ሰሙስ	Ministério da Saúde
	FIOCRUZ Fundação Oswaldo Cruz

Leptospirosis and

Environment

Marilia Sá Carvalho

Summary

- What is Leptospirosis and which are the main questions
- Data sets: cases and climate
- Modelling:
 - basic model
 - climatic covariates: threshold and lags
- Problems and doubts...

Leptospirosis

Bacterial zoonosis (Leptospira sp)

 Transmitted to humans through contact with urine from infected animals (rats in urban setting)

Disease cycle

Leptospirosis

- Incubation period: 5 to 25 days
- Clinical manifestations:
 - self-limiting fever, with headache and muscle pain – easily taken for a bad cold or dengue fever
 - life-threatening disease kidney failure, pulmonary haemorrhage, Weil's syndrome
- Early treatment! Dialysis mainly

Epidemiology

- Globally spread, affecting people on all continents.
- Different epidemiological patterns:
 - Sporadic disease, related with specific occupational exposures and recreational activities
 - Slums and flooding in urban areas

In Brazil

- 10,000 reported cases per year in the major cities
- Under-registration
- 10-15% mortality when diagnosed; more due to late treatment
- Main suspected factors: poor sanitation, slum housing and flooding

Favela in Salvador

General questions

- People living in slums seroprevalence study estimates 23% at 50y, so what determines severe cases?
 - different virulence according to the bacteria strain
 - inoculant dose related to behaviour (higher male prevalence – cleaning sewers) and environment
 - previous immunity how is it acquired? (a vaccine is on its way)

Leptospirosis & Climate

- Does rainfall really cause epidemics of severe leptospirosis? Why?
 - Reasoning: the rain clean up the rats holes, bringing to the soil surface leptospira
 - Is it a linear relationship?
- When to give an alarm to decrease fatalities – threshold

- Other environment factors: humidity
 & temperature
- Time delay
 - duration of incubation period related to inoculant dosis
 - duration of the Leptospira on the soil related with temperature and moisture on the soil

Data

- Salvador surveillance system
- Cases: weekly aggregated
- Climate covariates:
 - Mean weekly temperature (°C)
 - Mean weekly relative humidity (%)
 - Weekly accumulated rainfall (mm)

The basic model

 $Y(t) \sim Poisson(\mu_t)$ $\ln(\mu_t) = \beta_t + \phi_t$

where:

 $\beta_t = 2\beta_{t-1} - \beta_{t-2} + \epsilon_t$ (2nd order random walk prior) $\phi_t \sim N(0, \sigma^2)$ (temporal random effect, accounting for overdispersion)

Fitted in BayesX (www.stat.uni-muenchen.de/~bayesx/bayesx.html)

- Seasonality
- Downward general trend?

Including climate covs

Which are the important temporal lags?
Is the corresponding effect linear?

$$\ln(\mu_{t}) = \beta_{t} + \phi_{t} + \sum_{k=0}^{5} \psi_{k}(x_{t-k})$$

- $\Psi_k()$ is a nonparametric spline
- x_{t-5}, \dots, x_t measures humidity OR temperature OR rainfall

k lags, from the same week k=0 up to the 5th previous one

Lags and Linearity

Rain > 5mm

Comparison of DIC of models with different thresholds

Rain > 5mm

Chosen based on.... civil defence information as well

Complete model

$$\begin{aligned} \ln(\mu_{t}) &= \mu_{0} + \beta_{t} + \phi_{t} + \\ &+ \beta_{HI}(Humid_{1}) + \beta_{H2}(Humid_{2}) + \\ &+ \beta_{TI}(Temp_{1}) + \beta_{T2}(Temp_{2}) + \\ &+ \beta_{RI}(Rain_{1}) + \beta_{R2}(Rain_{2}) + \beta_{R3}(Rain_{3}) + \beta_{R4}(Rain_{4}) \end{aligned}$$

Effects

Variables	Relative risk	2.5% quantile	97.5% quantile
	exp(B)		
Mean relative humidity, week(t-1)	1,045834	1,024385	1,067776
Mean relative humidity, week(t-2)	1,055043	1,032454	1,078136
Mean temperature, week(t-1)	0,945387	0,873472	1,020173
Mean temperature, week(t-2)	1,055784	0,976662	1,139499
Num. days rain > 5mm, week(t-1)	1,150296	1,093561	1,210880
Num. days rain > 5mm, week(t-2)	1,117894	1,059795	1,175944
Num. days rain > 5mm, week(t-3)	1,067789	1,027711	1,109781
Num. days rain > 5mm, week(t-4)	1,063815	1,023835	1,106515

Number of cases/week

Conclusions

- Leptospirosis depends upon:
 - rainfall (up to 4 weeks previously),
 - humidity (up to 2 weeks previously),
 - not temperature.
- Alert to public health and guidelines to emergency doctors

Downward trend?

- climate related el niño phenomena?
- structural changes in favelas no!
- sanitation Blue Bahia (World Bank project) was entirely devoted to touristic areas

Statistical problems

- Better models to discover the rainfall threshold?
- How to analyse the lagged effect?
 - Colinearity!
 - Polynomial distributed lag models (package pdl in R)

Future research

- Space-time analysis data is now localised in small area, in a GIS, with level curves (1m) and socioeconomic covariates
- The Natural history of severe leptospirosis project (NIH grant) – a longitudinal study going on in Pauda-Lima favela, already in its 3rd visit
- Vaccine phase 1

Acknowledgements

This analysis was mostly done by RA Claudio Bustamante Pereira de Sá, who died of aneurism last year

