Time Series Forecasting using Boosting Techniques With Correlation Coefficient

Luzia Vidal de Souza Aurora T. R. Pozo Anselmo Chaves Neto Joel M. C. Rosa

06 de março de 2007

Motivation

- An essential element for many management decisions is an accurate forecasting.
- New Machine Learning techniques for forecasting
- Combination of Genetic Programming (GP) and Boosting Techniques to Obtain Accuracy in Forescasting Tasks

Boosting

- Boosting emerged as a way of combining many weak classifiers to produce a powerful "committee".
- It is a iterative process that gives more and more importance to bad classification
- Simple strategy that results in dramatic improvements in classification performance.
- There is a straight relation between Boosting and Theory of Optimization
- It was adapted to Regression Problems

Boosting Elements

- A training dataset $(x_1, y_1), \ldots, (x_m, y_m)$
- A number of iterations $t = 1, \dots, T$
- A base classifier $h_t : X \to \mathbf{R}$
- Weights $D_t(i)$ for the elements of the training dataset
- Weights α_t for the base classifiers

Adaboost Algorithm for Boosting (Binary Classification Problems)

Given: $(x_1, y_1), \dots (x_m, y_m), Y \in \{-1, 1\}$

Initialize $D_1(i) = 1/m$ For $t = 1 \dots T$:

- Train base learner using distribution D_t
- Get base classifier $h_t : X \to \mathsf{R}$
- Choose $\alpha_t \in \mathsf{R}$
- Update:

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t} \quad (1)$$

 Z_t is a normalization factor

Output the final classifier

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$
(2)

Classifiers Weights α_t were left unspecified

• The base classifier h_t works to minimize:

$$\epsilon_t = Pr_{i \sim D_t}[h_t(x_i) \neq y_i] \tag{3}$$

 A possible choice for α_t in binary classification is:

$$\alpha_t = \frac{1}{2} ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) \tag{4}$$

Generalization Error

- The great interest in building boosting classifiers lies on getting good classification out-ofsample.
- Freund & Schapire (1997) showed that the generalization error is bounded by something like:

$$\widehat{Pr}[H(x) \neq y] + \widetilde{O}\left(\sqrt{\frac{Td}{m}}\right)$$
 (5)

Boosting for Regression Problems

Given: $(x_1, y_1), \dots (x_m, y_m), Y \in R$ Initialize $D_1(i) = 1/m$ For $t = 1 \dots T$:

- Train base learner using distribution D_t
- Get base hypothesis $h_t : X \to \mathsf{R}$
- Evaluate Loss Function

$$L_{i}(t) = 1 - exp\left(\frac{|h_{t}(x_{i}) - y_{i}|}{max_{i=1,\dots,m}|h_{t}(x_{i}) - y_{i}|}\right)$$
(6)

• Compute
$$\beta_t = \frac{\overline{L}_t}{1 - \overline{L}_t}$$

• Update:

$$D_{t+1}(i) = \frac{D_t(i)^{1-L_i}}{Z_t}$$
(7)

 Z_t is a normalization factor

Output the final classifier (geometric median of $h_t()$)

$$F(x) = \min\{y \in R : \sum_{h_t(x) \le y} \log\left(\frac{1}{\beta_t}\right) \ge \frac{1}{2} \sum_{t=1}^T \log\left(\frac{1}{\beta_t}\right)\}$$
(8)

Boosting Coefficient Correlation for Regression Problems (Ad Hoc)

Given: $(x_1, y_1), ..., (x_m, y_m), Y \in R$

Initialize $D_1(i) = 1/m$ For $t = 1 \dots T$:

- Train base learner using distribution D_t
- Get base hypothesis $h_t : X \to \mathsf{R}$
- Evaluate Loss Function

$$L_{i}(t) = 1 - exp\left(\frac{|h_{t}(x_{i}) - y_{i}|}{max_{i=1,\dots,m}|h_{t}(x_{i}) - y_{i}|}\right)$$
(9)

• Update:

$$D_{t+1}(i) = \frac{\rho(h_t(x), y) D_t(i)^{1-L_i}}{Z_t}$$
(10)

 $\rho_t = \rho(h_t(x), y)$ is the Pearson Correlation Coefficient between $h_t(x)$ and y evaluated in the training sample. Z_t is a normalization factor

Output the final classifier

$$F(x) = \sum_{t=1}^{T} \frac{\rho_t h_t(x)}{\sum_{t=1}^{T} \rho_t}$$
(11)

GPBoost

- Genetic Programming can be used to build the rule of prediction $h_t(.)$, the pseudo-code for its algorithm is given bellow
 - 1. Randomly create an initial population
 - 2. Repeat until a good solution or a stop criterion is reached
 - (a) Evaluate of each program by means of the fitness function (example: $fit = \sum_{i=1}^{m} |h(x_i) y_i| * D_t(i)$)
 - (b) Select a subgroup of individuals onto apply the genetic operators
 - (c) Apply the genetic operators
 - (d) Replace the current population by this new population
 - 3. End

- 3 time series with 1100 observations: Returns of Djiad, Ibovd and Nasdaq stock markets indexes.
- Separate 110 days to test the models performances.
- Implement a Trading Strategy to sell or buy according to the forecasts of returns. If return tomorrow is said to be positive, buy it today, otherwise sell it.

Table - Financial Returns in 110 days

Method	BCC	ARMA	GP	GPBoost
Djiad	2.0%	0.5 %	-1.0%	-3.5%
lbovd	16.9%	-1.7%	-8.7 %	-6.9%
Nasdaq	7.3 %	-5.9%	-8.8%	-3.7%

Table - Financial annualized returns

Method	BCC	ARMA	GP	GPBoost
Djiad	4.6%	1.0 %	-2.3%	-8.0%
lbovd	76.6%	-3.9%	-19.9 %	-15.7%
Nasdaq	16.7%	-13.5%	-20.2%	-8.5%