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Abstract: Biological and technical variances were estimated from the Project Normal
data using the mixed model analysis of variance.  The technical variance is
larger than the biological variance in most genes.  In experiments for detecting
treatment effects using a reference design, increasing the number of mice per
treatment is more effective than pooling mice or increasing the number of
arrays per mouse.  For a given number of arrays, more mice per treatment with
fewer arrays per mouse is more powerful than fewer mice per treatment with
more arrays per mouse. A formula is provided for computing the optimum
number of arrays per mouse to minimize the total cost of the experiment.
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1. INTRODUCTION

cDNA microarrays are widely used in gene expression profiling. This
complex technology involves many steps. Each step can introduce variation
(technical variation), which accumulates in the final observations. Some of
the systematic variation can be minimized by data transformation and
normalization [Cui and Churchill, 2002; Quackenbush, 2001]. However the
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intrinsic variation from each step cannot be completely eliminated.
Therefore, it is desirable to estimate these variance components from data
and to use them to improve the statistical inference.

Biological variation is another source of variation. In order to make
general claims about a treatment effect, multiple experimental units
(biological replicates) from the population should be assayed. Otherwise,
conclusions about the treatment effect will be restricted to the samples tested
[Churchill, 2002; Cui and Churchill, 2003].

Variance components from each source can be estimated by modeling
microarray data using the mixed model analysis of variance (ANOVA).
Unlike fixed effect models, which treat the effects of factors as if they would
be repeated exactly if the experiment were to be repeated, mixed models
treat some factors, such as the array effect, as random samples from a
population.   In other words, we assume that if the experiment were to be
repeated, the same effects would not be exactly reproduced, but that similar
effects would be drawn from a hypothetical population of effects.  The
variation of these random factors is considered when inferences are made
about the treatment effects [Littell et al., 1996; Searle et al., 1992;
Witkovsky, 2002].  Therefore, the mixed model results are more general and
reproducible.

Knowledge about variance components also provides a basis for making
experimental design decisions regarding the allocation of resources
[Churchill, 2002; Yang and Speed, 2002]. Replication in a microarray
experiment can be present at any levels. For example, multiple samples per
treatment (sample level), multiple RNA extractions per sample (RNA level),
multiple labelling reactions per RNA source (labelling level), Multiple
arrays per label (array level) and multiple spots per gene on each array (spot
level). Replication at levels that have large variance components can
significantly improve the overall sensitivity of the experiment. Current
literature on microarray replication is mainly at array level [Pan et al., 2002;
Wolfinger et al., 2001; Zien et al., 2002] and spot level [Lee et al., 2000],
with little attention given to biological sample level. Here we use a linear
mixed model ANOVA to estimate the variance components at the mouse and
the array levels and explore the implications of these variances in the
allocation of biological and array replication.

2. MATERIALS AND METHODS

2.1 Data pre-process

The corrected Project Normal microarray data (text files) were
downloaded from http://www.camda.duke.edu/camda02/contest.asp. Only
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the foreground signals were used. The background signals and flags were
ignored. All genes including blanks (5776 spots on each array) are included
in the analysis. The data were log2- and intensity-lowess- transformed and
then normalized by subtracting the channel mean from each signal, which is
the same as fitting a normalization model [Wolfinger et al., 2001] or fitting
some global factors for normalization in global ANOVA models [Kerr et al.,
2000].

2.2 Model

The following mixed linear model was fitted to each gene in each organ
to estimate variance components,

ijhkjiij RMDAY εµ +++++= , (1)

where µ is the gene mean; iA  (i = 1 ... 24) is array effect; jD  (j = 1, 2) is

dye effect. kM  (k = 1 ... 6) is the effect of individual mice, where value of k
is determined by the array and dye combination (i,j). hR  (h = 1, 2) is an
indicator of reference (h = 1) versus tissue sample (h = 2), which is again
determined by the combination of array and dye. ijε  is the residual

measurement error. jD  and hR  are fixed effects. iA , kM , and ijε  are

random effects with assumed normal distributions ),0( 2
AN σ , ),0( 2

MN σ ,
and ),0( 2

εσN , respectively. 2
Aσ , 2

Mσ , and 2
εσ  were estimated using the

restricted maximum likelihood (REML) method [Searle et al., 1992;
Wikovsky, 2002].

A bigger model that includes the organ effect,

ijhknjiij RMODAY εµ ++++++= , (2)

is fitted to the combined data of all three organs. The organ effect nO  (n = 1,
2, 3) is a fixed effect with three levels representing kidney, liver, and testis.
The number of levels in array effect iA  becomes 72 (i = 1 … 72) in this
model. The remaining terms are the same as in equation (1).
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2.3 Proportion of detectable genes

The power calculation for testing the treatment effect in each gene follows
Wolfinger et al. [2001]. The error variance (EV) for the treatment effect was
calculated using formula )/(/ 22 mnmEV M εσσ += , where m and n are the
number of mice per treatment and number of array pairs per mouse,
respectively. The effectiveness of the whole experiment is represented by the
proportion of detectable genes, where a gene is detectable if we have at least
50% power to detect differential expression at a given significance level and
fold change.

3. RESULTS

3.1 Variance components

The variance components from the random effects - mouse ( 2
Mσ ), array

( 2
Aσ ), and measurement ( 2

εσ ) - were estimated from the corrected Project
Normal data set for each gene in each organ using the mixed model in
equation (1). The mean and median of each variance component for each
organ across all genes are shown in Table 1. In general, the array variance is
the largest component and it is more than 10 times larger than the mouse and
the measurement variances. The mouse variance is the smallest for both
mean and median.  Among the three organs, liver has the smallest mouse
variances.

Table 1. Mean and median of variance components.  The degrees of freedom for estimating
variance components from mouse, array, and measurement in each gene are 5, 18, and 22,
respectively.

variance  components kidney liver testis
Mean mouse 0.0252 0. 0092 0. 0126

array 0. 3221 0. 2957 0. 3068
measurement 0. 0250 0. 0308 0. 0244

Median mouse 0. 0090 0. 0014 0. 0046
array 0. 2168 0. 1848 0. 2075
measurement 0. 0168 0. 0178 0.0154

The distributions of variance components across genes in each organ are
shown in Figure 1. The histogram of the mouse variance components for
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individual tissue shows a characteristic bimodal pattern. The majority of the
genes have small mouse variance in all three organs. Only a small portion of
genes have larger mouse variances. For example, 18%, 5%, and 6% of the
genes have mouse variance over 0.04 in kidney, liver and testis, respectively.
This suggests that the majority of the genes are under tight control and a
small portion of the genes are less tightly controlled.  In addition, the
identities of the less tightly controlled genes are different in the three organs.
Among all genes that have mouse variance over 0.04, only 18% are common
among all three organs.  The low overlapping of the less tightly controlled
genes could cause the mouse variances to average out when the data from all
three organs were combined for variance component analysis.  That is
exactly what we saw when we fitted a bigger ANOVA model (equation 2) to
the combined data with organ effect accounted for. The “shoulder” in the
mouse variances of kidney and testis disappeared from the mouse variance
of the combined data (Figure 1D).

Figure 1.  Distributions of the estimated variance components. Smoothed histograms of
standard deviation in stead of the variance are plotted for clarity.
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For the purpose of making comparisons, variance components from two
other experiments were estimated and are shown in Figure 2.  The Gallstone
experiment [Henning Wittenburg and Beverly Paigen, personal
communication] looked at diet and strain effects on RNA expression in
mouse liver. Two diets and three strains were assayed in a 2 x 3 factorial
design with two mice for each diet and strain combination. The experiment
used direct comparisons among samples on a total of 28 arrays.  Each array
has two adjacent spots for each gene. The Brain Cortex experiment
[http://pga.tigr.org/MouseText.shtml] looked at the variation of mRNA
expression of brain cortex in mice using arrays with duplicated spots. In this
case the duplicated spots were dispersed across the array. Because these data
sets have duplicated spots, there are four measurements obtained for each
clone, two in the red channel and two in the green channel.  Measurements
obtained on the same spot (one red and one green) will be correlated because
they share common variation in the spot size.  Measurement obtained in the
same color (both red or both green) will be correlated because they share
variation through a common labeling reaction.  Therefore, additional random
factors for spot and labeling effects were estimated using the mixed model.

The estimated mouse variance components in these two data sets are
comparable with those estimated from the Project Normal data set (Figure
1). Some of the technical variance components (array, spot and
measurement) are larger in the Brain Cortex experiment than in the
Gallstone experiment. One possible explanation for this difference is that the
dispersal of replicated spots in the Brain Cortex experiment will pick up
spatial variation on the array.  In addition, the difference may reflect
different levels of control over spot size and morphology or hybridization
quality.

Including data from all three organs in the bigger model (2) allows us to
estimate the variance components from the combined data and enables us to
find genes that are differentially expressed among the three organs.  In this
case the three organs represent three different "treatments" and finding genes
that are differentially expressed could be regarded as one goal of the
experiment. At significance level of 0.05 after Bonferroni correction (a
stringent adjustment for multiple testing), 2279 genes were identified as
differentially expressed among kidney, liver, and testis.  It is not surprising
to see so many differentially expressed genes given that these are three very
different organs. We did not try to characterize these genes any further.

3.2 Power for detecting treatment effects

If the goal of the experiment is to detect treatment effects, statistical
inference should be based on the total variance including the biological
variance.  This will typically be a weighted average of the variance
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components and the relative weighting will depend on the design of the
experiment.  The error variance (EV) for treatment effect is a combination of
all the variance components that are nested under treatment.

 

Figure 2. Variance components from mouse Gallstone and Brain Cortex data sets. The
smoothed histograms of standard deviations in stead of the variances are plotted for clarity.

In a simple reference design for comparing two treatments, TrtA and
TrtB (Figure 3), the EV for treatment effect can be computed by

mnm
EV M

22
εσσ += (3)
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with m as number of mice per treatment and n as pairs of dye-swap arrays
per mouse. This equation is obtained using the within-array information only
as in tests based on log ratios.  The mixed model can extract between-array
information and combine it with the within-array information [Littell et al.,
1996].  The EV from the mixed model (equation 1) will be

)(2 22

422

ε

εε

σσ
σσσ

+
−+=

A

M

mnmnm
EV (4)

We have seen that array variance 2
Aσ  dominates, thus the correction factor

will generally be quite small and we use equation (3) throughout the rest of
this paper.  Note that the array variance is not included here. This is a
consequence of the pairing in two-dye microarray experiments.  In one-color
systems, array variance will be a major component of EV.

TrtA TrtB

M1 M2 M3 M4

R R R R

( m = 2 )

( n = 2 )

Figure 3. Reference design for testing treatment effect TrtA versus TrtB.  Arrows represent
arrays with head as Cy3 and tail as Cy5.  M, mouse; R, reference; m, number of mice per
treatment; n, number of array pairs per mouse.

A small error variance is desirable in order to increase the power of
statistical tests (t or F) for treatment effects.  From equation (3) we can see
that this can be achieved by increasing the number of mice per treatment, m,
to reduce both components proportionally. However, increasing m may mean
substantial increase in cost when mice are expensive. Therefore, it may be
desirable to simply increase the number of arrays per mouse, n.  However,
this strategy will only reduce the technical component of the variance,
therefore, it is most effective when measurement variance is larger than the
mouse variance.

Figure 4 shows the proportion of genes in which a two-fold difference
between two treatments can be detected with at least 50% power at a
significance level of 0.05 after Bonferroni correction at various
combinations of m and n in the three organs.  The m=2 (2 mice per
treatment) case does not show any power, while the 4, 6 and 8 mice per
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treatment cases show substantially increased power.  The lack of power in
the m=2 case is mainly due to the small degrees of freedom (df) for
estimating the variance in the t test. Since the right side of equation (3) is the
sum of two variance components, we use the smaller df as a conservative
approximation to the df of the error variance.  Using this method, the df of
the m=2 case is 2 while those of the other cases are 6, 10, and 14. At least 5
degrees of freedom are generally recommended for a t test.

Figure 4. Power for detecting 2-fold change between two treatments at various combinations
of number of mice per treatment and number of arrays per mouse. Circle, triangle, square, and
star represent 2, 4, 6, and 8 mice per treatment.  Dotted lines represent the same number of
array pairs (8 or 12) for each treatment. Significance level is 0.05 after Bonferroni correction.

Increasing the number of arrays per mouse generally increases the
proportion of detectable genes. The increase is most obvious with small
numbers of arrays (from 1 to 4 pairs).  Once there are 6 pairs of arrays per
mouse, there is hardly any gain from increasing arrays further. If the goal is
to achieve detectability for more than 90% of the genes, at least 6 mice per
treatment is recommended. For a small number of genes which have
significantly larger mouse variances, such as the genes declared significant
in Pritchard et al. [2001], increasing the number of arrays per mouse can
never achieve the same precision as increasing the number of mice per
treatment. For the same total number of arrays per treatment, more mice per
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treatment with fewer arrays per mouse will have more statistical power as
shown by the dotted lines in Figure 4. Therefore, if mice are relatively
inexpensive, more mice and fewer arrays per mice is a better choice.

The percent of genes that can be detected at various fold changes is
shown in Figure 5 for various combinations of array and mice.  Increase of
array number per treatment can greatly increase the detection of genes with
smaller fold changes. In addition, the experiment with six mice per treatment
has substantially higher power than that with four mice per treatment at
small fold changes.

Figure 5. Power for detecting treatment effects at different fold changes. Triangles and
squares represent 4 and 6 mice per treatment, respectively.  Dotted and solid lines represent 1
and 3 pairs of arrays per mouse, respectively.  Significance level is 0.05 after Bonferroni
correction.

3.3 Optimum resource allocation

In practice, there is often a limited budget. In order to utilize the resource
most effectively, we need to balance mice and arrays to minimize the cost of
the whole experiment. Let CM represent the cost of a mouse and CA represent
the cost of a pair of arrays. Suppose there are m mice per treatment and each
mouse will be measured using n pairs of arrays.  The total cost will be
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AM CnmCmCost ⋅⋅+⋅= (5)

Combining equations (3) and (5), we can derive the optimum number of
arrays per mouse [Kuehl, 2000] in order to keep the total cost minimum as

A

M

M C
C

n ⋅= 2

2

σ
σ ε  (6)

For example, suppose that the array price is $300 each and three different
mouse strains are $15, $300, and $1500 per mouse. If we use the median
values of 22 / Mσσ ε  obtained from each organ of the Project Normal data, the
optimum pairs of arrays per mouse for differently priced mouse strains can
be computed using equation (6).  Because all the calculations are based on
reference design with dye swap (Figure 3), n is rounded up to the nearest
integer (Table 2).

Table 2. Optimum pairs of arrays per mouse (N = number of pairs of arrays per mouse)
Array price (pair) Mouse price N (kidney) N (liver) N (array)

$600 $15 1 1 1
$600 $300 1 3 2
$600 $1500 2 6 3

If budget is fixed, equation (6) can be plugged into equation (5); the
resulting m and n values will give a minimum EV for the fixed cost.  If there
is a certain EV to achieve, equation (6) can be plugged in equation (3) to find
m and n that will result in minimum cost for the desired EV.

When there are r replicated spots for each clone on each array, additional
variance components for labeling ( 2

Lσ ) and spot can be fitted to the data to
capture the covariance shared among observations within a spot and a
labeling reaction as shown in Figure 2.  The EV of treatment mean can be
approximated as

mnrmnm
EV LM

222
εσσσ ++= (7)

and the optimum number of dye-swap pairs per mouse will be
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A

M

M

L

C
C

r
r

n ⋅
+

= 2

22

σ
σσ ε (8)

3.4 Pooling mice

Pooling mice is another possible strategy to increase the precision of
treatment tests in this experiment. It reduces EV by reducing the mouse
variance component. The between-pool variance for a pool size of k mice
will be approximately

22 1
Mpool k

σσ α= (9)

for some constant 0 < α < 1, which is related to the pooling procedure. In the
case of α = 0 pooling will have no effect. In the case of α = 1 the mouse
variance is reduced in direct proportion to the pool size k.  Unfortunately,
there is no information about α in the Project Normal data set. Therefore, we
cannot estimate how effective pooling will be in this experiment. Suppose
that we can reach the maximum effect of pooling, α = 1, the effect of
pooling 3 mice in each sample is shown in Figure 6.  The power for
detecting treatment effect increases slightly in kidney and testis, even less in
liver.  The gain is the biggest when there are four samples per treatment in
all three organs.

Due to the presence of α in equation (9), for a fixed total number of mice,
more pools with fewer mice in each pool will result in a smaller EV, given
that a fixed number of arrays for each treatment will be used. For example,
10 pools with 4 mice in each pool is better than 4 pools with 10 mice per
pool.

4. DISCUSSION

In this paper we estimated the biological and technical variance
components from the Project Normal data and found that the technical
variance is the major component in the treatment error variance.  Therefore,
reducing the technical variance will be effective in increasing the power of
the test for treatment effect.  One way to reduce the technical variance is
through increasing the number of arrays per mouse as discussed in the result
section. Another approach, not considered here, is to use more efficient
experimental designs, such as loop design [Kerr and Churchill, 2001a; Kerr
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Figure 6. Effect of pooling mice in increasing the power of detecting treatment effect. Circle,
triangle, square, and star lines represent 2, 4, 6, and 8 mice (solid) or pools (dotted).  Each
pool has 3 mice. Significance level is 0.05 after Bonferroni correction.

and Churchill, 2001b] and block design [Simon et al., 2002]. No reference
sample is used in these designs and the treatment samples are compared
directly.  Direct comparisons have higher efficiency than indirect
comparisons through the reference sample, because no measurement is
wasted on the reference sample [Kerr and Churchill, 2001a; Yang and
Speed, 2002].  For comparing two samples, the technical variance from a
direct comparison is ¼ of that from an indirect comparison through a
reference sample using the same number of arrays.  For more than two
samples, the reduction of technical variance depends on the positions of
comparing samples in the design and it becomes more complicated to
calculate when complicated loop or block designs are used [Yang and Speed,
2002; Churchill 2002].

The power calculations in this paper are based on the assumption that
each gene has unique variance components, which is a relatively unstable
method in experiments with limited number of data points per gene. In those
experiments, we could assume that the variance components are the same
across all genes; in this case the proportion of detectable genes will be either
0% or 100% because the test statistic (t or F) value will only depend on the
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magnitude of the fold change, not the variance components from each gene.
However, this type of test is subject to bias if the data have not been properly
normalized. If we combine the above two situations and assume that each
variance component for each gene is the combination of common variation
for all genes and some variation from individual gene [Baldi and Long,
2001; Cui and Churchill, 2003; Lönnstedt and Speed, 2002], the proportion
of detectable genes will again be a useful concept.  Combining information
about variance components across the genes is a potentially powerful
approach that we are currently investigating.

Multiple testing adjustments are usually applied to control the false
positive errors in microarray experiments when thousands of genes are tested
one at a time as in this experiment. In this experiment, we used the
Bonferroni correction, which is a stringent family-wise error rate (FWER)
correct.  The 0.05 significance level after Bonferroni correction means that
we expect a probability of 0.05 to have one or more errors in the whole list
of the identified significant genes.  There are other less stringent multiple
testing adjustment methods, such as FDR (false discovery rate) adjustments,
which controls the percent of genes in the declared significant gene list that
are false [Benjamini and Hochberg, 1995; Storey, 2002].  These methods are
appropriate for exploratory experiments in which a list of candidate genes
will be confirmed using other technologies. When less stringent multiple test
adjustments are used, the power of the test in Figures 4, 5, and 6 will all
increase.

All calculations of power and resource allocation in this paper are based
on the estimation of the variance components, which relies on replication. In
the Project Normal data set, mouse and array are replicated; therefore, the
variance introduced by these two factors can be estimated.  Similarly,
variance components from any other factor, such as RNA extraction,
labeling, spot, can be estimated as long as there is replication at an
appropriate level of the experimental design. Estimation of all the possible
variance components from microarray technology can help to determine
where the largest variances come from. These steps are targets for
microarray technology improvement. The estimation of variances becomes
even more important when new microarray platforms, new techniques, or
new facilities are implemented. For large and complicated experiments, pilot
studies are recommended for estimating the biological and technical
variances in order to customize the power and cost calculation in the design
stage.
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5. CONCLUSION

We estimated the biological and technical variance components from the
Project Normal data set using a mixed model ANOVA. Comparison among
the estimated variance components revealed that the technical variance is
larger than the biological variance for most of the genes. To detect treatment
effect using reference design in experiments with similar variance
component values, reducing the biological variance by pooling mice will not
be as effective as increasing the replication of arrays to reduce the technical
variance. For fixed number of arrays per treatment, designs with more mice
per treatment and fewer arrays per mouse are more powerful than designs
with fewer mice per treatment and more arrays per mouse.
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