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Web Appendix A

In this Appendix we present additional details of the percentage of body fat
data set. The participants of the study signed the informed consent form,
approved by the Research Ethics Committee of the HC-UFPR.

Healthy men and women between the ages of 18 and 90 years
whitout any hormonal treatment or medications that could interfere with
body composition, either for replacement or supplementation, with a body
mass index (BMI) of between 18.5 and 29.9 kg/m2, without any physical
incapacity and walking without the aid of orthoses or prostheses. Individ-
uals with chronic diseases and licit or illicit drugs or drugs known to affect
body composition, such as insulin-dependent diabetes, corticosteroids, thy-
roid hormone in suppressive doses, and those with low weight, consistent
with BMI less than 18.5 kg/m2 or obese, with BMI of at least 30 kg/m2 were
excluded of the research.

All participants performed the same day anthropometric measures
(weight and height) and answered the questionnaire on sociodemographic
data, followed by the total body densitometry (Lunar Prodigy Advance PA
+ 302284) for the analysis of the body’s fat, lean and bone masses total. The
test was evaluated according to the recommendation of the International
Society for Clinical Densitometry (Petak et al., 2013, Kendler et al., 2013).

All participants responded to the IPAQ (International Physical Ac-
tivity Questionnaire), validated in Portuguese (Matsudo et al., 2001), which
is an instrument used to estimate the level of physical activity practiced rou-
tinely. The IPAQ-short, composed of eight questions about the performance,
frequency and duration of moderate, vigorous or walking physical activi-
ties was used. The IPAQ was answered in the form of self-administration
for the majority of volunteers or as an individual interview, applied by the
investigator or trained evaluator, in cases in which there was difficulty of
understanding. The volunteers were then divided into three groups, ac-
cording to the level of physical activity performed (Nahas, 2001, Sonati,
2012): sedentary are those who do not perform any physical activity for at
least 10 continuous minutes during the week; insufficiently active, perform
at least 10 continuous minutes of physical activity, at least 5 days a week or
150 minutes a week, but insufficiently to be classified as active. Assets are
individuals who perform at least 20 minutes of vigorous physical activity
per session, at least 3 times a week or moderate activities, or 30 minutes
walk per session, at least 5 times a week, or any activity added for 5 days
week or more, with a total duration of 150 minutes per week (Silva et al.,
2007).



Figure 1 shows dispersion diagrams with smoothing curves esti-
mated by the loess method (Cleveland, 1979), in addition to showing the
correlations between fat percentage in the arms, legs, trunk, android and
gynoid regions.
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Figure 1: Dispersion diagrams and correlations between the body fat per-
centages in the regions of the arms, legs, body, android and gynecoid.

According to the results presented in Figure 1, all correlations are
positive, with stronger correlations between the fat percentages in the arms
and legs regions (ρ̂ = 0.92), trunk and android (ρ̂ = 0.98), arms and gy-
necoid (ρ̂ = 0.91) and between legs and gynecoid (ρ̂ = 0.98). On the other
hand, moderate correlations can be observed between the body fat percent-
ages in the legs and android regions (ρ̂ = 0.63) and between android and
gynecoid (ρ̂ = 0.65). It is important to note that these correlations were
estimated by the Spearman correlation coefficient (ρ̂) and do not take into
account the effect of the covariates available in the study.

Finally, Figure 1 shows the empirical distribution of each response
variable by means of a histogram, indicating symmetric distributions for



most of them. However, asymmetric distributions on the left can be seen
for body fat percentages in the trunk and android regions.

Web Appendix B

NORTA algorithm

The NORTA algorithm (Cario and Nelson, 1997) is one of the most popu-
lar methods for simulating non-Gaussian correlated random vectors. The
method works as a two-step process. First, a multivariate normal random
vector Z is generated. Then, this vector is transformed into a multivariate
uniform vector U, which is again transformed into vector Y which has dis-
tribution NORTA (NORmal To Anything), where each element of the vector
has a desired arbitrary marginal distribution. Therefore, its representation
is given by:

Y =
[

F−1
Y1

(Φ[Z1]), F−1
Y2

(Φ[Z2]), . . . , F−1
Yp

(Φ[Zp])
]>

for l = 1, . . . , p, (1)

where Φ[·] is the cumulative distribution function (cdf) of the stan-
dard Gaussian distribution applied to each element of the vector Z and
F−1

Yl
(u) ≡ inf{y : FYl(y) ≥ u} denotes the inverse cdf.

The correlation matrix of Z directly determines the correlation matrix
of Y, provided that

ρY(l, l′) = Corr(Yl,Yl′) = Corr
(

F−1
Yl

(Φ[Zl]), F−1
Yl′

(Φ[Zl′ ])
)
,

for all l 6= l′. The correlation is defined by:

Corr(Yl,Yl′) =
E(Yl,Yl′)− E(Yl)E(Yl′)√

Var(Yl)Var(Yl′)
, (2)

where marginal quantities E(Yl),E(Yl′),Var(Yl) and Var(Yl′) are defined by
FYl and FYl′

. It is worth mentioning that (Zl, Zl′) has stardard bivariate Gaus-
sian distribution with correlation Corr(zl,zl′) = ρZ(l, l′) where the quantity
E(Yl,Yl′) in (2) is calculated by:

E(Yl,Yl′) = E
(

F−1
Yl

(Φ[Zl])F−1
Yl′

(Φ[Zl′ ])
)

(3)

=
∫ ∞

−∞

∫ ∞

−∞
F−1

Yl
(Φ[Zl])F−1

Yl′
(Φ[Zl′ ])ϕρZ(l,l′)(zl,zl′)dzldzl′ ,

where ϕρZ (l,l′) denotes the probability density function of a stardard bivari-
ate Gaussian distribution with correlation given by ρZ(l, l′).



It should be noted that the integral (3) will have a solution, due to
the mean/variance relationship of the beta distribution. Such a constraint
directly impacts the parametric space of the correlation (2) which also de-
pends on the specification of the marginal means.

Evaluating the behavior of the NORTA algorithm to simulate
correlated beta random variables

The main goal of this simulation study is to investigate the behavior of the
NORTA algorithm to simulate bivariate beta random variables. We used
the R statistical software (R Core Team, 2019) and the NORTARA package (Su,
2014), which provides the computational implementation of the NORTA
algorithm.

For the case of the multivariate beta distribution the main challenge
is to identify the minimum and maximum values allowed for the correlation
between responses given the marginal expectations and dispersion param-
eters. Thus, we considered a bivariate case, where we denote the response
variables by Y1 and Y2 and set five different values for the dispersion param-
eters σ2 = (0.99,0.60,0.20,0.10,0.04). These values ranging from a very chal-
lenging case, i.e σ2 = 0.99 where the generated data are approximately only
0’s and 1’s to a simple situation where we have symmetric data. For each
marginal distribution, we fixed the marginal expectation as a sequence with
100 values between (0,1). Then, we constructed a grid of values with 10,000
points (100× 100) to evaluate the correlation matrix between the marginal
beta distributions. Our main interest is to find the minimum and maxi-
mum correlation allowed for the bivariate distribution given the marginal
expectation and dispersion parameters. In order to obtain such values, we
used the function valid input cormat() of the NORTARA package. This
function returns the minimum (ρL) and maximum (ρU) values that the cor-
relation matrix can assume given the marginal distributions specified.

For example, when µ1 = 0.495 and µ2 = 0.851 with σ2 fixed at 0.99,
the lower and upper limits are ρL = −0.421 and ρU = 0.413, respectively.
However, for the same values of the marginal expectation, but σ2 fixed at
0.10, both lower and upper limits are ρL =−0.956 and ρU = 0.954. These re-
sults shows how the covariance structure depending on the marginal expec-
tation of the beta distribution and, consequently, the limits of the correlation
matrix.

To make this idea more general, we constructed Figure 2. In Figure 2,
the upper part shows the minimum limits, while the lower part shows the



maximum limits that the correlation between the two beta random vari-
ables assume as a function of their marginal expectations for each value
of the dispersion parameter σ2. According to the results presented in Fig-
ure 2, when we have high values for σ2 the obtained minimum correla-
tion becomes restricted, especially when σ2 = (0.99 and 0.60). As the value
of σ2 decreases, stronger correlations are allowed in the darker regions of
the graph. The same is observed for the maximum values of the correla-
tion (Figure 2). Thus, it was observed that low values of the dispersion pa-
rameter combined with high/low values of the marginal expectations allow
stronger correlations.
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Figure 2: Minimum and maximum values for the correlation between two
beta random variables as a function of the marginal expectations and differ-
ent values of the parameter σ2.

The results of the simulation study showed that the parametric
space of the correlation parameter was reduced when high values were ob-
tained for the dispersion parameters associated with high/low values of the
marginal means. Considering the results obtained, we have an idea of the
behavior of the NORTA algorithm that will be used in the next simulation
study conducted to evaluate the performance of the estimating functions
estimator for the parameters of the model proposed in Section 4 (main doc-
ument).
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Standardized scale
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Figure 3: Average bias and confidence intervals on a standardized scale
for the regression coefficients (β01, β11, β21, β02, β12, β22) by sample size and
simulation scenarios.



Standardized scale
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Figure 4: Average bias and confidence intervals on a standardized scale for
each parameter (ρ12,σ2

1 ,σ2
2 ) by sample size and simulation scenarios.
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Figure 5: Coverage rate for each parameter (β01, β11, β21, β02, β12, β22) by
sample size and simulation scenarios.
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 Confidence interval size
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Figure 7: Confidence interval size for the regression coefficients
(β01, β11, β21, β02, β12, β22) by sample size and some simulation scenarios.
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BMI (kg/m2)
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Figure 9: Curves of fitted values with 95% confidence intervals by gender,
IPAQ and BMI for the quasi-beta regression models by response variables.
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