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Abstract

Financial economics is largely based on time series. One of the ma-
jor uses for time-series models is to produce forecasts and nonlinear
models have particular difficulties in doing this, especially for several
steps ahead. Two related classes of models that have been proposed for
forecasting returns are regime switching models and artificial neural
networks. This work will focus on regime switching models particu-
larly the logistic smooth transition autoregressive (LSTAR) model.

The LSTAR model is a nonlinear model, which makes multi-period
forecasting more different than from a related linear model. Obtaining
the forecast would require numerical integration and multiple integra-
tion would be encountered for longer time horizons. The purpose with
this essay is to compare forecasts from the LSTAR model to those
from a linear one. In this work, Monte Carlo technique will be used
to produce multi-step forecast for a given LSTAR model.
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1 Introduction 
 
1.1 Statistical background 
 
Empirical analysis in macroeconomics as well as in financial economics is largely based on 
times series. Ever since the mid-seventeenth century it has been standard to view economic 
time series as realizations of stochastic processes. The existence of unexpected shocks or 
innovations to the economy plus measurement errors, strongly suggest that economic 
variables are stochastic. This approach allows the model builder to use statistical inference in 
constructing and testing equations that characterize relationships between economic variables.  
 
Investment functions, production functions and Philips curves are usually specified in 
nonlinear forms. For the time series analysis area, linear techniques have long dominated 
macroeconomic model building. There thus seems to be a need for explanatory statistical 
techniques to produce nonlinear models, perhaps used in conjunction with appropriate 
theories. Before examining non-linear models, it is necessary to define what is meant by a 
linear model. So far there is little experience using nonlinear models with economic data and 
therefore it is often recommended (Granger and Teräsvirta [1993]) to use a test of linearity 
before fitting models and decide which type of model is the most appropriate.  
 
There are many nonlinear models that have been suggested by economic theory. One class 
that does seem to be potentially relevant involves switching regimes. These models are 
interesting because many parts of the economic theory include the idea that the economy 
behaves differently if some variable lies in one region rather in another. The class of 
switching regression models also includes models that assume a finite number of linear 
regimes. A special type of these nonlinear models is the smooth transition autoregressive 
(STAR) model. This model nests a linear part and the extra parameters give the model added 
flexibility. Once the model is specified we are faced with the problem of making forecasts. 
(Lundbergh and Terävirta [2002])    
 
There are many ways of producing forecasts such as formal model-based statistical analyses, 
statistical analyses not based on parametric models, forecasting based on leading indicators, 
survey analyses, knowledge of econometric systems and time series. One of the best known 
statistical approaches of forecasting derives from classical regressions analysis. This approach 
has been applied to time series and it is useful in forecasting analysis. However nonlinear 
models have particular difficulties to produce forecasts especially for several steps ahead. 
Alternative ways of producing forecast are necessary. During the recent years, computer-
based simulation methods have revolutionized the way we approach statistical analysis.   
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A forecast might be judged successful if it is close to the outcome but that judgment may also 
depend on how close it is measured. Depending upon the degree of forecast uncertainty, 
forecasts may range from being highly informative to utterly useless for the tasks at hand. A 
measure of forecast uncertainty provides an assessment of the expected or predicted 
uncertainty of the forecast errors which helps to qualify the forecasts themselves and to give a 
picture of the expected range of likely outcomes. For example, we could try the ideas for 
measuring the success or failure of forecasts by testing combinations of forecasting models 
for encompassing. Forecasting methods can also be compared by Monte Carlo (or stochastic 
simulation) where an investigator generates artificial data on which the models are compared 
in repeated trials. (Ericsson [2002])  
 
Despite the many problems that economic forecasts from economic systems confront, these 
models offer a vehicle for understanding and learning from, failures, as well as consolidating 
our growing knowledge of economic behaviour.    
 
1.2 Objectives 
 
A recurring argument in practice is that a nonlinear model hardly forecasts better than a linear 
one. This seems to be the case even if the nonlinear model seems to fit the data better than the 
linear one when they are built on the same information set. The purpose with this work is thus 
to compare forecasts from a Logistic Smooth Transition Autoregressive (LSTAR) model to 
those from a linear one.   
 
1.3 Delimitation and methods 
 
In this work we discuss the forecasting power of a LSTAR model trough simulated examples. 
Of course, the results cannot therefore be generalized to the whole family of STAR models. 
We will generate forecasts from each LSTAR model by using Monte Carlo simulation 
according to chapter three. We do this under the assumption that we have estimated the 
parameters of a generated LSTAR model. In this way, we don’t have to use different linearity 
test to make sure we have a nonlinear model from the beginning.  From the forecasting point 
of view it would also be important to know the property of the information set available at the 
forecast step. Different lags will hence be used to examine if all the information about the 
future of the series is contained in its most recent value. Furthermore, we generate the 
corresponding forecasts from the related linear autoregressive model. To compare the 
accuracy of the forecasts we use the Root Mean Square Error (RMSE) measure which will be 
defined in section 3.1.                     
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2 Nonlinear time series models 
 
This chapter introduces some basic ideas of time series analysis and stochastic processes. 
Some nonlinear models will be described in the first section. Of particular importance and one 
of the main objectives with this chapter is the concept of  Smooth Transition Autoregressive 
(STAR) Models. This will be described in section 2.2. Estimating procedures for these 
Smooth Transition Autoregressive Models will be considered in section 2.3. Once the data 
have been fitted to a specific STAR model, we are faced with the problem of forecasting.     
 
2.1 Time series and general nonlinear models 
 
An important part of the analysis for a set of observations is the selection of a suitable 
probability model. To allow for the possibly unpredictable nature of future observations it is 
natural to suppose that each observation        is a realized  value of a certain random variable  
     . A time series is a set of observations      , each one being recorded at a specific time t. 
This could be compared with a general stochastic process                   , which is a collection 
of random variables. That is, for each                    is a random variable. The index t is often 
interpreted as time and, as a result, X(t) is the state of the process at time t. A time series 
model for the observed data          is a specification of the joint distribution of a sequence of 
random variables          of which           is postulated to be a realization. Having chosen a 
model (or a family of models) it then becomes possible to estimate parameters, check for 
goodness-of-fit to the data, and possibly to use the fitted model to enhance our understanding 
of the mechanism generating the series. Once a satisfactory model has been developed, it 
could be used to predict future values.    
 
Before considering the specification of the time series, it is necessary to impose the properties 
of the models. Define           as the section of a series,                                   so that the section 
contains m consecutive terms and                    denote the probability distribution function of                  
A series       is said to be (completely) stationary if                is not a function of t for any 
finite m. Thus, a series is stationary if its generating mechanism is time invariant and if the 
series is short-memory, so that the conditional distribution of              given                     is 
equal to the unconditional distribution, for h large. In general, consider the conditional 
distribution of            given the information set                         ,  i.e.                                            
The series is said to be short memory in distribution (SMD) if:                              does not 
depend on     . If           always depends on     , the series may be called long-memory in 
distribution (LMD).      
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Let                               be the optimum (least-squares) forecast of           using the information 
in     , not necessarily linearly. If:                      where D is some random variable,  
then       is said to be short-memory in mean (SMM) if the distribution of D does not depend 
on    . If        continues to depend on     as h increases, the series will be called long-memory 
in mean (LMM). However, SMD implies SMM but not vice versa, and LMM implies LMD, 
but not necessarily vice versa. For example, series can be short-memory in mean but long-
memory in distribution.        
 
Suppose we have a situation where there is an output to a system,      and a distinct vector 
input,       which is observed with v components. A general model may then be  
 
                                                                                                                                            (2.1.1) 
 
 
where we have q lags of the input series and       is a zero mean independent and identically 
distributed (i.i.d) sequence. When the function f is well behaved, the Taylor series around 
zero will give an expansion: 
 
                                                                                                                                            (2.1.2) 
 
 
For example, the cubic component contains all triple term                                  ranging over 1 
to v, and t, s, p each ranging over 0 to q. The expansion around zero and the notation will 
quickly be unwieldy and the number of parameters will be very large. A problem with input-
output systems is that they are using the available information inefficiently. There is no direct 
use of lagged dependent variables.  
 
i) An alternative input-output model which does not have this objection is the “state affine 
model”, used by Sontag (1979), Guegan (1987), and others. Let                                                
be an input series and its lags and consider a generating mechanism  
          
                                                                                                            
                                                                                                                                            (2.1.3) 
 
where           and           are polynomials in the components of         .   
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ii) A related, general class of models, called “state-dependent models”, was introduced by 
Priestley (1980). Starting with a relationship of the form  
where                                         is the information set and the sequence                        is called 
white noise if its mean                   is constant, its variance                        is also a constant and 
covariances                     = 0 for t≠s. Using first-order terms from a Taylor expansion, Priestly 
suggests a model  
                                                                                                                                            (2.1.4) 
                                                                                                                                             
where      is a vector of “state-variables”, which are themselves functions of the contents  
of    . The coefficients            ,               and             will change through time as the state 
variables evolve and the model is completed by specifying how the state variables are 
generated.    
 
iii) A related class is the “doubly stochastic models” introduced by Tjostheim (1986). An 
example is the relationship                                   where        is a stochastic process for each j, 
usually taken to be independent of     . Various alternatives arise from specifying different 
generating mechanism for the      . Particular special cases are the random coefficient models, 
in which                         , where the        are constant and        are i.i.d series, as studied by 
Nichols and Quinn (1982).    
 
The three general classes of model just considered, the state affine, state dependent and 
doubly stochastic are all essentially linear with different forms of time-varying parameters, 
through which nonlinearities are introduced. The simple, specific models, such as nonlinear 
autoregressive and threshold models are all special cases of these models or extended versions 
of them.                
  
However, an important, simple model is the nonlinear autoregressive of order one, where    
has the form                                                                                                                        (2.1.5) 
where      is zero mean i.i.d. A Markov process has the property that the conditional 
distribution of         given all                    is the same as the conditional distribution of       
given just    . Thus, all the information about the future of the series is contained in its most 
recent value. Hence, the above process, (2.1.5) is a Markov process. Another alternative form 
is the deterministic process           
                                                                                                                                            (2.1.6) 
Notice that if             then             for t > s. An obvious generalisation to p lag is the model                                                              
 
                                                                                                                                            (2.1.7) 
which is not Markov if p>1. Finally, models (2.1.5)-(2.1.7) have in common that they are all

 univariate models. 
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2.2 Smooth Transition Autoregressive Models 
 
Many parts of economic theory include the idea that the economy behaves differently if some 
variable lies in one region rather than in another. These models can be grouped under the 
heading ‘regime-switching’ theories. This yields a variety of non-linear time-series models. A 
simple single-equation form might be:  
 
                                                                                                                                            (2.2.1) 
 
where      is i.i.d. Here, F(x) is a continuous function which may be either even or odd,       are 
explanatory variables,     the time-delay and  the explanatory variable          for function F(x) 
is called the transition variable. The function, F(x) may be an even function with                                 
and in that case F may equal the density function of a                    variable. If  F is odd and 
monotonically increasing,                  is large and  if                       is effectively generated by 
the linear model  
 
                                                                                                                                            (2.2.2) 
 
If                   is large and                       is virtually generated by  
 
                                                                                                                                            (2.2.3) 
 
Bacon and Watts (1971) and Maddala (1977) were early proponents, when F(x) was an odd, 
monotonically increasing function with                                    . Such models are called smooth 
transition regression (STR) models. If         is replaced by       , (2.2.1) is a special case of the 
Smooth-Transition Autoregressive (STAR) model. 
 
When F is even,      is practically generated by (2.2.3) whenever                   is large and by 
(2.2.2) if               . If           is replaced by         , then (2.2.1) become univariate and is hence 
another special case of the STAR model. It is often convenient to assume that the function F 
is logistic if it is odd and a general situation is then achieved if               is replaced by          
for some d>0, i.e. 
 
                                                                                       
                                                                                                                                            (2.2.4) 
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γ=0 

Model (2.2.1) is then called a logistic STR (LSTR) model. A more general model of a logistic 
smooth transition autoregressive model of order p (LSTAR(P) model) with a vector      
       of  p explanatory variables, can be written using the vectors    
 
                                                                 
and a model                                                                                                                                            
                                                                                                                                            (2.2.5)                                                                               
where 
  
 
and     is a zero mean sequence of normal independent variables. The coefficient                is 
the smoothness parameter and  the scalar c is the location parameter and d is known as the 
delay parameter when                 is replaced by               . The variable             is then called 
the transition variable for some d>0 in model (2.2.4).        
  
The transition function (2.2.4) is a monotonically increasing function of          . The slope 
parameter    indicates how rapid the transition from zero to unity is for a function of           and 
the local parameter c determines where the transition occurs. If                 in model (2.2.4), 
then (2.2.1) becomes a two-regime switching regression model with the switching variable  
In this special case,                  is the switchpoint between the regimes  
 
 
    
 
 
 
The slope or smoothness parameter γ controls the slope of the transition function (2.2.4).   

                                          γ=3                                                                                                      γ=11  γ=8 

                                            γ =20              γ=1                                                                                                       

                                                                                                                                                                                       γ=2                                                                                                                                                                                                                                             

                        

                                                                                 

 

 

 

 
Figure 2.2.1:Graphs of the logistic transition function (2.2.4) for c=0.5                         Figure 2.2.2: Graphs of the logistic transition function (2.2.4) for c=1.5  
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When               then (2.2.4) becomes a step function and the STAR model (2.2.1) becomes a 
threshold autoregressive (TAR) model with two regimes.    Note that if               the model 
becomes linear as (2.2.4) becomes a constant. This is illustrated in figure 2.2.1 and figure 
2.2.2 where the transition function increases monotonically from zero to unity with            .  
As a result, the LSTAR model could be applied for modelling asymmetric business cycles. 
This is because the dynamics of the model are different in the expansion from the recession.         
 
2.3 Estimation of Smooth Transition Autoregressive models 
 
After specifying the model, the parameters can be estimated. If p is known, the coefficient can 
be estimated by nonlinear least squares (NLS) or maximum likelihood (ML) and some 
optimisation procedure. In the case where      ∼                , both methods are equivalent.  
Hence the parameter vector     of (2.2.1) with the logistic function        
 
                                                                                                     is estimated as  
 
 
 
 
 
Under some regularity conditions the estimates are consistent and asymptotically normal, that 
is                                        where       is the true parameter vector and C is the covariance 
matrix of estimates.  The parameters of the STAR model will hence be estimated by nonlinear 
least squares, and to do that, a suitable iterative optimisation algorithm is needed. The 
optimisation problem in nonlinear least squares is conditional on the starting values            
and consists of finding the minimum of the criteria      
 
                                                                                                                                            (2.3.1) 
 
with respect to the parameter vector    . To find a starting-point for the iteration procedure we 
approximate (2.3.1) with a second-order Taylor expansion about       which yields   
                                                
                                                                                                                                            (2.3.2) 
 
where the gradient evaluated at                                                and the Hessian evaluated at   
 
                                         . The first-order conditions for the minimum i.e                   will be 
obtained by differentiating (2.3.2) with respect to      and the basis for iteration yields  : 
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If we have fixed        and know how to compute         and      , equation (2.3.3) yields the 
search direction for the next value of                        which is obtained from   
where       is the step-length. The value forms the starting-point of the next iteration. This is 
the Newton-Raphson method. In general the optimisation algorithm is very sensitive to the 
choice of the starting values of the parameters. The implemented program is estimating all the 
models according to the Levenberg-Marquardt algorithm with cubic interpolation linear 
search. Concerning the selection of the starting values, the following algorithm is used: 
Rewrite model (2.2.5) as                       where  
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Estimating the slope parameter γ in the transition function causes sometimes problems. The 
reason is that the slope parameter is not scale invariant. This makes it difficult to find a good 
starting-value. While all the other iterative parameter estimates converge rapidly, the slope 
parameter      converges very slowly. This may be the case when the true parameter is 
relatively large. This is because a large set of γ-values yields almost the same F. The transition 
functions corresponding to these γ-values deviate noticeably from each other only in a small 
neighbourhood of the transition value c. When γ is large, rescaling it becomes important. A 
method may be obtained by rescaling the argument of F by dividing by            , which is the 
standard deviation of the transition variable. A reasonable starting value for iterative 
nonlinear least squares estimation would then be γ = 1. Rescaling the argument will make the 
choice of a starting-value for γ more easier. Moreover, when γ is large then the slope of the 
transition function at c is steep and a large number of observations in the neighborhood of c 
would be needed to estimate γ accurately. However this uncertainty is reflected in the 
estimated standard deviation of γ, which tends to be large for large values of γ. A workable 
solution would therefore be to rescale the parameter before doing estimation.                          
 
The selection of the parameters ?, d and c is divided in the following steps: 
1. Draw K possible values for d such as     ∈(0,1) and     ∈[-1,1], j = 2,…,q and call them  
     , k=1,…,K. The values for      will be from a uniform random distribution over the interval 
(0,1] and for      , j = 2,…,q from a uniform random distribution over the interval [-1,1]. 
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2. For k = 1,…,K:  
(a) Normalize each vector       and compute the projection         of x  (                             ) in 

the direction of kv . 
(b) Compute the median of         and call it      . 
(c) Draw a grid of N possible values for the slope and call them     , n=1,….,N. 
 
3. For k = 1,…,K and n = 1,…,N, set ? =      , d =       and c =        and compute the value of   .       
            . The values of the parameters will be selected such that they minimize the objective  
function and we call them      ,      and      . 
 
4. Set ? =     , d =       and c =      and use them as starting-values for the Levenberg-Marquardt 
algorithm.. 
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3 Forecasting 
 
This chapter will begin by defining a suitable measure of forecast accuracy. The measure will 
later on be used to compare one forecast method with another. Section 3.2 provide  
a method of forecasting with an alternative model to the Logistic STAR model. An 
application of estimation and forecasting the alternative model is then described  in section 
3.3. The predictions will be tested against predictions of the Logistic STAR model. Particular 
Logistic STAR models have difficulties in doing predictions, especially for several steps 
ahead. Section 3.4 will describe this and a method of producing one-, two- and three-steps 
forecasts. An application of the prediction methods for Logistic STAR models is presented in 
section 3.5. The comparison between results and the accuracy of the predictions are finally 
presented in section 3.6.                 
 
3.1 Measuring forecast accuracy  
 
A forecast might be judged “successful” if it is close to the outcome, but that judgment may 
also depend on how “close” it is measured. One of the key feature of measuring forecast 
accuracy is the separation of the data into separate parts, one of which we refer as the hold-out 
sample, which is not used at all during the estimation process. Instead it will be used to 
evaluate performance after fitting is complete. When making forecasting comparisons, the 
time origin of the forecast may be progressively shifted through the hold-out sample. This 
provides a set of rolling forecasts from which we calculate the measure. To simulate this, the 
selection of forecast method will require repeated productions of forecast steps. The general 
procedure is as follows: 

1. T+H known data points are split into one T period for estimation and one H period for 
accuracy and forecasting.             

 
      2.   At each T+h, we do a forecast on T+h+1, T+h+2 and T+h+3 for h=0,1,2,……,H-1 
 
Thus, the procedure will generate a set of H three-step-ahead forecasts which will be 
compared with the hold-out sample. Defining a suitable error measure based on the hold-out 
sample is as follows:      
 
                                                                                                                          
                                                                                                                          
 
where j indexes the forecast step. Hence, the forecast error is the difference between the true 
outcome             and its forecast            . 

( ) Error) Square Mean(Root              3,  2,  1j,yŷ
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3.2 Predictions with an alternative linear model 
 
One of the purposes with LSTAR models is to give an adequate characterization of nonlinear 
features in the data. This characterization is then used to produce forecasts. However, it is 
often of particular interest to find out how successful the estimated model is in this respect. 
One way to do this is to form an alternative linear model. When          in the transition 
function (2.2.4), the STAR model becomes linear and the transition function becomes a 
constant. A possible null hypothesis is                   and the alternative                 . Hence, we 
can specify a linear relationship. Let us define the additive model as 
 
                                                                                                                                            (3.2.1) 
 
 
for all t, where         is a sequence of  uncorrelated random variables with constant mean of  
zero and constant variance    and           is a sequence of constants with                    . The class 
of linear time series models provides a general framework for studying stationary processes. 
The time series           is a linear process and when        is uncorrelated with       for s<t we 
define this as a p order autoregressive process or AR(p) process.   
 
Estimating parameters of the linear autoregressive model (3.2.1) is carried out by least-
squared method which is equivalent to the conditional maximum likelihood estimation in the  
case of normal errors.    Now we suppose that the observed time series                         is a 
realization of a stationary process admitting an autoregressive representation:    
        
  

   
                                                                                                                                                                               

                                                                                                                                            (3.2.2)
  

where         is a sequence of independent random variables, each with mean 0, variance       
and the     are absolutely summable real coefficients. A new autoregressive model could be 
selected and fitted for each step of prediction, h, by ordinary linear least squares, OLS, 
regression  procedure in which            is regressed on                               .                                                
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10 A process of this kind is called white noise (WN) and { tu } will be denoted by tu ∼WN(0, )2σ     
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3.3 Estimation and forecasting with autoregressive models  
 
The basic nonlinear model considered is a logistical smooth transition autoregressive model 
of order two and the model which is used to generate data is defined as follows    : 
 
 
 
                                                                                                                                            (3.3.1) 
 
The time series in figure 3.3.1 is a realization of 100 observations of the LSTAR(2) model 
(3.3.1) with the delay parameter d = 1, slope parameter γ = 100 and       ? NID(0,1). 
 

  
 
 
 
 

                                                                                                                                                                                                                                     

                              Figure 3.3.1 

 
In most circumstances there are several possible models that can be used to make forecasts. 
One way is to produce a related linear forecast instead of a nonlinear forecast. When           in 
model (2.2.4), then the LSTAR(2) model becomes an autoregressive model of order 2. In 
section 2.2 model (2.2.5) is called the logistic STAR (LSTAR) model. Using the least-square 
method we can estimate the parameters of the linear model which is related to the time series 
in figure 3.3.1.                                                                   

                                                                   
 
 
 
 
  
   

                                                                                                                                                                 Figure 3.3.2 

 

The figure shows the fitted autoregressive model of order 2 and the generated data from a 
LSTAR(2) model.  
 

 

0=γ
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                                                                                                        Figure 3.3.3 
 
The residuals of the generated LSTAR(2) model and the linear AR(2) model are graphed in 
figure 3.3.3. A comparison between the graphs indicates that they are quite similar.   
 
The forecasts can then be expressed as a weighted linear combination of past and current 
innovations with j=1, 2, 3: 
 
 
                                                                                                                                            (3.3.2)                                                                        
 
 
To investigate the effects of excluding lags and forecasting directly without iteration, we 
consider the third-order autoregressive model. Estimating the parameters yields the two-step 
forecast   
 
                                                                                                                                            (3.3.3) 
                                                                                                                                            
In this case, the two-step forecast in period T will be depending on lagged values         and          
This will be compared with the nonlinear case where forecasting two-step ahead is not as 
easy. Mainly because the exact forecast has to be obtained by numerical integration where 
multiple integration would be encountered for longer forecast horizons than two periods.  
 
In a similar way, instead of model (3.3.2) the forecast made at T for three-step ahead may be 
obtained as   
 
                                                                                                                                            (3.3.4)                                                                 
                                                                                                                                        
Note that the expressions for one-, two- and three step ahead don´t depend on the previous 
forecast as in model (3.3.2). Thus, both model (3.3.3) and (3.3.4) will be depending on lags            
      and         instead of the previous forecast and hence period T is the last available 
information.      
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For comparison, we compute the root mean square error. The results are summarized in the 
following table:  
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                           
                             

           Table 3.3.1:  RMSE of the estimated models with forecast period, H=100 and estimation periods T=100, 200 and 400 

 

It is seen that RMSE of model (3.3.2) with estimation period T=100 are less than for periods 
T=200 and 400. Also forecast two- and three-step ahead have a higher value of RMSE than 
one-step ahead. In the first column, we observe that step one yields the smallest value and 
step three yields the highest value of RMSE for model (3.3.2). In contrast of model (3.3.2), we 
observe that model (3.3.3) yields a higer value of RMSE than model (3.3.2) for two-step 
ahead. When forecasting three-step ahead, model (3.3.4) also yields a higher value of root 
mean square error.               
 
3.4 Forecasting with general nonlinear models  
 
One of the major uses for time-series models is to produce forecasts and nonlinear models 
have particular difficulties in doing this, especially for several steps ahead. To illustrate the 
methods available for forecasting we use the model 
 
                                                                                                                                            (3.4.1)   
 
Using a least-squares criterion, the optimal one-step forecast is                                                                  
                           
                                                                                                                                            (3.4.2)             
 
where                                  is the information set available at time t. Thus if, one knows g( . ) 
or has an acceptable approximation for it, one-step forecasts can be achieved with no 
difficulty. The two-step case is not as easy. The optimum two-step forecast is  
                                                                                   
                                                                                                                                            (3.4.3)   

                      T 

AR                                 

100 200 400 

Forecast 
1 step ahead 

   

Model (3.3.2) 1.163 1.187 1.201 
Forecast 
2 step ahead 

   

Model (3.3.2) 
Model (3.3.3) 

1.202 
1.301 

1.225 
1.312 

1.245 
1.322 

Forecast 
3 step ahead 

   

Model (3.3.2) 1.243 1.267 1.281 
Model (3.3.4) 1.328 1.332 1.337 
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As          is not usually known at time t, it’s necessary to specify the generating mechanism for                 
     . Hence, we suppose that a good approximation to this mechanism is available. Let this be 
the model                             . This gives a one-step OLS forecast                  . The two-step 
forecast using (3.3.3) would then be in the form                                                                    
 
                                                                                                                                            (3.4.4)   
 
To compute this forecast we use Monte Carlo technique:                                               (3.4.5) 
  
Compare this with the exact solution:                                                    
                                                                                                                                            (3.4.6)  
 
For N large enough in the Monte Carlo technique, (3.4.5) and (3.4.6) should be virtually 
identical.    A naïve approach would be, if the presence of          in (3.4.4) is ignored by 
putting its value to zero. The different forecasts are quite different and have advantages and 
disadvantages.  
 
The naïve forecast is easy to use but will usually be biased because generally                          
The exact method can be too difficult to implement. The Monte Carlo forecast can be biased 
if an incorrect distribution D is selected, but otherwise should be the best technique. Clearly,  
 
Monte Carlo technique can be used  for multi-step forecast. In fact the exact three-step 
forecast has the form               
 
                                      
 
The naïve forecast just ignores e, but the exact forecast now involves a double integral, and 
the Monte Carlo requires draws from a bivariate distribution, but with independent 
components. The three-step forecast is  
 
                                     
 
 
As before, if D is well known, the exact and Monte Carlo methods will be the best. 
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1j ,y :I j-TT ≥

      Note: The problem of selecting reasonable starting values for  ? and c is discussed in section 2.3 
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3.5 Estimation and forecasting with LSTAR models  
 
Now we consider the particular logistical STAR model. The random numbers generated are 
the same as in section 3.3. As we know, the time series in figure 3.3.1 is a realization from a 
LSTAR model of order two with 100 observations for d = 1 and γ = 100. Estimating the 
parameters for the LSTAR(2) model yields    :

   
 

   

 
 
                                                                                                                                            (3.5.1)  
 
To illustrate the properties of the estimated LSTAR(2) model, consider the following figure 
which displays the generated data and the estimated model (3.5.1). The difference between the 
graphs is quite small. Note that the peaks of the generated data are sometimes higher than the 
peaks of the estimated model.     
   
 
 
 
 
                                         
 
 
 
 
As discussed before (section 3.4), the dynamics of the nonlinear model (3.5.1) will be used to 
estimate one-, two- and three-step forecasts. At time T, let the model produce one-, two- and 
three-step forecast given all the information set available at time, T. For prediction two- and 
three-step ahead we apply the Monte Carlo procedure according to section 3.4. More 
generally, forecasts with estimation period T will be computed recursively as    
 
 
 
 
 
 
 
where                          is the information set available at time T and the forecast period is 
given by  h = 0,……, H =1  
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Having done this, we compute the RMSE. This gives us an idea how much the available 
information affects the forecasts accuracy. 
 
 
 
 
 
 
 

 

        Table 3.5.1:  RMSE for the estimated LSTAR(2) model 3.5.1 with estimation periods, T=100, 200, 400 and forecast period, H=100.  

 
In the first column, we observe that one-step ahead yields the smallest value of RMSE and  
three-step ahead yields the highest value of RMSE. The results also show that RMSE with 
estimation period T=100 are less than period T=200 and 400.     
 
3.6 Comparison between prediction techniques 
 
Calculations of predictable uncertainty serve important roles, both statistically and 
economically. Depending upon the degree of forecast uncertainty, forecasts may range from 
being highly informative to utterly useless for the tasks at hand. A measure of forecast 
uncertainty provides an assessment of the expected or predicted uncertainty of forecast error  
and helping to give a picture of the excepted range of likely outcomes.     We now move on to 
our comparisons between the forecasts from a LSTAR model to those from a linear one. 
 

 

 

 
   
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             Table 3.6.1: RMSE of  the estimated models with forecast period, H=100 and estimation periods T=100, 200 and 400 

Root mean square error (RMSE) of the LSTAR model is represented with the related linear 
autoregressive model in table 3.6.1. The results are mixed. In some cases the STAR model 
yield slightly better one-step ahead forcasts than the linear model. In other cases (T=100 and 
T=400) the situation is the reverse.      

   T 
 
LSTAR(2) 

100 200 400 Forecast 
step 

Model 3.5.1:      
RMSE 1.171 1.185 1.208 1 
 1.315 1.341 1.358 2 
 1.342 1.382 1.402 3 

AR Model LSTAR Model  
 T    3.3.2           3.3.3          3.3.4 3.5.1 

Forecast 
Step 

   
  100 

 
1.163 

 
- 

 
- 

 
1.171 

 
1 

 
100 

 
1.202 

 
1.301 

 
- 

 
1.315 

 
2 

 
  100 

 
1.243 

 
- 

 
1.328 

 
1.342 

 
3 

 
200 

 
1.187 

 
- 

 
- 

 
1.185 

 
1 

 
200 

 
1.225 

 
1.312 

 
- 

 
1.341 

 
2 

 
200 

 
1.267 

 
- 

 
1.332 

 
1.382 

 
3 

 
400 

 
1.201 

 
- 

 
- 

 
1.208 

 
1 

 
 400 

 
1.245 

 
1.322 

 
- 

 
1.358 

 
2 

 400 
  

1.281 - 
 

1.337 1.402 3 
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4 Summary and conclusions 
 
In this work the emphasis is on showing how LSTAR models can be applied for forecasting in 
time series econometrics. It is demonstrated how the estimated model is carried out in a 
systematic fashion through a generated LSTAR model. The basic nonlinear model considered 
is a logistic smooth transition autoregressive model of order two. When the smoothness 
parameter equals zero, then the LSTAR(2) model becomes an autoregressive model of order 
two. The parameters are estimated by using the least-square method. The forecasts can then 
be expressed as a weighted linear combination of past and current innovations. Third- and 
fourth-order autoregressive models are also considered to investigate the effects of excluding 
lags and forecasting directly without iteration. It is seen that the iterative linear method 
(model 3.3.2) are more accurate than the direct method (model 3.3.3 and 3.3.4).  
          
Also the iterative method (model 3.3.2) has the lowest root mean square error for estimation 
period T=100 than the other estimation periods (T=200 and 400). Forecasts from LSTAR are 
obtained by using Monte Carlo technique. The one-step ahead forecast yields the smallest 
value of root mean square error and three-step ahead yields the highest value of root mean 
square error. The results also show that RMSE for period T=100 are smaller than period 
T=200 and 400. In addition, the simulation study suggests that the linear forecasts are more 
accurate than those from a LSTAR model.         
 
This may appear surprising at first because data were generated from the LSTAR model at the 
beginning. However, the linear AR-model 3.3.2 is a weighted linear combination of past and 
current innovations and it consider the effects of including lags and forecasting with iteration. 
In contrast, at time T the LSTAR model 3.5.1 is producing one-, two- and three-step forecast 
given all the information set available at time, T. For comparing the accuracy of forecasts the 
linear AR-model 3.3.3 and 3.3.4 will not depend on the previous forecast as in model 3.3.2. 
But even in this case RMSE is lower than the corresponding RMSE for LSTAR-model 3.5.1. 
As we see in section 3.3 and 3.5 the estimation of the parameters for the linear AR-model and 
LSTAR model is sufficiently accurate. An argument could then be that the lower value of 
RMSE for LSTAR-model 3.5.1 depends on the forecast method. The Monte Carlo forcasts are 
biased if an incorrect distribution D is selected (section 3.4). Another method to produce 
forecasts is using Bootstrap. This method use the values of the residuals observed over the 
sample period instead of the random numbers drawn from a normal distribution which is used 
in this essay. As we see from table 3.6.1 in section 3.6 the forecast accuracy will be lower as 
the estimation period increase at the same time that the estimation of the LSTAR is 
sufficiently accuracy. A reason to this behaviour may be explained by the selection of the 
normal distribution when producing forecasts with Monte Carlo method.  
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The dynamics will also be of interesting when forecasting with nonlinear models. The 
estimate of γ is high (i.e. 98.586) and this implies that a change between recessionary and 
expansionary regimes will be quite rapidly. Furthermore, the “lower regime” (when                           
                    in model 3.3.1) of the LSTAR process is such that the roots of the characteristics 
polynomial are a complex pair with a modulus such that the regime is explosive. On the other 
hand, the “upper regime” (when                     in model 3.3.1) corresponding also a complex 
pair but with a modulus such that this regime is not explosive. In fact, the oscillations are very 
weak (see further Teräsvirta [1994] for a discussion of the long-term behaviour of the model).  
In addition, the value of     indicates that the transition from one regime to the other is very 
quick so that the model is very similar to a threshold AR model. It is a model which the 
parameters of the linear model change through time due to a switching rule, which also could 
depend on an earlier value of the series.              
 
Hence, there is no guarantee that the estimated LSTAR model will produce superior forecasts. 
A necessary condition for that to happen would seem to be that the forecasting period 
contains “nonlinear features”. For instance a nonlinear model may be expected to be superior 
to a linear one when the forecasting period contains the aftermath of a large negative shock. If 
that is not the case a linear autoregressive model is likely to perform as well as a nonlinear 
one.      
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