  rather with 

a multivariate distribution. 

2,2 K e r n e l  c o n v o l u t i o n  m e t h o d s  

Ver Hoef and Barry  (1998) describe what  they refer to as a mox4ng average 
approach for creating valid stat ionary cross-covariograms. The techmque 
is also called kernel convolution and is a well-kno~al approach for creat- 
ing general classes of s tat ionary processes. The one-dimensional case is 
discussed in Higdon et al. (1999) and in Higdon et al. (2002). For the nml- 
tivariate case, suppose k/('), t 1, ..., p is a set of p square integrable kernel 
functions on /~2  and, without  loss of generality, assume k/(0) = 1. 

Let w(s) be a mean 0, variance 1 Caussian process with correlation 
function p. Define the p-variate spatial process Y(s )  by 

Y~(s) = ~ f k ~ ( s  t )w( t )d t ,  I = 1 , , , .  ,p. (2.2) 

Y(s )  is obviously a mean 0 Gaussian process with associated cross- 
covariance function C ( s , s  0 having (t ,I ')  entry 

= ~/~/, [ [ ;~-l(s t);q,(s' t')e(t t')dtdt'. (9.a) (C(s, 
Y J 
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extending (2.2). 
entries 

By construction, is valid. By transforn, ation in (2.3) can see 
t h a t  (C(s,s')),c, depends only o,1 s s', i.e., Y(s)  is a stationary process. 
Note tha t  (C(s s'))l/~ need not equal (C(s s'))/,l. If the kt depend upon 
s - s' only through I Is - s'll and r is isotropic then Banerjee et al. (2004) 
show that  C(s - s') is isotropic. 

An objective in Vet Hoef and Barry (1998) is to be able to compute 
C(s s') in (2.3) explicitly. For instance, with kernels that  are functions 
taking the form of a constant height over a bounded rectangle, zero out- 
side, this is the case and an anisotropic form results. More recent work of 
Vet Hoef et al. (2004) no longer worries about this. 

An alternative, as in Higdon et al. (1999), employs discrete approxima- 
tion. Choosing a fimte set of locations t l , . . .  , t , ,  we define 

Y/(s) c ~ / ~  kl(s--  t j )w( t j ) .  (2.4) 
j 1 

Now, (C(s,s'))l/,  is such that  

(C(s, s'))l/, alC~/, ~ ~ k l ( s -  t j)kl ,(s '  -- t y ) p ( t j -  ty ) .  (2.5) 
j = l  j~ 1 

The form in (2.5) is easy to work with but note that  the resulting process 
is no longer stationary. 

Higdon et al. (1999) consider the univariate version of (2.2) but with 
k now a spatially varying kernel, in particular, one that  varies slowly in 
s. This would replace k ( s -  t) with k ( s -  t ; s ) .  The multivariate analogue 
would choose p square integrable (in the first argument) spatially varying 
kernel functions, kl(s t ;s)  and define Y(s)  through 

~ ( s )  ~ , f k ~ ( s -  t ; s )w( t )d t  (2.6) 

The cross-covariance matrix associated with (2.6) has 

p 
(C(s, s')),,, =~l~r,,Jkl(s t;s)k,,(s' t;s')dt. (2.7) 

Higdon et al. (1999) employ only Gaussian, arguably, imparting too much 
smoothness to the Y(s)  process. In very recent work, Paciorek and 
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Schervish (2004) suggests alternative kernels using, e.g., l\[at6,rn forms to 
ameliorate this concern. 

Fuentes and Smith (2001) introduce a class of mxivariate locally sta- 
t ionary models by defining Y(s) fb (s , t )wo( t ) ( s )d t  where we is a sta- 
t ionary spatial process having parameters  0 with we1 and Woe independent  
if 0~ r 02, and b(s , t )  is some choice of inverse distance function. Here, 
analogous to Higdon et al. (1999), the parameter  0(t) varies slowly in t. In 
practice, the  integral is discretized to a sum, i.e., Y(s) = 2~=~ b(s, t j )wj  (s). 
This approach does define essentially locally stationary models in the sense 
that if s is close to t, Y(s) ~ wo(t)(s). The multivariate extension of 
Fuentes and Smith (2001) would introduce p inverse distance functions, 
b/(s, t j ) , / =  1 , . . .  ,p and define 

= / t)w,+(s)at. (2.s) 

Straight%rward calculation reveals tha t  

/ (C(s, s ) ) / * '  bl ( s , t )b l , ( s ' , t ) c ( s - s ' ;O( t ) )d t .  (29) 

2.3  C o n v o l u t i o n  of  c o v a r i a n c e  f u n c t i o n s  a p p r o a c h e s  

Motivated by work of Gaspari and Cohn (1999) and Majumdar  and Gelf~nd 
(2004) discuss convolving k stat ionary one-dimensional covariance functions 
with each other to generate cross-covariance structures %r a multivariate 
spatial process specification. Two remarks are appropriate. First, this 
approach convolves covariance functions as opposed to kernel convolution 
of processes as in the previous subsection. Second, the  linear model of 
coregionalization, developed in Section 3, also begins with k stationary 
one-dimensional covariance functions, creating the cross covariance func- 
tion associated with an arbi t rary linear t rans%rmation of k independent  
processes having these respective covariance functions. Here the  approach 
is to cross convolve these functions to obtain a cross covariance function. 

Suppose tha t  C1 , . . . ,  Ck are valid stat ionary covariance functions de- 
fined on /~d. Define functions on /~d  

Cio(s ) (C.i �9 C~)(s) / C.i(s - t )C j ( t ) d t ,  i 7/J 
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and 

<,.(s) (<*  <)(s) f<(s-t)O.i(t)dt i, j 1, .- .  ,k, 

Majumdm" and Celfand (2004) show that ,  under fairly weak assumptions, 
the Ci/ and C~'s provide a valid cross-covariance structure for a k dimen- 
sional multivariate spatial process, i.e., Cov(Y~(s),Yj(s')) = C~a(s s'). If 
all cove~riance functions in question are stat ionary and isotropic we redefine 
C(r) as c(l l r l l ) .  Theorem 3.a.1 in gaspar i  and Cohn (1999, pp. 739) shows 
tha t  if Ci and Cj are isotropic functions, then so is Ci * Cj. 

Next, if p~ are correlation functions, i.e., p~(0) = l, p , (0 )  = f p~(t)2dt 
need not equal 1. In fact, if Pi. is a parametr ic  function, then Var(Y.i(s)) 
depends on these parameters.  However~ if one defines p~j by the following 
relation 

eij(s) C,j(s) 1, (2.10) 
( c ~ ( o ) c ~ ( 0 ) ) ~  

then, pi..i(O) = i. Let 

q , ( 0 )  . . .  0 

P c  = �9 . .  �9 ) ,  

0 . . .  

and set R(s) = Dc  t '2O(s)Dc t'2. Then R(s) is a valid cross-correlation 
functiou aud, iu fact, if D~ t'2 diag(~l, . . . ,  ~ ) ,  we, can take, as a valid 
cross-covariance function C~ D~UeR(s)D~ t~2. In this parametrization, 
Var(Y/(s)) cri2. However, it is still the c,se that  Cov(Y/(s),Yj(s)) 

c~j(o) and will depend on the parameters in Ci and C). But ~rir x/c. (o)cjj (o) 

~[ajumdar and Celfand (2004) show that pii(s) ~nay be looked upon as 

a "correlation function" and p.ij(s) as a "cross-correlation function" since, 
under mild conditions, if the C~.'s are stationary, then  ]p.~j(s) _< 1 with 
equality if i j and s 0. 

3 C o r e g i o n a l i z a t i o n  m o d e l s  

3.1 Propert ies  of coregional izat ion models  

Coregionalization is introduced as a tool for dimension reduction in e.g., 
Grzebyk and V~:ackernagel (1994). It is reviewed in V~.~&ckernagel (2003) 



272 A. E. Gelfand, A. M. Schrnidt, S. Banerjee and C. F. Sirrnans 

and offered as a mulitvariate process modelling strategy in Schmidt and 
Celfand (2003) and in Sanerjee et al. (2004). The most basic coregional- 
ization model, the so-called intrinsic specification dates at least to Math- 
eron (1985). It arises as Y(s)  A w ( s )  where for our purposes, A is 

p x p full rank and the components  of w(s)  are i.i.d, spatial processes. 
If the wj(s)  have mean 0 and are stat ionary with variance 1 and corre- 
lation function p(h) then E ( Y ( s ) ) i s  0 and the cross covariance matrix, 
Ey(~),y(~,) ~ C(s  s') = p(s s 0 A A  T. Lett ing A A  w = T this imme- 
diately reveals the equivalence between the intrinsic specification and the 
separable covariance specification in subsection 5.1. 

The term :intrinsic' is often taken to  mean tha t  the specification only 
requires the  first and second moments of differences in measurement  vectors 
and that  the  first moment  difference is 0 and the second moments depend 
on the locations only through the separation vector s s ~. In fact here 

' C(s C(h) C(0) E ( Y ( s ) -  Y ( s 0 )  0 and fY]y(u)_y(#) - - s ' ) w h e r e  - 
C(h)  T - p(s - s ' )T  7 ( s -  s ' )T  Mth  7 being a valid variogram. Of 
course, as in the p = 1 case, we need not begin with a covariance function 

but  rather just specify the  process through 7 and T.  A more insightful 
interpretat ion of 'intrinsic' is tha t  

cov(Y)(s), Y),(s + h)) T)y 

+ + h)) 

regardless of h. 

For future reference, we note that  A can be assumed to be lower tri- 
angular, i.e., the Cholesky decomposit ion of T which is readily computed 
as in e.g., Harville (1997, p. 235). (T and A are 1 to  1; no additional 
richness accrues to a more general A.)  It is also worth noting that  if 
y T  = ( Y ( s , ) , . . . ,  Y ( s , ) ) ,  under the above structure, ~ - ] y  = R @ T where 
R is n • n with Rii, p(Si -- Si/). 

A more general LMC arises if again Y( s )  = A w ( s )  but  now the wj(s)  
are independent bu t  no longer identically distributed. In fact, let the wj(s)  
process have mean 0, variance 1, and stat ionary correlation function pj(h) .  

Then E ( Y ( s ) )  = 0 but  the cross-covariance matrix associated with Y ( s ) i s  
n o  Vv" 

P 

Zy(~),y(~,) - C(s s') = ~ & ( s  s')Tj, (a.L) 
3"=1 
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where T j  a j a r  with aj  the jth column of A. Note tha t  the T j  have rank 1 
and ~ i  T j  = T.  More importantly, we note tha t  such linear t ransformation 
maintains stationarity for the joint spatial process. 

Again we can work with a covariogram representation, i.e., ~qth 

EY(s) Y(s') ---- G(S--  S'), 

where G(s s') = E j  7J( s s ' )Tj ,  where q~(s s') = pj(0) pj(s d) .  
This specification for G is referred to as a nested cross covariogram model 
(Coulard and Voltz, 1992; Wackernagel, 2003) dating again to 2~fatheron 
(1982). 

V~.~ also note that  all of the prexdous work employing the LMC assmnes 
A is p • r, r < p. The objective is dimension reduction, a representation 
of the process in a lower dimensional space. Our objective is to obtain a 
rich, constructive class of multivariate spatial process models; we set r = p 
and assume A is full rank. 

Extending in a different fashion, we can define a process having a general 
nested covariance model (see, e.g., Wackernagel, 2oo3) as 

u=l 

where the Y(~) are independent  intrinsic LMC specifications with the com- 
ponents of w (~) having correlation function p~. The cross-covariance matrix 
associated with (3.2) takes the form 

P 

C ( s -  s') y p ~ ( s -  s ' )T  (=), (3.3) 
t g = l  

with T (~) = A(~)(A(~)) T. The T (~) are full rank and are referred to as 
coregionalization matrices. Expression (3.3) can be compared to (3.1). 
Note tha t  r need not be equal p but Ey(s)  = ~ T (~). Also, recent work of 

Vargas-Cuzmgn et al. (2002) allows the  w(~)(s) hence the Y(~) ( s ) in  (3.2) 
to be dependent.  

Lastly, if we introduce monotonic isotropic correlation functions, there 
win be, a r ange  a s soc ia t ed  w i th  each  ,omponent of t he  process ,  

1, 2, ...,p. We take, as the definition of the range for Yj(s), the  distance at 
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which the  correle~tion bel, ween Yj(s)  and Yj(s ')  becomes  0.05. In the  in- 
trinsic case there  is only one correla t ion funct ion,  hence the YJ (s) processes 
share a c o m m o n  range arising from this function.  An advantage  of (3.1) is 
t ha t  each Yj(s) has its own range. Detai ls  on how to  ob ta in  these  ranges 

are suppl ied  in Append ix  8. 

In appl icat ion,  we would  in t roduce  (3.1) as a componen t  of a general 
mul t ivar ia te  spat ia l  model  for the  data.  Tha t  is, we assume 

Y(s) = . ( s )  + v(s) + (a.4) 

where  e(s)  is a whi te  noise vecl, or, i.e., e(s)  ~ N ( 0 , D ) ,  where  D is a 
p x p diagonal  ma t r ix  wi th  (D) i  a- = r~. In (3.4), v ( s )  = A w ( s )  following 
(3.1) as above.  In pract ice,  we, ~ypically assume ~ ( s )  arises l inearly in the  
covariates,  i.e., f rom # j ( s )  X T (s)fl j .  Each  componen t  can have its own 
set of cove~riates wi th  its own coefficient vector.  

Note  Chat (3.4) can be  viewed as a hierarchical model .  At  the  first 
s tage,  given { / 3 j , j  = 1 , . . .  ,p} and  {v(s i )} ,  the  Y(s i ) ,  i = 1 , . . .  ,.n are 
condi t ional ly  independent,  wi~h Y(s~) ~ 2 , : ( , ( s i ) +  v ( s i ) , D ) .  A~ ~he sec- 
ond stage the  joint  d i s t r ibu t ion  of v (where v ( v ( s l ) , - . - , v ( s , , ) ) )  is 
N ( 0 ,  ~j=lP R j  O T j ) ,  where R j  is n • n wi th  (Rj)ii ,  /gj(si -- s i, ). Con- 
ca tena t ing  the  Y ( s i )  into an up • 1 vector  Y,  similarly /*(si) into , ,  we 
can marginal ize over v to  ob ta in  

(p ) f ( Y I { t 3 j } , D , { p j } , T )  N ~ , ~ - ~ ( R j | 1 7 4  . (3.5) 
j=l  

Pr iors  on {fl j},  {ry},  T and the pm'ameters  of 1,he pj comple te  a Bayes ian  
hierarchical  model  specification. 

3.2  U n c o n d i t i o n a l  a n d  c o n d i t i o n a l  s p e c i f i c a t i o n  of  t h e  L M C  

For the  process v ( s )  A w ( s )  as above,  t he  L M C  can be deve loped  th rough  
a condi t ional  approach  ra ther  t han  a jo in t  model l ing  approach.  This  idea  
has been  e l abora ted  in, e.g., Royle  and  Berliner (1999) and  in Berliner 
(2000) who refer to  it as a hierarchical model l ing  approach  to mul t ivar ia te  
spat ial  model l ing and predict ion.  It is p roposed  to  handle difficulties arising 
in cokriging and  kriging wi th  external  drift. 
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Vv'e first clarify the equivalence of conditional and unconditional spec- 
ifications in this special case where again, v(s)  = Aw(s )  with the wj(s) 
independent  mean 0, variance 1 Gaussian processes. By taking A to be 
lower triangular the equivalence and associated reparametrizat ion will be 
easy to see. Upon pernmtat ion of the components of v(s) we, can, without 
loss of generality, write 

f(v(s)) f(v~(s))f(v2(s)lv~(s)).., f(v~(s)lv,(s),-.-,v~ ,(s)). 

In the case of p 2, f(v~ (s)) is clearly N(0, Tu) ,  i.e. v~ (s) v / ~ w ~  (s) 
a ~ , ~ ( s ) ,  a n  > 0. Bu~ 

/ - 
T~2 

T .  ' T , , /  ' \ 

i.e. N ~ 'iksd, a22 ) .  hl fact, from the previous section we have Ev = 

p ( v O ) )  
~ j = l  Pry @ Tj .  If we permute the rows of v to -~ v(2) where v (OT 

(~',(sl), ~',(s,,)), I 1,2 then  r ~  P ' "  , = = Z j = ~ T j  |  Again w i t h p  = 

2 vv'e can calculate ~(V(2) IV(1)) alla21V(1) ~,[]d ~V(2)IV(1) a222t~2, t~ut 
this is exactly the  mean and eovariance structure associated with variables 
{ve(si)} given {v~(si)}, i.e. with ve(si) = ~77~(s,) + aeewe(si). Note that  
there is no notion of a conditional process here, i.e., a process v2(s)lvl(s ) 
is not well defined. What  is the q-algebra of sets being conditioned upon? 
Again there is only a joint distribution for v(1),v (2) given any n and any 
s~, . . .  , s,,, hence a conditional distribution for v (2) given v0) .  

Suppose we write v~(s) = q~ztq(s) where q~ > 0 and w~(s) is a mean 
0 spatial process with variance 1 and correlation function Pl and we write 
z'2(s)lvl (s) = avl  (s) + q2w2(s) where q2 > 0 and we(s) i s  a mean 0 spatial 
process with ve~riance 1 and correlation function P2- The parameterizat ion 
(a, cry, ~r 2) is obviously equivalent to (a~ ,  am, a22), i.e., a n  = cry, a2~ = a q~, 
a22 ~2 and hence to T, i.e., Tu  ~ ,  T~2 ac~,  T22 a2q~ + ~ .  
For general p, we introduce the following notation. Let vl(s) = q lwl(s )  

and given vl(s), ..., v, l(s), v,(s) Ej=I'-~ a}0vj(s) + r t 2,.. . ,p. 
Unconditionally, T introduces p(p + 1)/2 parameters.  Conditionally, we 
introduce p(p 1)/2 a.'s and p a's. Straightforward recursion shows the 
equivalence of the T parameterizat ion and, in obvious notation, the (G, c~) 
parametrization. 
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Advantages to working with the conditional form of the model are cer- 
tainly computat ional  and possibly mechanistic or interpretive. For the 
former, with the (r c~) parametrization, the likelihood factors and thus, 
with a matching prior factorization, models can be fitted componentwise. 

R~ther t han  the pn x pr~ covariance matrix involved in working ~ t h  v 
we obtain p n • n covariance matrices, one for v (1), one for v(2)lv (1), etc. 
Since likelihood evaluation with spatial processes is more than an order n 2 
calculation, there can be substantial computat ional  savings in using the 
conditional model. Mechanistic or interpretive advantages arise in model 
specification. If there is some natural  chronology or perhaps causality in 
events then this would determine a natural  order for conditioning and hence 
suggest natural  conditional specifications. For example, in the illustrative 
commercial real estate example of Section 6 we have the income (I) gen- 
erated by an apar tment  block and the selling price (P)  for the block. A 
natural  modeling order here is I then P given I .  

3 .3  L i m i t a t i o n s  of  t h e  c o n d i t i o n a l  a p p r o a c h  

V~orking in a Bayesian context, it is appropriate to ask about  choice of 
parametrizat ion with regard to prior specification. Suppose we let Cj be 
the parameters associated with the correlation function pj. In the  hlathrn 
family p j ( s -  s') oc (61 I s -  s ' l l ) ' / 2 ~ , ( r  s'll ) where ~, is a modified 
Bessel function of order 7/ (see Stein, 1999) so ~bj = (@,7/j). For the 
powered exponential family p(s - s') exp { -  (r s - s'l I)"}, 0 < r /<  2, so 
Oj = (@, r/y). Let CT = ( ~ , . . .  , Cp). Then the distribution of v depends 
upon T and ~b. Suppose we assume tha t  a priori f ( T ,  0) - f ( T ) f ( 0 )  - 
f ( T )  [ I j  f ( r  Then  reparametrizat ion to the (r space results in a 
prior f @ r  ~,  0) f @ r  c~) ~Ij f(q~j) - 

Standard prior specification for T would be an inverse Wishart  (see, 
e.g., Box and Tiao, 1992). Standard prior modelling for (G 2, c~) would be a 
product  inverse Gamma by normal form. In the present situation, when will 
they agree? Appendix 9 addresses this question. It reveals that  if and only 
if the  Inverse Wishart  distribution for T has a diagonal centering matrix,  
then the distribution for (r72, ~ )  ~ill take the inverse Gamma/norma l  form. 
In particular, we have the following theorem which generalizes a result in 
Banerjee et al. (2004, p. 235) 
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T h e o r e m  3 . 1 .  

T ~ / I ' K p ( u , ( A )  1), i.e., f ( T ) ~ ] T ]  "+'+lexp{- l t r ( A T  1)} 

wh.ere & is ghtgonal, ~ki.i. Ai. i.f.f, f(or2, o~) talzes th.e form. 

p 

l=2 ./ 

~h.gyg 

J A ~  " 

Note that  the prior in (~, ~)  space factors to match the likelihood fac- 
torization. Note further that  this result is obviously order dependent.  If 
we condition in a different order the cr's and a 's  no longer have the same 
meanings. An hnportant  point is that~ though there is a 1 -  1 transforma- 
tion from T space to (~r cQ space, a V~qshart prior with non diagonal D 
implies a nonstandard prior on (~r c~) space. Moreover, it implies that  the 
prior in (~, c~) space will not factor to match the likelihood factorization. 
Hence, to employ the conditional approach advantageously, the scope of 
priors for T is linfited. 

V~.~ further note tha t  the conditional approach cannot be applied to the 
model in (a.4). Consider again the p 2 case. If 

~(~) x f (~ )~  + v~(~) + q(~), 

~(~) x~ (~)~ + v2(~) + ~(~), 
(3.6) 

then the conditional form of the model ~ ' i tes  

xT(s)~l + ~,~(s)  + ~ ( ~ ) ,  

x~(~)~2 + ~ (~)+ ~2~,~(~)+ ~ ( ~ )  
(3.7) 

In (3.7), wj(s)  and w2(s) are as above ~qth uj(s) ,  ~2(s) N(0, 1), inde- 
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pendent of each other and the w,(s), t 1, 2. But then, unconditionally, 

= + 

+ ( a . s )  

In a t tempt ing to align (3.8) with (3.6) we, require X2(s) - Xt  (s) whence 
f2  f i 2 - - a f l .  Vv'e also see that  v2(s) acrlwt (S)--cr2w2(S). But, perhaps 
most importantly, <2(s) = a r ]u] (s )  + r2u2(s). Hence, q ( s )  and e2(s) are 
not independent,  violating the white noise modeling assumption associated 
with (3.6). If we have a white noise component in the  model for Yl(s) 
and also in the conditional model for Y2(s)lYl(s) we do not have a white 
noise component in the unconditional model specification. Obviously the 
converse is t rue as well. 

If a~(s) = 0, i.e., the Yl(s) process is purely spatial then again with 
Xt ( s )  = X2(s) the  conditional and marginal specifications agree up to 
reparametrization. More precisely~ the parameters for the unconditional 
model are fit, f2 ,  r~ with T11, T12, T22, 01 and 02- For the conditional 
model we have i t ,  f2 ,  r~ ~qth ~], ~2, a, 01 and 02. V~.% can appeal to 
the equivalence of (T,t, T,2, T22) and (~rt, ~r2, a) as above. Also note tha t  
if we extend (3.6) to p > 2, in order to enable conditional and marginal 
specifications to agree, we will require a common covariate vector and tha t  
~ ( s )  = u~(s) . . . . .  ~ ,  t(s) = 0, i.e, that  all but one of the processes 
is purely spatial. The foregoing limitations encourage us to abandon the 
conditional approach in the  sequel. 

Lastly, we conclude by returning to (3.6), supposing we have da ta  
Y(si.) T (Yl(si), Y2(si)), i 1 ,2 . - -  ,n.  U:e can ,,a'ite (3.6) using obvious 
notation as 

Y(s.i) X(s~.)f + v(s.i) + e(s.i). 

Then, with Y and v as above, we can marginalize over v to obtain 

j = l  

where f~ is diagonal with alternating entries T] and r,~. Such marginaliza- 
tion is routinely done in the  case of p 1 to reduce model ctimension and 
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pernfit more efficient simulation-based model fitting. The v~ (s) can be re- 
trieved one-for-one with the posterior samples. See Agarwaal and Celfand 
(2004) for details. In the present case marginalization reduces model di- 
mension by 2n. This computat ional  advantage may be offset by the need 
to work with a 2n • 2n cov~riance m~trix. Is it possible to work with (:3.6) 
and yet take advantage of conditioning to enable working with two .n • .n 
covariances matrices? Suppose, as in Section 3.2, tha t  we permute  the rows 
of v to ~ ~ t h  corresponding permutat ion of Y to Y and X to IK. Then, 
we can re'ire the  unmarginalized likelihood as 

f (g0) I  r v 0) , r~) 

• f (  v(1) l~,  4~])f(Y(2) I~=, v(Z), rff)f(v(z) I v(a), o, or2, 4~2) (3.9) 

where the nmrginal and conditional distributions for v 0) and v(2)lv (a) in 
(3.9) are as above while f ( Y ( J ) l f l j ,  v(J), ~ )  = N(x(J ) f l j  + v (j), ~ I ) ,  j = 

1, 2. V~.% can marginalize over v (2) in (3.9) replacing the third  and fourth 
terms by f(Y(2)lf32,v0) , r~,a ,c~2,02)  N(X(2)r + c~vO),o-gR2 + r~I). 
In the resulting factorized form we have two n • n matrices but retain the 
additional .n components of v 0) in the likelihood. This compromise is the 
most we can derive from conditioning; marginalization over v (2) returns us 
to the joint distribution of Y. 

4 A spatially varying LMC 

We now turn  to a useful extension of the LMC replacing A by A(s)  and 
thus defining 

v(s) A(s)w(s) (4.1) 

for insertion into (3.4). We refer to the model in (4.1) as a spatially varying 
L ic (svL  c).  ollo<ngthe notation in Section a, let 
Again A(s)  can be taken to be lower triangular for convmfience. Now 
C(s, s') is such that  

c(s,s')  = Zp (s 
J 

with a j (s )  tile flh colmnn of A(s).  Lett ing Tj ( s )  a j ( s )ay ( s ) ,  again, 
E j  T j ( s )  T(s) .  V~"e see from (4.2) that  v(s) is no longer a stat ionary 
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process. Let t ing O, the co,rariance ,natr ix for which 
is a multivariate version of the case of a spatial process with a spatially 
varying variance. 

This suggests modeling A(s)  through its one-to-one correspondence 
~ i th  T(s) .  In the univariate case, choices for cr2(s)include: c~2(s, 0 ) i . e .  
a parametr ic  function or t rend surface in location; cr2(a:(s)) g(z(s ) )~  2 
where x ( s ) i s  some covariate used to explain Y(s)  and 9(') > 0 ( then 
9(x(s)) is typically x(s) or .z2(s)); or ~r2(s) is itself a spatial process (e.g., 
log ~2(s) might be a Gaussian process). Extending the second possibility, 
we take T(s )  = 9(~:(s))T. In fact, below we take g(~:(s)) = (~:(s)) ~' with 
~, > 0, but  unknown. This allows homogeneity of variance as a special 
case. Particularly, if, say, p = 2 with (Tu,  T~2, T22) r (~r~, ~r2, a),  we oh- 

Extending the third possibility, we generalize to define T(s)  to be a 
metric-variate spatial process. An elementary way to induce a spatial pro- 
tess for T(s)  is to work with A(s), specifying independent  mean 0 Caussian 
processes for bjj,(s), i <_ j '  <_ j <_ p and setting ajj,(s) = bjj,(s), j # f ,  
 jj(s) = Ibjj(s)l. However,  such specification yields a nonstandard and 
computat ionally intractable distribution for Z(s).  

Suppose, instead, tha t  we seek a spatial process for T(s)  such that ,  as 
in Section 3.3, marginally, T(s)  has an inverse V~rishart distribution. Tha t  
is, we would like to induce what we ,night call a matric-variate inverse 
Wishart  spatial process for T(s) .  Equivalently, we seek a matric-variate 
V~ishart spatial process for T - ] ( s ) .  

Vv'e can build such a process constructively following the definition 
of a V~ishart distribution. In particular, recall tha t  f~ r z z r r  r 

r r  i fZ = ( Z 1 , . . . , Z ~ ) i s p •  7J with Z/j i.i.d. 2~r(0, 1), I = 1,...,TJ, 
j = 1 , . . . , p .  Suppose, we have 7/p independent  mean 0 stat ionary Gaus- 
siem spatiM processes such that  Z/j(s) has correlation function p j ( s -  s'). 

Tha t  is, we have p different spatial processes and 1/ replications of each 
one. Defining f~(s) FZ(s)Z T (s)P T, we will say tha t  f~(s) is a matric- 
variate stat ionary spatial Wishart  process, SI'Vp(TJ, FF r ,  p ] , . . . ,  pp). The 
association structure for this process is provided on Appendix 10. 

In either of the  above cases, since T(s)  is random, v(s)  A(s )w(s )  is 
not only nonstat ionary but  nonGaussian. In our application in Section 6 
we assume T(s)  to be a spatial V~rishart process. V~.5 take r to be diagonal 
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and a common p for all j .  Regardless, the correlation functions in the 
spatial Wishar t  process are apart  from those associated with w(s) .  In our 
application we have p = 2 and take 7J = 3, a total  of 6 latent Gaussian 
processes. 

5 M o d e l  f i t t i n g  i s sues  

Previously, only least squares techniques have been used in order to make 
inference abou t  the parameters of the LMC (e.g., Wackernagel, 2003). Here, 
within the Bayesian framework, we use l\iarkov chain Monte Carlo methods 
to obtain samples from the posterior distribution of interest. This section 
starts by discussing the computat ional  issues in fitting the joint multivari- 
ate model presented in Section 3. Then, we briefly consider fitting the 
conditional model (of interest when we have the equivalence of the joint 
and conditional models) as discussed in Section 3.3. Then we turn to issues 
in fitting the SVLMC. 

5.1 F i t t ing  the  joint  LMC mode l  

Under the  Bayesian paradigm, the model specification is complete only after 
assigning prior distributions to all unknown quantities in the model. The 
posterior distribution of the set of parameters  is obtained after combiNng 
the information about  them in the likelihood (see equation (3.5)) with their 
prior distributions. 

Observing equation (3.5), we see that  the parameter  vector defined as 0 
consists of {~j}, D, {p/}, T, j 1,-.. ,p. Adopting a prior which assumes 
independence across j we take 7r(0) = l-[dp(~d)p(pj)p(Tf)p(T). Hence 
7r(0lY), is given by 

w(0[Y) oc f (g [{~} ,  D, {pj}, T) w(0). 

For the elements of ~j  a normal 0 mean prior distribution with large vari- 
ance can be assigned resulting in a full conditional distr ibution which ~ill 
also be normal. Inverse Gamma distributions can be assigned to the ele- 
ments of D, the variances of the p white noise processes. If there is no in- 
formation about  such variances, the means of these inverse Gammas could 
be based on the least square estimates of the independent models with 
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large variances. Assigning inverse Gamma distributions to Tj 2 will result 
in inverse Gamma full conditionals. The parameters  of concern are those 
associated with the  pj and T.  Regardless of what  prior distributions we 
assign, the full conditional distributions will not have a s tandard form. 
For example, if we, assume that  pj is the exponential correlation function, 
pj(h)  e x p ( - a j h ) ,  a Galmna prior distr ibution can be assigned to tile 
Cj's. In order to obtain samples of the Cj's we can use the Metropolis- 
Hastings algorithm with, for instance, log-normal proposals centered at the 
current log Cj. 

V% now discuss how to sanlple T,  the cov~riance matrix anlong the 
responses at each location s. Due to the  one-to-one relationship between 
T and the lower triangular A one can assign a prior to the elements of 
A or set a prior on the matrix T.  The latter seems to  be more natural,  
since T is interpreted as the covariance matrix of the elements of Y(s ) .  
An inverse Wishart  prio L as in Subsection 3.3, would be adopted~ likely 
taking ~ diagonal, obtaining rough estimates of the diagonal elements using 
ordinary least squares estimates based on the independent  spatial models 

for each Yj(s), j = 1 , . , .  ,p. A small value of 7~(> p +  1) would be assigned 
to provide high uncertainty in the  prior distribution. 

To sample from the full conditional of T Metropolis-Hastings updates  
are a place to start .  It is necessary to guarantee tha t  the proposals are 
positive definite, therefore we suggest to use an inverse Wishar t  proposal. 
From our experience, it is not advisable to employ a random walk proposal, 
i.e., a proposal centered at the current value of T. We have observed 
severe aul, ocorrelation and very slow convergence. This runs counter to 
suggestions in, e.g., Browne et al. (2002), Section 3, but  may be due to 
the way tha t  T enters in the likelihood in (3.5). In fact, since we use a 
rather non-informative prior for T, it seems necessary to use a proposal 
which incorporates an approximation for the likelihood. In this way, we 
tend to make proposals which fall in the region where there is consequential 

posterior density. More specifically, letting E y  Ej=I (Hi  | +I,•  
D,  from (3.5) the likelihood is proportional to 

{ 1 ( Y -  tt)T EY~ (Y - i t ) }  ' I exp - 5  

i.e. tha t  

7r(Tl{flj}, D, {Pj}, Y)  
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oc ] E y ]  n P / 2 e x p {  l ( y  ~ ) T E y l ( y  N)}Tr(T).  (5.1) 

If we can approximate the likelihood contribution on the right side of (5.1) 
by an inverse Wishar t  form, then, combined with the inverse Wishart  prior 
for 7r(T), an inverse Wishart  proposal results. 

Suppose we set D 0, i.e. assume a purely spatial model for the Y(si ) .  

If we further set all of the Cj to o% i.e. the Y(s i )  become independent  then 
E y  I | T and (5.1) is an inverse V~qshart distribution. This proposal is 
too crude in practice so instead we could assume all @ are equal, say to 
whence E y  has the separable form R(4~)| In (.5.1) a more refined inverse 
Wishar t  results. As a choice for the common r we could take some sort 
of nlean of ~he currenl, ~j's. Unfortunately, this proposal has not worked 
well. The parameters  Cj and the elements of T tend to be highly correlated 
a posteriori .  Therefore, the scale matrix of the inverse Wishart  proposal 

for T will be strongly affected by the values that  we use for r Hence, 
the Metropolis-Hastings algorithm does not move much. This problem is 
exacerbated when the dimension of Y( s )  is increased. It is easier to work in 
the unconstrained space of the components of A and so we reparametrize 
(5.1) accordingly. Random walk normal proposals for the a's with suitably 
tuned variances will move well. For the case of p = 2 or 3 this strategy 
has proven successful. Indeed, we employ a more general version to fit the 
SVLMC as we describe below. 

Another alternative to build a Markov Chain Monte Carlo algorithm, is 
to use a slice sampler procedure (Neal, 2002; Agarwaal and Gelfand, 2004), 
by introducing a uniform latent variable U, such that  

U ~ U I0, f ( Y ] { ~ j } ,  D, {pj} ,  T)] . 

In introducing this latent variable U all the other full conditionals will 
natural ly be affected by this constraint, as the posterior becomes 

7r(0, UIY ) oc I (U < f(YI{~9}, D, {69}, T)) 
J 

Metropolis proposals are no longer needed. To update  the components of 
8 we merely sample fl'om their priors subject  to the indicator restriction. 
The full conditionals are sampled directly; this is a pure Gibbs sampler. 
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5.2 F i t t i n g  t h e  c o n d i t i o n a l  m o d e l  

In cases where it is applicable, working with the conditional specification 
provides easier model-fitting. In particular, following the discussion in Sub- 
section 3.3, for a general p, assuming no pure error terms, the conditional 
parametrizat ion is given by 

~(~) 
Y~(~)l~(~) 

= x T  (S)/~1 @ 0-17s (S) 

x~ (~)~ + ~ f , ( ~ )  + ~.,~(~) 

: (5.2) 
~(~)1~(~),. .-,  ~(~) x~(~)& + ~ ( ~ )  +.- .  

+o.~l~ ~ ~ (~) + ~,~(~). 

In (5.2), the set of parameters to lye est imated is O~ {]3, c~, ~ 2  ~b}, where 

and ~b is as defined in Subsection 3.3. The likelihood is given by 

fc(YlO~) f ( Y ~ l O < ) f ( Y l l Y ~ , O ~ 2 ) . . ,  f (Yp lY~ , . . .  ,Yp_~,o~) .  (5.3) 

If ~(0~) is taken to be P [Ij=~ 7r(0~5 ) t h e n  (5.3)implies tha t  the conditioning 
yields a factorization into p models each of which can lye fitted separately. 
Prior specification of the parameters  was discussed in subsection 3.3. With  
those forms, s tandard univariate spatial models arise which can be fitted 
using, for instance, the software GeoBugs Spiegelhalter et al. (1996). 

5.3  F i t t i n g  t h e  S V L M C  

Fitting the SVL~IC, working,,~th T(~) -  g(x(~))T with g(~:(~))- (x(~)F 
can proceed as in Subsection 5.1. Again, we update the a's using random 
walk normal proposals. We adopt a mfiform prior for 0, e.g., on [0,2] and 
do Metropolis updating. When T(s)  arises from an inverse Wishart  spatial 
process, we now work in the Z(s) space ~ t h  I/ independent  replications 
of each of p independent spatial processes. Each process is updated  using 
Metropolis steps with normal proposals. For convenience, in the  example 
below, all pj were taken to lye the same - exponential with decay parameter  
roughly 1/4 th  of the maximum inter-site distance. 
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6 A c o m m e r c i a l  r e a l  e s t a t e  e x a m p l e  

The selling price of commercial  real estate, for example an apar tment  prop- 
erty, is theoretically the expected income capitalized at some (risk-adjusted) 
discount rate. (See Kinnard, 1971, and Lusht, 1997, for general discussions 
of the basics of commercial property valuation theory and practice). Since 
an indi~ddual property is fixed in location, upon transaction, both selling 
price and income (rent) are jointly determined at tha t  loce~tion. A sub- 
stantial body of real estate economics literature has examined the (mean) 
variation in both selling price and rent. (See Geltner and Miller, 2001, for a 
rexdew of the empirical l i terature on variations in selling price.) Benjamin 
and Sirmans (1991) provide a survey of the empirical l i terature on the de- 
terminants  of rent of apartments) .  While location is generally included as 
an explanatory variable in the empirical estimation, none of the current  lit- 
erature has examined the  spatial processes in selling prices and rents using 
a joint modelling framework. From a practical perspective, understanding 
the spatial nature  of commercial real estate selling prices and rents has 
important  implications for real estate finance and investment analysis. For 
example, default rates on mortgages backed by commercial real estate are 
highly sensitive to variations in prices and income. (See T i tman  et al., 
2001, for a discussion). 

V~ consider a dataset  consisting of apar tment  buildings in three very 
distinct markets, Chicago, Dallas, and San Diego. The data  were purchased 
from the CoStar Croup, Inc. (w~r~. c o s t a r g r o u p ,  corn). We have 252 build- 
ings in Chicago, 177 in Dallas, and 224 in San Diego. In each market,  
20 additional transactions are held out for prediction of the selling price. 
The locations of the buildings in each market  are sho~u~ in Figure 1. Note 
tha t  the locations are very irregularly spaced across the respective markets. 
In fact, the locations were reprojected using UTM projections to correct 
for the difference in distance between a degree of latitude and a degree of 
longitude. All of the models noted below were then fitted using distance 
between locations in kilometers. 

Our objective is to fit a joint model for selling price and net income and 
obtain a spatial surface associated with the risk, which, for any building, 
is given by net income/price. For this purpose we fit a model using the 
follow, Jag covariates: average square feet of a utfit within the building (sqft), 
the age of the building (age) and number of units ~ t h i n  the building (unit) 
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and the array. As is customary, we work with the logselling price of the 
transaction (P) and the lognet income (I). Figure 2 shows the histograms 
of these ve~riables. Note tha t  they  vary considerably across markets. The 
model is 

I(s)  sqa(s)..~,~ + age(~)..~,2 + u,~t(~).&3 + v~ (~) + q (~) (0.1) 
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I I C h i c a g o  D a l l a s  San  Diego  

M o d e l  G P D G P D G P D 

M o d e l  1 0.179;3 0 .7299 0.9092 0 .1126 0.51:38 0.62,64 0 .0886 0 .4842 0 .5728 

M o d e l  2 0.1772 0 .6416 0 .8188 0 .0709 0 .4767 0 .5476 0.08;39 0 .4478  0 .5317 

M o d e l  ;3 0.1794 0.6;368 0.8162 0 .0715 0 .4798  0 .5513 0 .0802 0 .4513 0 .5315 

M o d e l  4 0.1574 0 .6928 0.8497 0 .0486 0.498.5 0..5421 0.071;3 0 .4588  0.5:301 

Table 1: %,Iodel choice resuIts for each of the markets  using models 1, 2, 3 and 4, 

In (6.1) we consider four model specifications. Model 1 is an intrinsic 
LMC, i.e., it assumes a separable specification for v(s) .  Model 2 assumes 
the more general LMC of 3 for v(s).  ikiodel 3 is a SVLMC using the 
form T(s )  = (a:(s))~"T where a:(s) is a n i t ( @  The supposit ion is tha t  
variability in I(s)  and P ( s )  increases in building size. Finally, model 4 uses 
a s tat ionary matric-variate spatial Wishart  process for T(s) .  

Vv'e use exponential correlation functions and the decay parameters  Oj, 
j = 1, 2 have a Gamma prior distribution arising from a mean range of one- 
half the maximum interlocation distance, with infinite variance. Finally, r~, 

the variance of e(.), has an inverse Gamma prior centered at the ordinary 
least squares variance estimate obtained from an independent model for log 

selling price given log ne~ income. Table 1 prox4des ~he model choice results 
for each of the markets using the posterior predictive criterion of Gelfand 
and Ghosh (1998). In the Table g is the goodness of fit contribution, P is 
the penalty term and D is the sum. All models were fit using two parallel 
chains, subjecting the output  to usual convergence diagnostics. Because we 
are working with Gaussian likelihoods, chains are well-behaved, burning 
is brief, and convergence is rapid. Evidently, the intrinsic model is the 
weakest. Models 2, 3, and 4 are quite close though an SVLMC is best for 

each market  (Model 4 in Dallas and San Diego, Model 3 in Chicago). For 
all three markets, Model 4 is best  in terms of g so, below, we provide the 
results of the analysis using model 4. (As an aside, we note that  under 
Model 3, starting with a U[0,2] prior, the est imate of ~/, lies between 1 
and 1.2 for each of the markets, discouraging a homogeneity of variance 
assumption.)  

In particular, Table 2 presents the posterior summaries of the param- 
eters of the model for each nmrket. Age receives a significant negative 
coefficient in Dallas and San Diego but  not in Chicago, perhaps because 
Chicago is an older city; a linear relationship for I and P in age may not 
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I I (-'. hic ~go I D ~ l l ~ s  I S~n D i e g o  
S~les  P r'ice 

5OCTu 2 5 %  97.5  % 5OCTu 2.5c7u 97.5  % 5OCTu 2.5c7u 97.5  % 
I n t e r c e p t  2 6 3 E J - O O  2.6O]EJ-00 2 6 ~ E J - O O  2.871EJ-OO 2.841EJ-00 2 9J. EJ-OO 2.611EJ-00 2 ~8EJ-OO 2.6~EJ-OO 

A g e  8.641E 05 1.071E 04 4 1 0 E  0 4  9 5 5 E  04 1 . 4 9 E  03 5 1 8 E 0 4  3.851E 04 7 . 2 1 E  04 5 4 0 E  05 
N o  U n i t s  1.28]{-03 1 .01E.-03 1 5 1 E - 0 S  4 .64]{-04  4 0 9 E - 0 4  5 . 3 6 E - 0 4  1.42]{.-03 1 2 2 E - 0 3  1.58]{-03 
S q f t / U n i t  2 8 3 E 0 5  5.93]E 05 1 1 0 E 0 6  1.0lIE 04 2 . 4 0 E  06 2 . 2 1 E  04 1 . 4 9 E  05 4 . 1 3 E  05 7.82]E 05 

w 1 7.081E 04 5 . 5 2 E  04 8 8 6 E  0 4  6.761E 04 5 0 5 E  04 1 . 0 3 E  03 5 . 4 5 E  04 4 0 1 E  04 7.251E 04 
r 1 , 8 4 E - 0 1  7 ,59E.-02 4 , 4 2 E - 0 1  1,84]E-01 7 , 2 8 E - 0 2  4 , 7 5 E - 0 1  1,18]E.-Ol 5 , 8 7 E - 0 2  4.,~,~,E-01 

N e t  I n c o m e  
Pazameter  5 0 ~  255~ 97.5 5~ 50~  2 .5~  97.5 5~ 50~  2 .5~  97.5 5~ 
I n t e z c e p t  2 5 3 E + 0 0  2.51]{.@00 2 5 4 E @ 0 0  2.45]{.+00 2 . 4 2 E @ 0 0  2 4 9 E + 0 0  2 . 8 5 E + 0 0  2 3 2 E @ 0 0  2 . 3 9 E + 0 0  

A g e  1.10]E 04 2 . S 0 E  04 3 6 9 E  0 4  l l S E  03 1.67]E 03 5 9 8 E 0 4  4.55]E 04 8.57]E 04 1 2 9 E  0 4  
No, Unit,~ 1,50]E-08 1,87]~-08 1 ,79G-08  b,34]E-04 4 , 0 0 E - 0 4  0 , 1 8 E - 0 4  1,~,9]~-08 1 , 4 1 E - 0 8  1,87]E-08 
S q f t / U n i t  - 1 6 8 E - 0 5  -o .40]{-05 1 1 9 E - 0 5  1 .31]{-04 -3.O9]E-05 3 . 2 6 E - 0 4  1 . 9 1 E - 0 5  - 5 . 3 4 E - 0 5  8 .22]{-05  

~ 9 .93]{-04  7 . 4 5 E - 0 4  1 2 5 E - 0 3  9 .53]{-04  7 1 7 E - 0 4  1 . 3 0 E - 0 S  6 . 7 1 E - 0 4  4 6 8 E - 0 4  9 .o9]{-04  
~2 1.79]E 01 7.78]E 02 4 7 9 E  01 1.75]E 01 8 5 6 E  02 4 . 2 5 E  01 1.22]E 01 5 5 9 E  02 &.54]E 01 

Table 2: Posterior media.n a.nd respective 2.5% and 97.5% quantiles of the pa.ra.m- 
eters involved in the model for price and net income as described in equation (6.1). 

be adequate.  Number  of uuits receives a positive coefficient for both  I and 
P in all three markets. Square feet per refit is only significant in Chicago. 
The pure error variances (the r2's) are largest in Chicago, suggesting a hit 

more uncertainty in this market. The ~'s are very close in Dallas and San 
Diego, a bit less so in Chicago. The benefit of Model 4 lies more in the 
spatially varying A(s), equivalently T(s),  than in differing ranges for w 1 (s) 

and w2 (s). Turning to Figure 3 we see the spatial surfaces associated with 
T~(s), T..(s), and T~.(s)/x/Tn(s)T:2(s ). Note that the Tn and T.. sur- 
faces show considerable spatial variation and are quite different for all three 
markets. The correlations between vl (s) and v2(s) also show considerable 
spatial variation, ranging from .55 to .7 in Chicago, .3 to .85 in Dallas, .3 
to .75 in San Diego. In Figure 4 we turn to  the est imated residual spa- 
tial surfaces (adjusted for the above covariates) for I(s) ,  P ( s )  and R(s).  
Most striking is the similarity between the I ( s )  and P ( s )  surfaces for all 

three markets. Also noteworthy is the spatial variation in each of the  risk 
surfaces, suggesting that  an aggregate market  risk is insufficient to make 
effective investment decisions. 

Finally, recall tha t  twenty buildings were held out in each of the markets. 
Model choic% again using the Gelfand-Ghosh criterion (Gelfand and Ghosh, 

1998) could be applied for the twenty held out  buildings in each market. 
Hence, we can compare the models employing da ta  not used to fit the 
models. Omitt ing details, again Model 4 emerges as best. We can also 
consider validation of prediction using the hold out samples. Rather  than 
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Figts'e 3: Spatial surfa.ces associated with the spatiaIly varying T(s) for the three 
cities, Chicago (top row), Dallas (,,fiddle rosy) and San Diego (bottom row), with 
the colu,,ms correspo,~di,~g to T:~ (s), T:2 (s) a,~d %o~ (s). 

detailing all of the predictive intervals for each I and P in each market, 
we summarize by noting that  for P, in Chicago 18 of 20 9.5% predictive 
intervals contained the observed value, 20/20 in Dallas and 20/20 in San 
Diego. For I, we have 19/20 in each market. It appears that  Model 4 is 
providing claimed predictive performance. 
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Fi~,Ln'e 4: Residua.l spatia.l sm'fa.ces associated with the three processes, Wet h~- 

come, Sales Price a.nd Risk, for the three cities, Chicago (top row), Da.llas (middle 

row) a.nd San Diego (bottom rosy), with the columns corresponding to Net Income 

(t),  Sa.los Price (P) a.,,d Risk (R). 

7 D i s c u s s i o n  a n d  e x t e n s i o n s  

In this paper we have proposed the use of the linear model of coregion- 
alization to provide a flexible framework for multix;ariate spatial process 
modelling. Working with Gaussian processes, we began with the intrin- 
sic specification and proceeded to a more general version. But then  we 
introduced a spatially varying linear model of coregionalization to enable 
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nonstat ionary multivariate spatial process models. Here we offered a ver- 
sion which allowed for heterogeneity to vary as a function of a covariate and 
then a more general version, introducing heterogeneity through a spatially 
varying Vs process. 

Future effort will consider non Gaussian models for the data, e.g., ex- 
ponential family models for the components  of Y(s ) .  Dependence ~qll be 
introduced through components of a vector of spatially dependent  random 
effects modeled as above. Also of interest are spatio-temp oral versions mod- 
eling v ( s , t )  A ( s , t ) w ( s , t )  where the components  of w, w/(s , t )  are inde- 
pendent  spatio-temporal  processes. Depending upon the context, A(s ,  t) 
may be simplified to A(s) ,  A( t )  or A. Convetflent choices for the w,(s , t )  
would be space-time separable specifications. 

8 R a n g e  c a l c u l a t i o n s  for  t h e  L M C  in S e c t i o n  3.1 

In Section 3.1 we noted that  the LMC enables a distinct range for each 
component  of the nmltiv~riate process. Her% we provide further detail. In 
particular, for p 2 the range for Y~(s) solves p~(d) 0.05, while the range 
for Y2(s) solves the  weighted average correlation 

2 
G e ,  (d)+ = O.OS. (8.1) 

Since pl and p2 are monotonic the left hand side of (8.1) is decreasing 
in d. Hence, given the a's and Pl, P2, solving (8.1) is routine. When p 3, 
we need in addition, the range for ~ ( s ) .  We require the solution of 

+ Gp (d) + o.os. (s.2) 
+ G + 

The left hand side of (8.2) is again decreasing in d. The form for general 
/) is clear. 

The range d is a parametric  function which is not available explic- 
itly. However, ~i thin a Bayesian context, when models are fit ted using 
simulation-based methods,  we obtain posterior samples of the parameters  
in the p f s ,  as well as A.  Each sample, when inserted into the left hand 
side of (8.1) or (8.2), enables solution for a corresponding d. In this way, 
we obtain posterior samples of each of the ranges, one-for-one with the 
posterior parameter  samples. 
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9 A l i g n i n g  priors for u n c o n d i t i o n a l  and cond i t i ona l  process  
specif icat  ions 

Here we prove l, he result stated in Secl, ion 3.3. Again, we h a v e / ( T I A  , v) oc 

ITI ~+~+~ exp { } t r A T  -1 }. Part i t ion T as T Tpp and zX as Tp 1,p 
( A(p 1) 0 ) 

0 ZXp . Since v ( s ) ~  A'~(0, T), given ~'l(s), ...,~'~ l(s), 

vp(s) ~ N(T~_I ,p(T@-I)) - Iv(  p) ,Tpp-  T~_I,p(T@-I))- ITp 1.p), 

where v ~ (v l (~) , . . . , v~  1(~). hence, using the notation of Section 
3.2, C~p (T(p 1))1Tp_I,p and o-p 2 ~pp_ ~/_l,p(T(p 1))1Tp_I,p where 

r (a~p) @) ' So, given T (p 1) the mapping from (Tp_l,p, Tpp) to O~p . , . . . ,Ctp 1}" 
(ctp, cr~) has Jgcobian IT+-1) I. 

Standard results (see e.g. Harville, 1997, Section 8.5) yield ITI -- 
~ Ir  (p 1) I and 

T 1 =  T(p 1)+ T 2 __Otp/O-2 
- ~ / ~  1 / ~  �9 

Making the change of variable, 

we immediately have tha t  cr~ .~ IG@/2 ,  As/2)  and given cry, 

,~  ~ n (0 ,~ (A(~  1)) 1). 

e the (P) Moreover, since A(p-1) is diagonal, given ~r, a 5 are conditionally 

independent with ct.i crp . 

More importantly, we see tha t  ( ~ ,  c~p) are independent of T (p-l). Pro- 
ceeding backwards, we have for each t, (~r~,c~l) is independent of T (l-1), 
I 2 , . . . , p  and thus T 0) Tn  cry, (Crg, C~2),..., (Crp2,C~p) are indepen- 
dent. Also, setting p 2 in the above calculation reveals tha t  f (TO))  oc 

IT(~)I"T* exp{_~_trA(D(T(1)) 1}, i.e. /(or 2) oc g2 @+* exp{-~-(A1/s~)},  
i.e., ~ ~ : C ( " ~  1, ~ ) .  Hence the result is proved. 
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10 A s s o c i a t i o n  s t r u c t u r e  for t h e  spa t ia l  W i s h a r t  p r o c e s s  

Here we develop the  spatial association s t ructure  for a general SI'Vp (7/, F F  T, 
p~, , pp  process First, let S(s) Z(~)Z~(~) What can we say about 
the association between S(s) and  E(s ')? In fact, we t~ave tt~e following 
simple results: 

cov(SZ (s), Sj j  (s')) 

co~,(sjj, (s ), s z ,  (s') ) 

cov(Zj  (s), zk~., (s') ) 

= 2,~g(~ ~') 

= ,/pj(s s ')pj,(s s'), j r  

= O, if either j ~ k or j '  ~ k'. 

So S(s) is SI~ p(tJ, I, P1, - . - ,  Pp) and is comprised of 2 

lated processes. 

To prove these results we note that  .~.jj(s) = E[--~ Z~(s )  and ~:jj,(s) = 
E L ~  z , j (s)Z~j , (s) .  So, c o ~ . ( S A ( s ) , S z ( s ' ) )  = ,.,co~,(z~j(s),Z~j(s')). But 
z(z~j(~)) 1 and 

whence 

E E(zfj(s)Z~j(s')lZlj(S')) 
Z 2 j ( s ' ) ( 1  - 192(s - s t )  Jr- 102(s - st)Zlj(S2 1) 

1 + 2pf(~- ~') 

Similar calculations yield the other results. Re turn ing  to f t(s)  we have 
a ( . )  E ,  r z , ( . ) ( r z , ( @  ~ so we can imitate  the above calculations re- 
placing Z,(s) by Z,(s) = F(Z,(s) .  It, particular,  when F is diagonal 
we obtain cov(a.ij(s),f2jj(s')) 2 , ,FJ jp j ( s -  s'), cov(f2jy(s),f2jj,(s')) 
,~r ~. .F ~. .,pj (~ - ~')p~, (~ - ~'), j r j '  and ~o~'(~, (~), ~Z~.~,, (~')) 0 i f  j r ~- 

33 33 

or j '  # k'. 

Finally, note Chat we can not explicitly compute  the association struc- 
ture  of the associated inverse Wishar t  spatial process. Tha t  is, ft  -~ (s) 
F I (Z(s )ZT(s ) ) -~F  1 and association calculations require working with 
z ~(~). 
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D I S C U S S I O N  

M o n t s e r r a t  F u e n t e s  
Statistics Department. 

North Carolina State University, U.S.A. 

I congratulate the authors for presenting a comprehensive Bayesian 
t rea tment  to the  problem of multivariate spatial process modelling and 
estimation. The authors introduce an extension of linear coregionalization 
models (LCM) to handle lack of stat ionari ty by allowing the LCM coeffi- 
cients to  be space-dependent.  Their formulation of the problem is clean, 
their parameterizat ion is natural,  and their conditional and unconditional 
algorithms elegant. 

I certainly agree that  the Bayesian perspective on the coregionalization 
models is a natural  way of xdewing this multivariate spatial modelling and 
est imation problem. Overall, my main concern about  this paper is the lack 
of motivation and insight for the different frameworks presented. The the- 
ory is beautiful.  But, it is not clear how useful or in what situations and 
under what  assumptions about  the nature of the underlying spatial pro- 
cesses, one should implement the multivariate approaches presented here. 
Furthermore,  very often in multivariate spatial problems, the main objec- 
tive is prediction rather than estimation. It is not clear if the multivariate 

framework presented here would perform better  for prediction than just  
a simple separable model or the  traditional LCM. The application in the 
paper focuses on estimation, and there are not clear comparisons between 
models in terms of prediction. 

My specific comments are of two types: First, regarding the extensions 

of kernel-based nonstat ionary models to a multivariate case, and secondly 
regarding the application presented in the paper. 

The multivariate version presented by the authors of the kernel- 
convolution nonstat ionary approach (Vet Hoef and Barry, 1998; Higdon 
et al., 1999), assumes that  all the spatial processes ~ for I 1 , . . . , p ,  
are generated by the same underlying w process. This is very restrictive, 
not so nmch in terms of explaining the spatial s tructure of the different 
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Y/ processes, since the kernel can be different for each process. However, 
the problem is tha t  this multivariate model imposes a strong dependency 
between all the Yl processes, since all of them are generated by the same 
underlying cv process. Can this approach handle scenarios in which the Y, 

are spatial processes, ~ i th  spatial dependency-, but  some of them are un- 
correlated with each other (or ahnost  uncorrelated)? I am also concerned 
about  the multivariate extension introduced by the authors of the convolu- 
tion approach of Fuentes (2001, 2002b,a) and Fuentes and Smith (2001), to 
handle nonstat ionari ty by representing the process in terms of local station- 
ary processes. In this case it is unrealistic to assume tha t  each Y/ spatial 
process can be represented in terms of the same {Wo(0} t underlying local 
s tat ionary processes. These underlying {w0(t)}t processes determine the 
subregions of local stationarity. Thus, it is too restrictive to assume that  
all Y/ processes have the same underlying local s tat ionary behavior. It is 
true that  the weights b, can be different for each Y/, but  in this model the 

weights play less of a role since they are simply smoothing the transition 
between subregions of stationarity. Wi th  respect to the other approach 
discussed by the authors, the convolution of two covariance functions to 
generate a multivariate covariance, it is true tha t  the resulting multivari- 
ate covariance is a valid covariance, but  the motivation and interpretat ion 
of the resulting cross-dependency structure is not clear. A convolution of 
covariances in the spatial domain corresponds to the product  of spectral 
densities in the spectral domain. Thus, this would be an analogue of a sep- 
arable model in the spectral domain. I encourage the authors to consider 
this spectral representation, because of the computat ional  advantages of 
working just  with the product  of two spectrmns. However, it might not be 
very useful in practice. For instance, in the  application in this paper, C1 is 
practically the same as C2; on the other hand C~2 appears to have different 
range than C1 and C2 and thus clearly not a convolution of both  of them. 
Let me justify this remark. Let us assume C~ and C2 are Ma%rn (1986), 
i.e. of the form 

~(a-h)~K~(ah), 

where K a modified Bessel function, 6 is a scale parameter,  1/is a smooth- 
ness parameter,  and a -~ measures how the correlation decays wRh distance; 
generally this parameter  is called the ra~.ge. The exponential model used 
in this paper is a particular case of the l~[a%rn. If C1 and C2 have the same 
range parameter  ( a - l ) ,  as in the application in tixis paper, then the convo- 
lution would be l~iat~,rn too, with the same range parameter.  An approach 
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like this one would be quite unrealistic in many settings. 

This type of interpretation of the different proposed multivariate models 
is missing in the paper, and it would have been very helpful to gain some 
more insight and motivation about  the  proposed multivariate modeling 
frameworks. 

A more flexible fl'amework could be achieved by writing the multivariate 
spatial process as 

v(s)  = a w ( s ) ,  

with w(s )  - ( w l ( s ) , . . . ,  wp(s)), and treating each wi(s) for i - 1 , . . . , p ,  not 
as a s tat ionary process as the authors do, but  as a nonstat ionary random 
field modeled using a kernel-based nonstat ionary covariance function (e.g. 
Higdon, 1998, Fuentes, 2002a). This might be easier to handle and imple- 
ment in practice than allowing the A components to change with space, as 
proposed by the authors to handle the lack of stat ionarity of v. 

In terms of the application, it would have been helpful to clearly deter- 
mine the meaning of "estimated" parameter  (e.g., the  t..', parameter)  and 
"estimated" residual spatial surfaces. I assume that  refers to the mean, me- 
dian or mode of the posterior density or of the predictive posterior density. 
It is also important  to discuss and interpret carefully the relevant parame- 
ter % tha t  determines if the spatially varying version of the LCM approach 
presented by the authors is needed or not. The posterior distr ibution for 
this parameter,  or some indication about  the uncertainty associated to it, is 
needed to make this type  of inference. If g, is not sigmficantly different from 
zero, then the proposed spatially varying coregionalization model reduces 

to the LCM (with a s tat ionary covariance). 

The authors present a calibration analysis to s tudy the performance in 
terms of prediction of the  most complex model presented in the  paper, with 
T(s )  = a ( s ) a ( s y  modeled as a spatial process with an inverse Wishart  
distribution. However, it is not clear if a simple approach (LCM) would 
perform as well as this complex model. Calibration and/or  cross-validation 
analysis to evaluate the  perfornmnce in terms of prediction of the LCM 
are not presented. Therefore, the need and the advantages in terms of 
prediction of using these more complex models is not clear. The same 
comment applies to estimation. A criterion is presented to compare models. 
However, a clear gain in terms of esl, imation by using the most complex 
models is not evident, and the results could be different using a different 
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criterion. Maybe a simulation s tudy or using other criteria (e.g. BIC) 
would help to make more clear the  need for these models. 

In view of the authors '  intention to implement their multivariate model 
in a space-time setting, I encourage them to consider the space-time ex- 
tension of LCM provided by De Iaco et al. (2003), using marginal semi- 
variograms. A Bayesian framework for De Iaco's approach could be a nice 
contribution to the  space-time multivariate modeling literature. 

D a v e  H i g d o n  
Los Alam.os National Laboratory, U.S.A. 

Thanks to the authors for an interesting paper on a difficult and im- 
por tant  topic. The difficulty of this modeling effort is apparent in the fact 
tha t  the invention of an inverse Wishart  spatial process was required. The 

use of nonstat ionary models is particularly appealing in the multivariate 
setting where the dependencies between spatial fields cannot be expected 
to be constant  over large spatial domains. 

R e l a t i o n  t o  o t h e r  n o n - s t a t i o n a r y  m o d e l s  

It 's worth pointing out tha t  particular variants of the SVLMC formula- 
tion will yield something very close to the non-stat ionary models of Higdon 
et al. (1999) and Fuentes and Smith (2001). I'll describe a very simple 
univariate example over a two-dimensional space. Take wl (s) to be a ge- 
ometrically anisotropic Gaussian process M t h  strong dependence in the 
East-V~:est (E-W) direction; take w2(s) to be an geometrically anisotropic 
Gaussian process with strong dependence in the NNW-SSE direction; take 

wa (s) to be an geometrically anisotropic Gaussian process with strong de- 
pendence in the NNE-SSW direction. Wi th  these three "basis" processes, 
almost any direction of maximal dependence can be specified by taking the 
appropriate mixture. Here the univariate surface v(s) is modeled according 
to 

where c(s) is a white noise process. One could specify the  processes 

(4, 
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to be dependent  as in Higdon (1998) where each we(s) depends on a com- 
mon white noise process ~(s) 

f t) (t)dt, e 1,...,a. 

Alternatively, Fuentes and Smith (2001) specify the we(s)'s 1,o be indepen- 
dent of one another. 

Figure A shows an est imated surface v(s) along with a depiction of the 
posterior mean estimate for the  relative weights Ae(s). This work is ~ i th  
Jenise Swall of the EPA using the Piazza Road data  se~ of RyCi e~ al. (1992). 
The point here is tha t  the SVLMC model, when sufl%iently constrained, 

I I 

O 50  

ItN [Jarle. [J ar bi li~1 

II 
-2 0 2 

I 

10Q 

Figm'e A: A non-sta.tionmT fidd produced by taking a. spa.tially var)~ng weighted 

a.vera.ge of three Ga.ussia.n processes. Each of the three underlying processes ex- 
hibits geometric a~2isotropy with strongest dependence in the; E - W  direction; 

~,\~\qIuSSE direction; a.nd the . \WE-SSW direction. For this exa.mple the rela- 

tive estfma.ted ~veights a.re depicted by the length of line segments in the three 

component directions a.t ea.ch spa.tiaJ location. 

admits the type of nonstat ionari ty used in previous investigations. The fact 
tha t  this model readily extends to higher dimensions and is less constraining 
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than previous nonstat ionary approaches is encouraging and suggests such 
a modelling specification may find use in a broad base of applications. 

S m o o t h n e s s  

In thinking about  constructing nonstettionary spatial models I have always 
had in mind a decomposit ion of the spatial field into a smooth piece with 
appreciable spatial dependence plus a rough piece with a very limited range 
spatial dependence (often, a white noise model is sufficient for this rough 
component) .  I've focused on imparting the nonstat ionary modeling into 
the smooth  component  of the field. Hence I've been happy to  consider 
very smooth  processes even though I may not expect the actual  spatial 
field to exhibit such smoothness. I suspect this means I 'm predisposed to 
using very smooth specifications for latent model components which control 
nonstationarity. This predisposition can lead to lower dimensional models 
which can simplify computing, but  I know of no general principles here. 

In contrast, the authors allow a fair bit of local spatial variation in the 
inverse Wishart  spatial process by using an exponential correlation function 
to control the dependence in the pTe independent gauss ian  processes models 
from which the spatial process is constructed. Hence T(s)  and T(s  + d ) -  
with 5 small - will be far less similar when the underlying spatial correlation 
functions are exponential as compared to Gaussian. To get an idea of the 
difference between these two alternatives, Figure B shows the process of 
constructing a component  of the SVLMC model v~ (s) when the exponential 
correlation model is used for the spatial Wishar t  process for T-~(s) :  

,/ge(d , 
I /  �9 

p (d) e• 1,2. 

The large value of lJ is used to make the distr ibution less diffuse as it 

would be in the posterior. Figure C shows analogous realizations for the 
case where T(s)  is constructed from smoother Gaussian process realizations 
which are governed by a gauss ian  covariance function pc(d) e x p { -  (4d)2}. 
In both figures, the  resulting surface v~(s) is constructed from a linear 
combination of two smooth processes w~ (s) and w2(s). 

A potential difficulty with the rougher inverse spatial Wishart  process 
of Figure B is tha t  it doesn ' t  allow a smooth vA~(s) field. If snmll scale 



Nonstationary Multivariate Process 301 

T11 (s) T22(s) Tcorr(s) 

. .L 

wl (s) w2(s) vl (s) 

Figm'e B: Top row: a realization of the spa.tial fnverse I.t.Tshart process crea.ted 

nonsta.tiona.ry field v: (s) - A ~  (.s-)w~ (s) + A~awa (.s-) is then constructed, Here the 

smoothness of T(s) affects the smoothness of the resulting field v: (s). 

roughness  is a pp rop r i a t e  in the  resul t ing  vk(s)  processes,  it may  be more  
na tu ra l  to  accoun t  for it wi th  roughness  in the  we(s) or e(s) processes ra the r  

t h a n  t h r o u g h  var ia t ion  in the  induced  A ( s ) =  T ~ ( s )  process.  

Model l ing  a spatial  surface using a Gauss ian  process wi th  an  exponen t ia l  

covar iance model  has t r ad i t iona l  appea l  because  it is a gent le  ex tens ion  

away f rom the  simple defaul t  model  of a cons tan t  level wi th  i ndependen t  

errors.  However  in this  case, the  spat ia l  W ish a r t  process  is replac ing  a 

process t h a t  is cons t an t  over all space (T(s )  = T) .  To go f rom a cons tan t  
over space to  a very  rough  process over space is a re la t ively  dras t ic  step. On 

the  o the r  hand ,  going f rom a cons tan t  over space to  a very  s m o o t h  spat ia l ly  

vary ing  process seems more  na tu ra l  - especial ly for a la tent  process  t h a t  is 

never  d i rec t ly  observed.  



3 0 2  D. Higdon 

T1 l(s) T22(s) Tcorr(s) 

,.... 

g 

wl  (s) w2(s) v l  (s) 

Figm'e C: Top row: a realization of  the spatia.l h~verse ~.Yishart process crea.ted 

fi'om Ga.ussian process reaYzatfons for which p(d) -- exp{ (4d)2). The  result ing 

nonsta.tionary tidal ~': (s) - Az:  (s)~': (s) + A:~'~(s) is then constructed. 1-1ere the 

I would have been tempted  to enforce more smoothness by using a 
Gaussian correlation function, but  that 's  just my prior. I might also have 

been t empted  to model the spatial weights A!. ~) (s) directly ~ t h  Gaussian t . /  

processes, rather than use the spatial Wishart  formulation. For the  example 
shown in Figure A, the processes A s ( s ) ,  f = 1 , . . . ,  3 were constructed as a 
spatial extension of a compositional model from Aitchison (1987) 

where the zk (s)'s are independent  Gaussian processes. In either case, the 
spatial fields A s ( s )  could then be amenable to multivariate iXICiXIC updates  
via an SVD or other basis approach as in Schnfidt and O'Hagan (2003). 
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Whatever  the  choice of model used to account for nonstationarity, the 
amount  of nonstat ionari ty  allowed in a given model must be parameterized 
and controlled. If a Caussian process model is used directly to control the 
Ae(s)'s, then the amount  of non-stat ionari ty is governed by the correlation 

function of theses Gaussian processes. I've typically specified a prior on 
the correlation distance that  keeps it from getting too small. It is interest- 
ing to note tha t  both the correlation distance and the degrees of freedom 
parameter  7/control the  amount  of nonstat ionari ty in the spatial Wishart  
process - yet another feature of the SVLMC model. 

I certainly don ' t  have a strong sense of what  is the preferable modelling 
approach and don' t  have any general principles to hold to when developing 
such models. I 'm curious if the authors have any insight from their spatial 
modelling experience regarding smoothness and latent model specification 
for non-stat ionary modelling. 

Any model that  accounts for nmltivariate, spatial, and non-stat ionary 
structure will necessarily be complicated. I commend the authors for tack- 
ling such a difficult problem, while accounting for the many sources of 
uncertainty inherent in such a model. I also thank them for bringing out 
many interesting concepts. 

B r u n o  Sansd  
Department of Applied M~thematies and Statistics, 

University of California, Santa Cruz, U.S.A. 

I am glad to have the oppor tuni ty  to discuss the paper by Gelfand, 
Schmidt, Banerjee and Sirmans on corregionalization. The authors con- 
sider the Linear Model of Corregionalization (LMC) as a tool for modeling 
multivariate spatial processes. They review the most common approaches 
used in this area, s tudy the inferential properties of LMC as well as the 
problems involved in performing Bayesian inference for LMC. They  also 
consider an extension where the  coefficients of the corregionalization ma- 
trix are spatially varying, obtaining a model for non-stat ionary multivariate 
spatial processes. 

LMC are intriguing models. They are based on the idea that  complex 
models can be represented as linear combinations of simpler ones. The 
peculiar lower triangular shape of the matrix in LMC results in a very 
versatile modeling framework. In this discussion I would like to focus on 
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one of the extensions proposed in the last section of the paper, regarding 
spatio-temporal processes. 

LIXIC can be used to consider mfivariate spatio-temporal models in 
t~D different ways. Vv'e can fix a location and stack the observations 

obtained for all times in one vector per location. Or, we can fix t ime 
and stack spatial observation in one vector per time. iX[ore precisely, let 
~/,(s) be a univariate process observed at times * = 1 , . . . ,  T and locations 
s = s~ , . . . , s , , .  Then we can consider a LMC based on Yes)  = Awes)  
where We can also consider a LIX C by assun ing 

tha t  Y t  -- Awe, where Yt - (y , ( s l ) , . . . ,y , ( s , , . ) ) .  In both ceases A ~ill 
be triangular matrices and w(s) and we suitable latent processes. These 
approaches are developed in Sans5 and Schmidt (2004) where the authors 
explore a whole range of possibilities with varying levels of sophistication. 

An approach to multivariate space-time modeling tha t  uses linear con> 

binations of latent processes is presented in C~lder (2003). The work is 
based on the use of process convolutions embedded in a dynamic linear 
model (see, for example, V~.~st and Harrison, 1989). One of the devel- 

opments in Calder's thesis is t ime-varying factor analysis for multivariate 
spatio-temporal random fields. This provides an exploration of the behav- 
ior of the most influential latent components. It would be interesting to 
know if the exploration of the latent process to of the LikIC can provide an 
alternative way of factoring the variability in the data. 

To obtain a multivariate space-time model we can build a t ime varying 
extension of the LMC. One possibility is to consider a t ime varying matr ix 

A, using methods developed in ~he literature for stochastic vol~ili~y (see, 
for example, Liu, 2000). Denote Ye(s) the multivariate process at t ime 
�9 and location .s. Then we assume tha t  Ye(s) = Aew(.s). Let AeA', = 
~ - 1 .  We obtain a temporal structure by imposing a temporal  evolution 
on e , .  rol lo,~ng the results in Liu (2000), let L ( e t  1) denote the (lower 
triangular) Cholesky factor of flit 2- Then, for 0 < 8 <1 we define 

g'e L(ffxe 2)H,L(g ' ,  1)'/a where H , ~ B e p ( & z ,  1 / 2 , ( 1 - a ) , z ,  2/2). 

Here B%(-,-) denotes a matr ix-beta distribution as defined, for exam- 
pie, in Muirhead (1982). a can be regarded as a discount factor for the 
evolution equation. Denote D, the information proxdded by the da ta  up 
to time t. If we assume tha t  p(~I'e_llD,_~) = I'Vv(rte_~, &_ l ) ,  a Wishart  
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distr ibution of dimension p • p and parameters  he-1 and S t - l ,  then 

; (<l>e  1)=%(a~,  1,~/ase 1). 

Let Yt  (Yt (s l ) ,  . . . , Y t ( s , , ) )  the p • n matr ix  of observations. Then 

Yt  follows a matr ix-normal  distr ibution (see, for example, V~:est and Harri- 
son, 1989), with row covariance matr ix  ~Pe 1 and column cove~riance matr ix  

R.  Then  

v(~lDe, R) ~ v(Vel~,,R)v(~eIDe 1) 
Im, l"/2exp{ t,-(v,~ 1v'e~,O/2 } 
• ~''~-~ -~-1)/2 exp{-t,-(as~11%)/2} 
I~t l (&'~-*+"-v-*) /2exp{- tr(6821 + YeR-*Y'e) ' .~e/2 } 

n re) %(,~e, s,) 

with .nt = 6.nt 1 + n and St = 5 S~11 + Y t  R lyre. This provides a conjugate 

evolution model for ~Pt, conditional on R. This conjugacy can be used to 

simplify and possibly optimize iterative sampling methods.  Since R is a 

matr ix  of spatial covariances it is cus tomary to consider a parameter ized 

version, say R = R(A), where A is a low dimensional parameter .  

An alternative model would be to consider ~Pt fixed in t ime and let Rt  

vary in time. Under a Wishar t -Beta  evolution, such model would produce 

results similar to the one obtained above. Alternatively, if Re = R(At),  we 

can assume an evolution on At. This would be a more natural  assumption, 
given the  spatial nature  of the covariances in Re, but  it ~Jll eliminate the 

conditional conjugacy. V~.~ notice tha t  in either cases the models are assum- 

ing tha t  the spatial covariance s t ructure  is common to all the  components  

of the random field. It would interesting to explore how tractable  would be 

a model where this assumption is dropped.  

Rejo inder  by A. E. Ge l fand ,  A.  M.  S c h m i d t ,  
S. Baner jee  and C. F. S i rmans  

It is delightful to have had three knowledgeable, thoughtful  and insight- 

ful discussants comment  on our contribution.  Fuentes offers a demanding 
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evaluation covering nmch territory, seeking a high standard,  as she demands 
in her o~1  work. Higdon provides some lovely clar ifcat ion with regard to 
the inherent smoothness properties of our model specification. Sans6 fo- 
cuses on spatio-temporal  extensions of our work, connecting to new work 

he has just  completed with one of us (Schnfidt). The discussants were gen- 
erous in their remarks, sett ing primary emphasis on comparison with other 
mechanisms for generating multivariate spatial models and on space-time 
versions of such models. In this rejoinder we ~11 confine ourselves to these 
t~D issues. 

Before doing so, we note tha t  we are not necessarily- advocating the 
use of coregionalization over, say, kernel methods to develop multivariate 
spatial process models. V~e are more concerned with trying to reveal tha t  
coregionalization can be viewed as a flexible, easily interpreted modeling 
tool rather than its customary use in the l i terature as a dimension reduction 
technique. We also feel tha t  the spatially varying version offers a very rich, 
nonstat ionary class of specifications while again retaining ease of interpre- 
tat ion as well as computat ional  tractability. V~e also note that  our example 
and the associated analysis are primarily illustrative. V~'e believe that  the 
modeling is appropriate for the price and income data  we have collected on 
commercial real estate but  readily acknowledge, as Fuentes observes, tha t  
our analysis is far from definitive. As for Higdon's point regarding modeling 
the components of A(s) through Gaussian processes rather than through 
the spatial Wishar t  formulation, this was our natural  starting point. In 
the end, we preferred the interpretation (particularly with regard to prior 
specification) tha t  arises ~-ith A t s ) A t s )  T = r t s )  being marginally Wishart.  

With  regard to  multivariate spatial process modeling using kernels, we 
were struck by the fact tha t  the only readily-discovered work was that  of 
Vet" Hoef and Barry (1998)and Vet' Hoef et al. (2004). In this work, a c o m -  
mon umvariate process is mixed to create all components of Y(s )  with the 
choice of kernel de termiNng the marginal process for each ~ ( s ) .  So, exten- 
sions of the "Higdon" and the "Fuentes" approaches were presented in this 
spirit. But ,  Fuentes is correct in noting the limitations of such extension 
and she also makes the keen observation that ,  within the LMC, nonstation- 

arity can be achieved by having the independent  processes be nonstation- 
ary, rather than introducing a spatially varying A(s). Higdon is certainly 
correct in noting that  the SVLMC formulation can well-approximate the 
nonstat ionary kernel approaches of both Higdon and Fuentes. 
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To remedy the limitations of a common univariate process in the case 
of the Higdon approach we can extend (6) (subsuming (2)) from out" paper 
to 

Y(s)  = . / K ( s  t ; s ) v ( t ) d t  

where K is a p • p diagonal matrix of kernel functions and v( t )  arises 
through a L),[C, i.e., v ( t )  Aw( t ) .  By requiring p different kernels we 
may find it difficult to identify the parameters  in the kl and also in A. If 
the kernel functions decrease very rapidly away from 0, the above model 
behaves like a LMC. 

As a way to create a corresponding remedy for the Fuentes approach, 
we might return to the nested covariance model given in (13) of our paper. 
An integral version of (13) yields Y(s )  Since U is 
arbi trary we could let it be R 2 so tha t  u indexes locations. In fact, we 
could write Y(s )  f A(t)wo(t)(s)dt. Continuing, if we replace A(t)  with 
B(s;  t)  where B(s;  t) is a p • p matrix of weight (inverse distance) functions, 
we obtain a different extension of the Fuentes model. This will become even 
more satisfying if we introduce both a weight matrix and intrinsic LI\IC's 
writing 

r ~  

Y(s) = j B(s;t)A(t)v(s,t)dt. 

Hence, w0(t)(s) A ( t ) v ( s , t ) .  In practice, we would use a finite sum 
approximation and might set B(s;  t) = b(s; t) /p.  

Turning to the space-time setting, when the the da ta  takes the form 
Y(si, t) for locations s i , i  1, 2, ...,n and times t 1,2, ...T, then we can 

concatenate the  measurements over locations at t ime t to a vector Yt or 
we can concatenate the  measurements over t ime at location si to a vector 
Y(si ) .  This is the setting that  Sansd considers and, in particular, the latter 
form naturally leads to  a T-dimensional coregionalization model for Y(s) .  
The basic coregionalization model may be quite helpful here, allowing us to 
work ~_th T independent  processes but  the spatially varying version would 
introduce A as a T • T matrix and would yield a considerable increase in 
dimension as T grows large. The former suggests the possibility of core- 
gionalization using independent temporal  models though a more natural  
formulation might lead to modeling through the use of a dynamic model 
where second stage random effects, say wt, are upda ted  using random in- 
novations of a spatial process. 

Arguably, the more interesting spatio-temporal  extension would con- 
sider multivariate da ta  at locations in space and in time, i.e., Y(s ,  t) where 
Y ' s  are p • 1. This leads to the  forms we suggested in our Section 7, i.e., 
we would write w(s ,  t) - Av(s ,  t) where the v's  consist of p independent 
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space-time processes. To add space, time, or space-time coregionalization 
we would introduce A(s), A(t) or A(s,t) ,  respectively. Modeling for the 
space time processes can be introduced using separable forms, the more 
general product-sum covariance specifications proposed in De Iaco et al. 
(2003) (as noted by Fuentes) or using nonseparable models as offered in e.g., 
Cressie and Huang (1999) or in Gneiting (2002). In fact, if time is viewed as 
discrete, then we might again employ a dynamic model, now introducing 
multivariate second stage spatial random effects, evolving through inde- 
pendent innovations of a multivariate spatial process. An illustration was 
provided in Gelfand et al. (2004). 
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