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1 Introduction

Statistical modeling is one of the most significant fields of applied statistics with applications in many
fields of scientific study, such as sociology, economy, agronomy, medicine and others. There exists
an infinity of different statistical models, but the class of Generalized Linear Models (GLM) (Nelder
and Wedderburn, 1972) is the most used in the last three decades. The success of this approach is
due its ability to deal with different types of response variables, such as binary, count and continuous
inside a general framework with a powerful scheme of inference based on the likelihood paradigm.

Some of the most important particular cases of GLM class are: a linear regression model based
on the Gaussian distribution for real response variable, Gamma and inverse Gaussian regression
models for positive real response variable, logistic regression based on the Binomial distribution
for binary data and Poisson regression for count data. All these models are linked because they
belong to the class of the exponential dispersion models (Jørgensen, 1997), and share an amazing
characteristic: they are described by their first two moments (mean and variance). Furthermore,
the variance function describes the relationship between the mean and variance of the response
variable.

Let Y denote the response variable and assume that the probability function or density prob-
ability function of Y belongs to the class of exponential dispersion models and assume too that
the E(Y ) = µ and the V ar(Y ) = φV (µ) = φµp then Y ∼ Twp(µ, φ), where Twp(µ, φ) denotes a
Tweedie (Tweedie, 1984), (Jørgensen, 1997) random variable with mean µ and variance φµp and
φ > 0 and p ∈ (−∞, 0] ∪ [1,∞) are parameters that describe the variance structure of Y .

Tweedie distribution has many interesting theoretical properties for a detailed description, see
Jørgensen (1997). For practical situations in statistical modeling the Tweedie distribution is in-
teresting because it delivers many important particular cases, and the parameter p identifies these
cases. For example, p = 0 we have the Gaussian distribution, for p = 1 and φ = 1 we have the Pois-
son distribution, for p = 2 and p = 3 correspond to the Gamma and inverse Gaussian distributions.
Another important case is 1 < p < 2 that corresponds to the Compound Poisson distribution.

Just by its particular cases the Tweedie distribution is already important for statistical modeling,
but there exists an infinity of models, once the parameter p may be estimated based on a data set,
making this simple relationship between mean and variance a rich class of statistical models.

For practical applications the estimation of the parameters that describe the variance structure
(φ and p) is important and deserves the same attention devoted in the regression parameters. The
orthodox approach is based on a likelihood paradigm, that is an efficient estimation method. A
particularity about the Tweedie distribution is that outside the special cases, its probability density
function cannot be written in a closed form, and requires any numerical method to evaluate the
density function. Dunn and Smyth (2001) proposed some methods to evaluate the density function
of the Tweedie distribution, but these methods are computationally demanding and shows a different
level of accuracy for different regions of the parameter space. This fact makes the process of inference
based on likelihood difficult and sometimes slow.

The main objective of the paper is to propose a new way to estimate the parameters (φ and p)
based on Pearson estimating functions (Jørgensen and Knudsen, 2004). This method is very fast
computationally, because it employs merely the first two moments (mean and variance) and in this
way avoids evaluating the probability density function. Furthermore, we present an efficient and
stable algorithm to obtain the point estimates. The inference is based on asymptotic results, and
we show expressions for the sensitivity and the Godambe information matrix. The variance of the
Pearson estimating function is approximated based on empirical, third and fourth moments. We
run a simulation study to show the properties of our approach and compare with the maximum
likelihood estimator in a finite sample scheme.
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In the next Section we give some background about Tweedie distribution. In the Section 3
we present the Tweedie regression models and two approaches to make inference with respect the
model parameters, maximum likelihood and estimating functions. Section 4 shows the main results
from our simulation study and Section 5 reports some final remarks.

2 Background

The Tweedie distribution belongs to the class of exponential dispersion models (EDM) (Jørgensen,
1997). Thus, for a random variable Y which follows an EDM, the density function can be written
as:

pY (y;µ, φ) = a(y, φ) exp{(yθ − k(θ))/φ} (1)

where µ = E(Y ) = k′(θ) is the mean, φ > 0 is the dispersion parameter, θ is the canonical parameter,
and k(θ) is the cumulant function. The function a(y, φ) cannot be written in closed form apart the
particular cases cited. The variance is given by V ar(Y ) = φV (µ) where V (µ) = k′′(θ) is called
the variance function. Tweedie densities are characterized by power variance functions of the form
V (µ) = µp, where p ∈ (−∞, 0]∪[1,∞) is the index determining the distribution. Although, Tweedie
densities are not known in closed form, their cumulant generating function (cgf) is simple. The cgf
is given by

K(t) = {k(θ + φt)− k(θ)}/φ

where k(θ) is the cumulant function,

θ =

{
µ1−p

1−p p 6= 1

logµ p = 1

and

k(θ) =

{
µ2−p

2−p p 6= 2

logµ p = 2.

The remaining factor in the density, a(y, φ) needs to be evaluated numerically. Jørgensen (1997)
presents two series expressions for evaluating the density: one for 1 < p < 2 and one for p > 2. In
the first case can be shown that,

P (Y = 0) = exp

{
− µ2−p

φ(2− p))

}
and for y > 0 that

a(y, φ) =
1

y
W (y, φ, p)

with W (y, φ, p) =
∑∞

i=1Wj and

Wj =
y−jα(p− 1)αj

φj(1−α)(2− p)jj!Γ(−jα)
,

where α = (2− p)/(1− p).
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A similar series expansion exists for p > 2 and is given by:

a(y, φ) =
1

πy
V (y, φ, p)

with V =
∑∞

i=1 Vk and

Vk =
Γ(1 + αk)φk(α−1)(p− 1)αk

Γ(1 + k)(p− 2)kyαk
(−1)k sin(−kπα).

Dunn and Smyth (2001) presents a detailed study about these series and an algorithm to evaluate
the Tweedie density function based on these series expansion. The algorithm is implemented in
the package tweedie (Dunn, 2013) for the statistical software R(R Core Team, 2014) through the
function dtweedie.series. Dunn and Smyth (2005) and Dunn and Smyth (2008) studied two more
methods to evaluate the density function of the Tweedie distributions, one based on the inversion
of cumulant generating function using the Fourier inversion and the sandlepoint approximation, for
more details see (Dunn, 2013). In this paper we use only the approach described above.

3 Tweedie regression models

The Tweedie regression models were presented by Jørgensen and Paes De Souza (1994), Dunn and
Smyth (2005), Hasan and Dunn (2011) and others. Consider independent responses Y1, Y2, . . . , Yn
are observed such that

Yi ∼ Twp(µi, φ)

where the mean µi is linked to linear predictor through a known link function g,

g(µi) = xTi β

where xi is a vector of covariates and β is a vector of unknown regression parameters. Let q be the
dimension of β. On an equivalent way we can define the model using a matricial notation. Let Y
a vector of response variable, then the Tweedie regression model can be defined by

Y ∼ Twp(µ, φI) (2)

where I is a n×n dimensional identity matrix. In this case is easy to see that E(Y) = µ = g−1(Xβ)
and the V ar(Y) = C = diag(φµp). In this paper we define the link function g as the logarithm
function. Note that the model is equivalently defined by its joint distribution defined in (2) or by
its first two moments (mean and variance).

Denote the vector of parameters by θ = (β,λ = (φ, p)). The parameter vector can be divided
in two sets, the first are the regression parameters and the second are parameters that describe the
variance structure. In this paper we are interested to make inference about the second set. The
orthodox method is based on likelihood function and it will be describe in the next section.

3.1 Maximum likelihood

Let pY (y;β,λ) denote the Tweedie probability or density probability function as given in equation
(1) and evaluated as described in Section 2. Then, the log-likelihood function for a sample of size
n is given by
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l(φ, p) =
n∑
i=1

log pY (yi;β,λ). (3)

Maximizing the equation (3) with respect to β and λ we have the maximum likelihood estimator
denoted by β̂M and λ̂M . The maximization process can be done by different ways, Dunn and Smyth
(2005) proposed a method based on the BFGS algorithm and Jørgensen and Paes De Souza (1994)
proposed a different scheme based on profile likelihood. In this paper we propose to use the Nelder-
Mead (Nelder and Mead, 1965) method as implemented in the function optim of the R statistical
software (R Core Team, 2014). In our simulation studies Nelder-Mead method shows stable and
efficient results. To make inference about θ̂ = (β̂, λ̂)T we use the well known asymptotic distribution
of the maximum likelihood estimator,

θ̂ ∼ N(θ, Io(θ̂)−1)

where Io(θ) denote the observed information of θ. Note that, in the Tweedie regression models we
cannot compute the Fisher information, because the second derivatives of log-likelihood function
are not available in a closed form. In this way, we use the observed information matrix computed
numerically using the Richardson method (Soetaert and Herman, 2009), on the point θ̂.

Basically, our algorithm obtains the maximum likelihood estimates using the Nelder-Mead al-
gorithm and compute the asymptotic variance of θ̂ based on the inverse of negative of the Hessian
matrix computed numerically by Richardson method. Note that this approach is computationally
expensive, because we need evaluate the probability or density probability function of the Tweedie
distribution many times inside the process of maximization. In the next section we shall present a
new way to make inference about β and λ based on estimating functions.

3.2 Estimating functions

In this Section we describe estimating functions approach to estimate θ = (β,λ). We adopted
the quasi-score function for regression parameters and Pearson estimating function for dispersion
parameters. Jørgensen and Knudsen (2004) describes the approach of estimating function, as well
its properties. The quasi-score function is defined by,

ψβ(β,λ) = DTC−1(Y − µ) (4)

where DT = ∇βµ. The q × q matrix

Sβ = E(∇βψβ) = −DTC−1D (5)

is called the sensitivity matrix of ψβ and the q × q matrix

Vβ = V ar(ψβ) = DTC−1D (6)

is called the variability matrix of ψβ.
In a similar way the Pearson estimating function is defined by,

ψλi
(β,λ) = rTWλir− tr(WλiC

−1) (7)

where Wλi = C−1 ∂C∂λi
C−1 and r = (Y − µ). Note that everything we need to evaluate these

equations are the derivatives with respect to λ1 = φ and λ2 = p. Is easy to show that,
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∂C

∂φ
= diag(µp) and

∂C

∂p
= diag(φ log(µ)µp). (8)

The entries (i, j) of the 2× 2 sensitivity matrix of ψλ are given by,

Sλij
= E

(
∂

∂λi
ψλj

)
= −tr

(
C−1

∂C

∂λi
C−1

∂C

∂λj

)
. (9)

We can show using results about characteristic function of linear and quadratic forms of Non-
Normal variables (Knight, 1985), that the entries of variability matrix of ψλ are given by,

Vλij
= Cov(ψλi

;ψλj
) = 2tr(WλiCWλjC) +

∑
k

k
(4)
l (Wλi)ll(Wλj)ll (10)

where k(4) denote the fourth cumulant of Y. To take into account the covariance between the
vectors β and λ, we need to compute the cross sensitivity and variability matrix. The entries of the
cross sensitivity matrix between β and λ are given by,

Sβiλj
= E

(
∂

∂λj
ψβi

)
= 0. (11)

In a similar way the entries of the cross sensitivity matrix between λ and β are given by,

Sλiβj
= E

(
∂

∂βj
ψλi

)
= −tr

(
C−1

∂C

∂λi
C−1

∂C

∂βj

)
. (12)

Finally we can show that the entries of the cross variability matrix between β and λ, are given
by,

Vλiβj = E

 n∑
l=1

n∑
j=1

n∑
k=1

W
(ij)
λi

A
(j)
k rlrjrk

 , (13)

where A = DTC−1 and A(j) denote the jth collumn of A. In a similar way W
(ij)
λi

denote the ith and

jth entries of the matrix Wλi
. Furthermore, the joint sensitivity matrix of ψβ and ψλ is given by

Sθ =

(
Sβ Sβλ
Sλβ Sλ

)
, (14)

whose entries are defined in equations (5), (9), (12) and (11). Likewise, the joint variability matrix
of ψβ and ψλ is given by

Vθ =

(
Vβ Vβλ
Vλβ Vλ

)
, (15)

whose entries are defined in equations (6), (10) and (13).
Denote θ̂e = (β̂e, λ̂e) the estimate of θ, then the asymptotic distribution of θ̂e is

θ̂e ∼ N(θ, J−1θ ) (16)

where J−1θ is the inverse of Godambe information matrix,

J−1θ = S−1θ VθS
−T
θ , (17)

where S−Tθ = (S−1θ )T .
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Jørgensen and Knudsen (2004) proposed the chaser algorithm to solve the system of equations
ψβ = 0 and ψλ = 0.

β(i+1) = β(i) − S−1β ψβ(β(i),λ(i))

λ(i+1) = λ(i) − S−1λ ψλ(β(i+1),λ(i))

The chaser algorithm uses the insensibility property, which allow us to use two separate equa-
tions to update β and λ, for details see Jørgensen and Knudsen (2004). The described procedure
was implemented in R and a generic function called glm.tw() is made available on the supplement
material web page.

To compute the variance of dispersion parameters we need information about the third central
moment and fourth cumulant. In the case of the Tweedie regression models we can compute these
quantities based on the equations presented in the Section 2. An alternative approach is compute
the empirical versions, in this way we avoid the supposition of multivariate Tweedie distribution
for the data. The empirical fourth cumulant may be computed based on the data by the following
equation:

k
(4)
l = (yl − ŷl)4 − 3(φ̂µ̂p̂l )

2.

The empirical third central moment may be computed based on equation (13) ignoring the
expectation. The main overhead about to use empirical cumulants instead of the theorical cumu-
lants, is that the variance should be overestimated, in this way the confidence interval based on this
approach should be a little bigger than its should be.

4 Simulation study

4.1 Design of the study

We made a simulation study to evaluate the properties of the estimator based on the estimating
function approach and compare its properties with the maximum likelihood estimator in finite
sample. Our focus here is about the parameters that describe the variance structure of Tweedie
regression models (φ,p). We use five different sample sizes (n = 50, 100, 250, 500 and 1000), and
compare two measures of estimator quality (bias and coverage rate). In this manner, we have a
quality measure based on point estimates and other based on confidence intervals.

To decide about which values of φ and p we take into account in the simulation study, we first
plot graphics of the likelihood contours for φ = 0.5 and p = 1.1, near the Poisson distribution, p = 2
the Gama and p = 3 Inverse Gaussian distributions. The Figure 1 shows these graphics.

The graphics presented in Figure 1 show that the likelihood contours are similar a quadratic
function for p = 2 and p = 3, indicating that for these values of p the asymptotic distribution is
well-behaved and near the Gaussian multivariate distribution. However, for p = 1.1 the likelihood
behavior is non-quadratic, it shows that small values of p indicate more challenging setup to make
inference. Thus, we choose the values of p = 1.1, 1.3, 1.5, 1.7 and 1.9 for the simulation study.
The parameter φ measures the variability, so bigger values of φ indicate more challenging setup to
make inference. We choose the values of φ = 0.5, 1, 1.5, 2 and 2.5. Combining five samples sizes,
five values of p and five values of φ we have 125 different scenarios for our simulation study. All
simulations was done using the R software and the package tweedie (Dunn, 2013).
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Figure 1: Likelihood contours for different values of p and sample sizes.

4.2 Results

We perform simulations to compare with the performance of estimators based on Pearson estimating
functions against maximum likelihood estimators. We used two measures of quality estimator: the
bias b = (θ − θ̂) and the coverage rate.

Our simulations consist of 1000 realizations from the Tweedie regression model (Section 3).
We used a regression structure with β0 = 0.5 and β1 = 1, our model has one covariate, that was
generated as a sequence from 0 to 2 and length depending on sample size. We used five sample
sizes n = 50, 100, 250, 500 and 1000 and different combinations between the parameters φ and
p, see Section 4.1. We choose to introduce the results through graphics. The Figure 2 presents
the expected bias of φ̂ for different sample sizes, values of φ and p and estimation method, PEF
(Pearson Estimating Function) and MLE (Maximum Likelihood Estimator).

The Figure 2 shows that in general the PEF estimator overestimate and MLE estimator under-
estimate φ for small sample size, but the bias decrease when the sample size increase as required.
The bias of PEF estimator increase when the value of φ increase. The bias of MLE estimator is
similar for all values of φ. In general the values of p do not affect the bias of φ̂. The bias of MLE
estimator is lesser than PEF estimator, but for sample size around 100, the bias of PEF estimator
is small enough to be useful for practical situations. In a similar way the Figure 3 presents the
expected bias for p̂ for different sample sizes, values of φ and p and estimation methods.

The results presented in Figure 3 show that the bias of PEF estimator is small for all sample sizes
and parameter combinations. In fact the parameter p is well estimated using the PEF estimator
for any configuration. The MLE estimator is less accurate to estimate small values of p using a
small sample size, in this case MLE estimator overestimate p, but again the bias decreases fast
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Figure 2: Expected bias of φ̂ for different methods, sample sizes and parameter combinations.
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Figure 3: Expected bias of p̂ for different methods, sample sizes and parameter combinations.
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when the sample size increase and for sample size around 100 the bias is small enough for practical
applications.

In general the results indicate that both methods given good point estimates for the parameters
φ and p. In this manner, we evaluated the quality of point estimates. Now, we need to evaluate
the quality of confidence intervals. For this task, we computed the coverage rate of the confidence
interval of φ̂ and p̂ for different sample sizes, combinations of φ and p and estimation methods. The
coverage rate for the confidence interval of φ̂ is shown in Figure 4.
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Figure 4: Coverage rate of φ for different methods, sample sizes and parameter combinations.

The results presented in Figure 4 show that for both methods the coverage rate is lesser than
the nominal level for small sample size. The confidence intervals based on PEF approach achieve
the nominal level for sample size around 250 for all configurations. Although, for big values of φ
the coverage rate is slightly bigger than the nominal level.

The confidence interval based on MLE approach is not realistic for small sample size and small
values of p and φ. For example, for φ = 0.5 and p = 1.1 the confidence interval based on MLE
approach does not achieve the nominal level same with sample size equal the 1000. For bigger values
of φ the situation is better and for sample size around 250 the confidence intervals show coverage
rate near the nominal level.

In general the results demonstrate that confidence intervals based on PEF approach does not
depend on the combinations between φ and p values, for all configurations the results evidenced
that for sample size around 250 the confidence intervals are well estimated. On the other hand,
MLE approach has difficult to estimate confidence interval for small values of φ and p. Similar
analysis is presented in Figure 5 for parameter p.

Figure 5 shows that the coverage rate for confidence intervals based on PEF approach are near
the nominal level for all configurations considered, but again for big values of φ the coverage rate
is slightly bigger than the nominal level. These results indicate that in general this approach
presents confidence intervals bigger than should be. These results were expected, because we are
using empirical third and fourth moments to compute the variance of φ̂ and p̂. We argue that for
practical data analysis these confidence intervals are enough accurate.

The confidence intervals based on MLE approach are not realistic for small values of φ and p, for
example for p = 1.1 the confidence interval based on MLE approach does not achieve the nominal
level, same using sample size equal to 1000. When the values of φ and p increase the results improve
and are near the nominal level for all sample size.
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Figure 5: Coverage rate of p for different methods, sample sizes and parameter combinations.

In general way both methods show that are able to compute interval confidence, with a coverage
rate near the nominal level. Of course, the results improve when the sample size increase, which is
expected because our inferential methods are based on asymptotic results.

5 Conclusion

In this paper, we presented a new approach to make inferences with respect parameters of Tweedie
regression models. Our approach is based on the quasi-score function for regression parameters and
the Pearson estimating function for dispersion parameters. It is a well known result that quasi-score
function yields the same estimator that maximum likelihood approach for regression parameters.
Thus, we focus on dispersion parameters or the parameters that describe the variance structure of
the Tweedie regression models.

We perform a simulation study to evaluate the quality of our estimator and compare with the
maximum likelihood approach. The results show that both methods are similar, but the results
based on Pearson estimating function are robust in the sense that for all combinations between
parameters considered in the simulation study the PEF approach shows good results. On the other
hand, the MLE approach showed difficult to estimate small values of φ and p.

Furthermore, we have many advantages to use estimating function approach. First, we do not
need to evaluate the density function, that is a hard computational task. Second, we do not need
hope about negative or near 1 values of p, once our approach deals with this situation naturally.
Moreover, we can estimate values of p between 0 and 1, because our approach is based on second-
moments assumptions, in this way we do not need to suppose that the response variable is distributed
as the Tweedie distribution, it becomes our approach robust to misspecification.

A suggestion for future work with estimating function approach and Tweedie regression models
may well be extend the Tweedie models for non-independent data, for example in longitudinal data
analysis or repeat measures experiments. Tweedie models may be good models to deal with rainfall
data, in this case is important to be able to analyze data with spatial and space-time structures,
so extend Tweedie models to deal with dependent data is a promising approach and the use of
estimation function become possible to do it in an elegant way.
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