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The Variance-Based Cross-Variogram: You Can
Add Apples and Oranges1

Noel Cressie2 and Christopher K. Wikle3

The variance-based cross-variogram between two spatial processes, Z1(.) and Z 2 ( - ) , is var (Z1(u)
- Z2(v)), expressed generally as a bivariate function of spatial locations u and v. It characterizes
the cross-spatial dependence between Z1(.) and Z2(.) and can be used to obtain optimal multi-
variable predictors (cokriging). It has also been called the pseudo cross-variogram; here we com-
pare its properties to that of the traditional (covariance-based) cross-variogram, cov (Z1(u) —
Z1(v), Z2(u) - Z2(v)). One concern with the variance-based cross-variogram has been that Z 1 ( - )
and Z2(.) might be measured in different units ("apples" and "oranges"). In this note, we show
that the cokriging predictor based on variance-based cross-variograms can handle any units used
for Z 1 ( - ) and Z2(.); recommendations are given for an appropriate choice of units. We review the
differences between the variance-based cross-variogram and the covariance-based cross-variogram
and conclude that the former is more appropriate for cokriging. In practice, one often assumes that
variograms and cross-variograms are functions of u and v only through the difference u - v. This
restricts the types of models that might be fitted to measures of cross-spatial dependence.

INTRODUCTION

There has been considerable discussion recently on the merits of two types of
cross-variogram for cokriging (Cressie, 1991, p. 140, 141; Myers, 1991;
Papritz, Kunsch, and Webster, 1993; Ver Hoef and Cressie, 1993; Wackerna-
gel, 1995; Ver Hoef and Barry, 1998). Both types measure cross-dependence
between two spatial variables and both yield the variogram as a special case
when the two variables are the same (see Eqs. 6 and 7 below).
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be a bi. ariate spatial process defined over a domain of interest D C IRd, the d-
dimensional Euclidean space. We assume henceforth that var(Z1(s)) < oo and
var(Z2(s)) < oo, for all s e D, a regularity condition that guarantees the existence
of all mean-squared prediction errors. We also assume here, for ease of pres-
entation, that £(Z1(s)) = u1 and E(Z2(s)) = u2, for all s e D.

Kriging of any one variable, say Z1(-), exploits the spatial dependence
within Z1(-) to obtain an optimal linear predictor of Z1(s0) based on data,
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Cokriging of the variable Z1(.), based on the data Z1 and

exploits the spatial dependencies within Z1(.) and Z2(.), as well as the cross-
spatial dependencies between Z1(-) and Z2(-), to yield an optimal linear predic-
tor,

of Z1(s0), where Z' = (Z1, Z2). Notice that the observation locations in (2) and
(3) do not have to be the same. Clearly, because the cokriging predictor of
Z1(s0) uses more information (namely observations on Z2(-)), it will have smaller
mean-squared prediction error than the kriging predictor of Z1(s0). Equally, one
can obtain an analogous optimal linear predictor, p2(Z; s0), of Z2(s0) based on
Z, and Z2.

Kriging equations that yield the optimal coefficients of Z1 in the kriging
predictor of Z1(s0), can be written either in terms of spatial covariance functions
or in terms of spatial variograms (e.g., Journel and Huijbregts, 1978, p. 306;
Cressie, 1991, p. 142, 143). It is easy to show (e.g., Journel and Huijbregts,
1978, p. 325) that cokriging equations to obtain optimal coefficients L1 and L2

in the cokriging predictor (4) can be obtained in terms of the spatial covariance
functions,

where u, v E D. However, what has proved controversial is the analogous result
in terms of spatial cross-variograms. In particular, the controversy has been
around the choice of cross-variogram that appropriately generalizes the vario-
gram. Two types of cross-variogram have been proposed and they have been
discussed extensively in the literature cited above. In historical order of ap-
pearance, they are:



where u, v e D. That is, the quantity defined in (6) is a covariance of direct
increments and the quantity defined in (7) is a variance of cross-increments.
Notice that we have chosen to write (5), (6), and (7) in their most general forms,
as functions of u and v, and not in their stationary forms, as functions of u —
v. This is because there is nothing in kriging and cokriging methodology that
requires stationarity. A nonstationary covariance or variogram model may result
from a spatial partial differential equation with a few unknown parameters.
Estimation of the nonstationary covariance function is easily obtained by plug-
ging in estimates of those few parameters (e.g., ML or REML estimates such
as described in Cressie, 1991, p. 91-93). Then (co)kriging based on the non-
stationary, "plug-in" covariance functions proceeds as described in the next
section.

Myers (1982) and Wackernagel (1988) have been early proponents of vij

given by (6). Clark, Basinger, and Harper (1989) proposed a version of (7)
without mean correction and Cressie (1991, p. 140, 141) showed how cokriging
equations for L1 and L2 in (4) could be written in terms of Yij given by (7).
Myers (1991) gave the same result and obtained algebraic relationships between
(5), (6), and (7); he coined the term "pseudo cross-variogram" for (7).

It has long been known (e.g., Journel and Huijbregts, 1978, p. 326; Myers,
1982) that cokriging in terms of vij in (6) requires a rather strong symmetry
condition: C12(u, v) = C12(v, u). However, as is illustrated in the concluding
section, it is not hard to construct models that do not satisfy this condition (see
also Ver Hoef and Cressie, 1993; Ver Hoef and Barry, 1998). Through matrix
algebra and a small example involving asymmetric C12, Ver Hoef and Cressie
(1993) show that use of the vij (given by Eq. 6) in cokriging equations yields
nonoptimal linear (in Z1 and Z2) predictors, sometimes badly so. In contrast,
the use of Yij given by (7) always yields the optimal cokriging predictor. This
is the same optimal cokriging predictor one would obtain by using cross-cov-
ariances Cij given by (5) (see Ver Hoef and Cressie, 1993).

For reasons given above, the adjective "pseudo," for the cross-variograms
2yij, is a misnomer. In what is to follow, when we want to make a distinction,
we shall refer to covariance-based cross-variograms 2vij, and to variance-based
cross-variograms 27ij, but, when no distinction is necessary, 27ij, will henceforth
be referred to simply as the cross-variograms. Finally, we do not claim that the
2yij, given by (7) are unique in the sense that they are the only cross-variograms
that will yield cokriging predictors (see Kunsch, Papritz, and Bassi, 1997, where
this nonuniqueness is apparent). We shall discuss this further in the concluding
section.

A practical problem in the use of 7ij for cokriging has been noted. If Z,(-)
and Z2(-) are measured in different units, what can be made of var(Z1(u) —
Z2v))? Can we add (or, here, subtract) "apples" and "oranges?" In practice,
Z1(-) and Z2(-) are typically standardized in the usual way. Consider the stan-
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dardized datasets {(Z1(ui) - Z1)/S1: i = 1 , . . . , n1},_where Z1 = £ Z1(ui)/Ni
and S2I = E(Z1(uI) - Z1)2/(n1 - 1), and {(Z2(vi) - Z2)/S2: i = 1, . . . ,n2},
where Z2 and S2 are likewise defined. Then the standardized variables are unit-
less, can be subtracted, and incidentally have zero mean (important for esti-
mation of Yij) under symmetry assumptions.

No justification of this common-sense, but ad hoc standardization has ever
been given, and that is the purpose of this note. The next section shows that
the cokriging predictor obtained using cross-variograms 2yij is equivariant to
mean-parameter and scale-parameter changes in the variables Z1(-) and Z2(-).
Although the results in the next section is rather technical, its consequences for
cokriging are important. It says that no matter what units Z1(-) and Z2(-) are
defined in, the cokriging predictorp1(Z; s0), based on cross-variograms 2yij, is
always in the same units as Z1(-). These and other related issues are discussed
in the concluding section.

EQUIVARIANCE OF COKRIGING TO MEAN AND SCALE
CHANGE

Equivariance is best explained through an example. Consider a scientific
study of sea-surface temperature (SST) over the tropical Pacific. A statistical
methodology is equivariant if the resulting scientific inferences are identical,
regardless of the units that the SST data come in (e.g., °F, °C, °K). For
example, if Z(-) is SST in °F and Y ( . ) is SST in °C, then

792 Cressie and Wikle

Let p(Z)(Z; s0) denote a predictor of Z(s0) based on data Z and an assumed
statistical model for the Z-process. Further, letp(Y)(Y; s0) denote a predictor of
y(s0) depending on data Y and the K-process model, in the same way thatp(Z)(Z;
s0) depends on Z and the Z-process model. Then the statistical methodology,
that specifies how the data and the process model define the predictor, is equi-
variant to whether the study is conducted in °F or °C if

or, equally, if

More generally, if

then the statistical methodology that yields the predictor is mean and scale
equivariant if



for all mean parameters n e IR and all scale parameters T > 0. Clearly, equi-
variance is desirable in any scientific study since then the units of analysis do
not affect the substantive conclusions.

In the context of cokriging, equivariance can be formulated as follows.
Define
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For example, consider the case of SST and sea-level pressure (SLP). In this
case, Y1( - ) could refer to SST in °C and Z1(-) to SST in °F (as in Eq. 8).
Furthermore, y2(-) could refer to SLP in Pascals and Z2(-) to SLP in inches of
mercury. As is often the case in multivariate analysis, we are analyzing data
and cokriging with variables that measure quite different properties ("apples"
and "oranges," if you will).

Recall from (2) and (3) that data Z' = (Z1, Z2) are observed. These data
are transformed to Y' = (Y1, Y2) according to (13). Let p1(,Z)(Z; s0) andp1(y)(Y;
s0) denote the cokriging predictors of Z1(s0) and Y1(s0), given in terms of cross-
variograms 2yij and 2 y i j , respectively, where,

Notice that

and likewise for y i j ( u , v). Then cokriging in terms of variance-based cross-
variograms is equivariant if

where

are unbiasedness conditions, and L1(Y),L2(Y) are given by cokriging equations in
terms of yij (see Eq. 19). The quantity p(Z) in (15) is defined in exactly the
same way as in (16) and (17), but in terms of Z' = (Z1, Z2) and Yij.

The cokriging predictor is optimal in that it minimizes the mean squared
prediction error among all linear unbiased predictors. Cressie (1991, p. 141)
shows that the linear predictor (16), subject to unbiasedness conditions (17),
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has a mean squared prediction error that can be written in terms of variance-
based cross-variograms 2 y i j :

Upon minimizing (18) with respect to L' = (L1,L2), one obtains cokriging
equations, which are given in matrix form by Myers (1991). Ver Hoef and
Cressie (1993, p. 225) solve these equations, giving an explicit formula for the
cokriging predictor as,

where F(y), assumed to be invertible, is given by

and F11, F22, F21 are likewise defined. Also,

and 1p is the p-dimensional column vector of ls(p = 1, 2, . . .). Myers (1992)
discusses the consequences of F(y) not being invertible.
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Now, from Equation (14),

Substituting (20) into (18) and using the unbiasedness conditions (17), we find
that the variance terms in (20) cancel and the scales T1, T2 enter multiplicatively.
That is,

Define the matrices

where Ip is the p X p identity matrix; p = 1, 2, . . . . Now create cross-
variogram matrices

and notice from (19) and (21) that,

Further, Y and Z are connected by

where n = (n1, n2) '- Thus,
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which, after considering the unbiasedness constraints (17), becomes

Substituting (22) into the right-hand side of (24) and noting that

and T1HG-1 = In1+n2, we obtain

The latter equality is obtained by putting n1 = n2 = 0 and T1 = T2 = 1 in (19).
That is, from (15), cokriging using variograms 2yij is mean and scale equivar-
iant.

DISCUSSION AND CONCLUSIONS

The implications of the equivariance result for cokriging, proved in the
previous section, are worth emphasizing. The user can choose linear transfor-
mations y1(-), Y 2 ( . ) in any units (including those of the original Z1(-), Z2('))
and, provided yij is known, the optimal cokriging predictor p1Y(Y; s0) is
equivariant.

In practice, yij is seldom known and has to be estimated from the data Y.
If units are chosen for Y1 (•) and Y2( •) so that the variability of Y1 (•) (as measured
by the sample standard deviation S(Y),,say) is very different from the variability
of Y2 (as measured by S2

(y)), then the cross-dependence expressed in yij runs
the risk of being swamped by estimation error. For example, if var (Yi(s)) =
(o i )

2 ; i = 1,2, and o(Y) » o72
y), then from (14),

and any method-of-moments estimator 2-y12 of 2y12 would behave as,

regardless of the strength of cross-spatial dependence. By contrast, if a1(Y) =
a2(Y) = a(y), then



Not only can we now claim that var (Y1(s)) = var (Y2(s)) = 1, but also that
£(y1(s)) - E(Y2(s)) = 0. Thus, 2Yij(u, v) = var(yi(u) - yj(v)) « E(yi(u)
~ Yj(v))2, for which a method-of-moments estimator is natural (replace £(•)
with ave (•))•

It is obvious that the technical result established in the previous section
generalizes to more than two variables. That is, the cokriging predictor of Z1(s0)
is equivariant under mean and scale changes to Z1(.) , Z2(.), ... , Z k ( - ) , for
any integer k > 2.

Although it is not relevant to the central result and conclusions of this
paper, a few comments on stationarity assumptions can be made. To obtain
good estimates of yij a stationarity assumption like, 2yij (u, v) depends only
on u - v, is often made. For example, Ver Hoef and Cressie (1993), Cook
and others (1994), and Majure and Cressie (1997) consider,
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so that the form of the cross-dependence is governed directly by the correlation
function (corr) as s and h vary.

Consequently, we recommend that units for y1(-) and Y2(-) be chosen so
that they have comparable variability. The easiest way to do this empirically,
is to define

where W is a second-order stationary process with covariance Cw(h); e1 and e2

are zero-mean white noise processes with variances o1 and o2, respectively; and
W, e1 and e2 are mutually independent. Notice the asymmetry caused by A in
this shifted spatial factor model. Straightforward calculations yield,

all of which are functions of u — v.
It is worth noting that when estimating cross-variograms nonparametrically,

2Yl2(h) can be estimated even when Z1(-) is observed at far fewer and different
sites than those at which Z^(-) is observed (Clark, Basinger, and Harper, 1989).
By contrast, 2v12(h) can only be estimated from pairs of locations at which both
Z,(-) and Z2(-) are observed.
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Kunsch, Papritz, and Bassi (1997) have shown that there exist generalized
cross-covariance functions £ij that yield cokriging predictors, although they do
not have a closed form expression for the £ij. Further, they give models for
which £ij(u, v) depends only on the difference u - v, but for which yij and Cij

do not; for example, simply make W(-) intrinsically stationary in the example
given above. Nevertheless, our equivariance result in the previous section is
true regardless of whether 7ij depends on (u, v) or on u - v.

In conclusion, we have shown that cokriging with variance-based cross-
variograms 2yij given by (7) are equivariant to mean and scale changes in
either Z1(-) or Z2(-)- Thus, a cokriging analysis in any set of units yields
consistent predictors. In practice, it makes most sense to transform the processes
so that their variabilities match (e.g., Eq. 25). Nevertheless, if they are not
matched exactly, our result shows cokriging to be insensitive to mismatches.
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