Thais C O da Fonseca Joint work with Prof Mark F J Steel

> Department of Statistics University of Warwick

> > Dec, 2008

Introduction

Outline

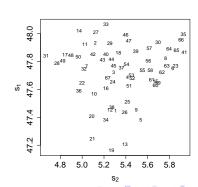
- Motivation
- Spatiotemporal modeling
 - Nonseparable models
 - Heavy tailed processes
- Simulation Results
 - Data 1
 - Data 2
 - Data 3
- Temperature data
 - Non-gaussian spatiotemporal modeling
 - Results

Spatiotemporal data

- Due to the proliferation of data sets that are indexed in both space and time, spatiotemporal models have received an increased attention in the literature.

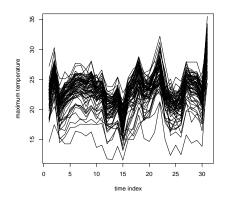
Spatiotemporal data

- Due to the proliferation of data sets that are indexed in both space and time, spatiotemporal models have received an increased attention in the literature.
- Maximum temperature data Spanish Basque Country (67 stations)



Example

31 time points (july 2006)



Typical problem

- Given: observations $Z(s_i, t_j)$ at a finite number locations s_i , i = 1, ..., I and time points t_i , j = 1, ..., J.
- Desired: predictive distribution for the unknown value $Z(s_0, t_0)$ at the space-time coordinate (s_0, t_0) .
- Focus: continuous space and continuous time which allow for prediction and interpolation at any location and any time.

$$Z(s,t), (s,t) \in D \times T$$
, where $D \subseteq \mathbb{R}^d, T \subseteq \mathbb{R}$

Outline Motivation

Typical problem

- Given: observations $Z(s_i, t_i)$ at a finite number locations s_i , i = 1, ..., Iand time points t_i , j = 1, ..., J.
- Desired: predictive distribution for the unknown value $Z(s_0, t_0)$ at the space-time coordinate (s_0, t_0) .

$$Z(s,t), (s,t) \in D \times T$$
, where $D \subseteq \mathbb{R}^d$, $T \subseteq \mathbb{R}$

Outline Motivation

Typical problem

- Given: observations $Z(s_i, t_j)$ at a finite number locations s_i , i = 1, ..., I and time points t_i , j = 1, ..., J.
- Desired: predictive distribution for the unknown value $Z(s_0, t_0)$ at the space-time coordinate (s_0, t_0) .
- Focus: continuous space and continuous time which allow for prediction and interpolation at any location and any time.

$$Z(s,t), (s,t) \in D \times T$$
, where $D \subseteq \Re^d, T \subseteq \Re$

General modeling formulation

• The uncertainty of the unobserved parts of the process can be expressed probabilistically by a random function in space and time:

$${Z(s,t);(s,t)\in D\times T}.$$

We need to specify a valid covariance structure for the process.

$$C(s_1, s_2; t_1, t_2) = \text{Cov}(Z(s_1, t_1), Z(s_2, t_2))$$

General modeling formulation

• The uncertainty of the unobserved parts of the process can be expressed probabilistically by a random function in space and time:

$${Z(s,t);(s,t)\in D\times T}.$$

• We need to specify a valid covariance structure for the process.

$$C(s_1, s_2; t_1, t_2) = \text{Cov}(Z(s_1, t_1), Z(s_2, t_2))$$

- But building adequate models for these processes is not an easy task.

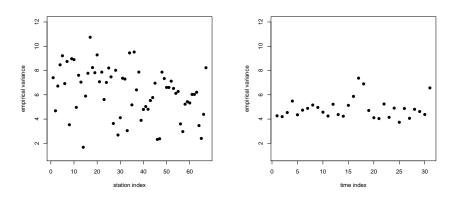
- But building adequate models for these processes is not an easy task.
- One observation of the process \Rightarrow simplifying assumptions:

- But building adequate models for these processes is not an easy task.
- One observation of the process \Rightarrow simplifying assumptions:
 - ► Stationarity: $Cov(Z(s_1, t_1), Z(s_2, t_2)) = C(s_1 s_2, t_1 t_2)$
 - ► Isotropy: $Cov(Z(s_1, t_1), Z(s_2, t_2)) = C(||s_1 s_2||, |t_1 t_2|)$
 - Separability: $Cov(Z(s_1, t_1), Z(s_2, t_2)) = C_s(s_1, s_2)C_t(t_1, t_2)$
 - Gaussianity: The process has finite dimensional Gaussian distribution.

- But building adequate models for these processes is not an easy task.
- One observation of the process \Rightarrow simplifying assumptions:
 - ► Stationarity: $Cov(Z(s_1, t_1), Z(s_2, t_2)) = C(s_1 s_2, t_1 t_2)$
 - ► Isotropy: $Cov(Z(s_1, t_1), Z(s_2, t_2)) = C(||s_1 s_2||, |t_1 t_2|)$
 - Separability: $Cov(Z(s_1, t_1), Z(s_2, t_2)) = C_s(s_1, s_2)C_t(t_1, t_2)$
 - ▶ Gaussianity: The process has finite dimensional Gaussian distribution.
- Models based on Gaussianity will not perform well (poor predictions) if
 - ▶ the data are contaminated by outliers;
 - ▶ there are regions with larger observational variance;

Example

• Maximum temperature data - Spanish Basque Country



 For this reason, we consider spatiotemporal processes with heavy tailed finite dimensional distributions.

Example

• Maximum temperature data - Spanish Basque Country



• For this reason, we consider spatiotemporal processes with heavy tailed finite dimensional distributions.

We will consider processes that are

stationary

Outline

- isotropic
- nonseparable
- non-Gaussian

Continuous mixture

- Idea: Continuous mixture of separable covariance functions [Ma, 2002].
- It takes advantage of the well known theory developed for purely spatial and purely temporal processes.

Nonseparable model

$$Z(s,t) = Z_1(s;U)Z_2(t;V)$$

(U,V) is a bivariate random vector with correlation c

Unconditional covariance

$$C(s,t) = \int C_1(s;u)C_2(t;v)dF(u,v)$$

C(c t) is valid and nonsenarable

Continuous mixture

- Idea: Continuous mixture of separable covariance functions [Ma, 2002].
- It takes advantage of the well known theory developed for purely spatial and purely temporal processes.

Nonseparable model

$$Z(s,t) = Z_1(s; U)Z_2(t; V)$$
 (1)

(U, V) is a bivariate random vector with correlation c.

$$C(s,t) = \int C_1(s;u)C_2(t;v)dF(u,v)$$
 (2)

Outline

Continuous mixture

- Idea: Continuous mixture of separable covariance functions [Ma, 2002].
- It takes advantage of the well known theory developed for purely spatial and purely temporal processes.

Nonseparable model

$$Z(s,t) = Z_1(s; U)Z_2(t; V)$$
 (1)

(U, V) is a bivariate random vector with correlation c.

Unconditional covariance

$$C(s,t) = \int C_1(s;u)C_2(t;v)dF(u,v)$$
 (2)

C(s,t) is valid and nonseparable.

In particular, if $C_1(s; u) = \sigma_1 \exp\{-\gamma_1(s)u\}$ and $C_2(t; v) = \sigma_2 \exp\{-\gamma_2(t)v\}$ and $U = X_0 + X_1$ and $V = X_0 + X_2$, where X_i has finite moment generating function M_i , then

$$C(s,t) = \sigma^2 M_0(-(\gamma_1(s) + \gamma_2(t))) \ M_1(-\gamma_1(s)) \ M_2(-\gamma_2(t)), \ (s,t) \in D \times T,$$

Outline

In particular, if $C_1(s; u) = \sigma_1 \exp\{-\gamma_1(s)u\}$ and $C_2(t; v) = \sigma_2 \exp\{-\gamma_2(t)v\}$ and $U = X_0 + X_1$ and $V = X_0 + X_2$, where X_i has finite moment generating function M_i , then

Proposition

$$C(s,t) = \sigma^2 M_0(-(\gamma_1(s) + \gamma_2(t))) M_1(-\gamma_1(s)) M_2(-\gamma_2(t)), (s,t) \in D \times T,$$
 (3)

where $\gamma_1(s)$ and $\gamma_2(t)$ are spatial and temporal variograms.

For instance,
$$\gamma_1(s) = ||s/a||^{\alpha}$$
 and $\gamma_2(t) = |t/b|^{\beta}$.

Outline

In particular, if $C_1(s; u) = \sigma_1 \exp\{-\gamma_1(s)u\}$ and $C_2(t; v) = \sigma_2 \exp\{-\gamma_2(t)v\}$ and $U = X_0 + X_1$ and $V = X_0 + X_2$, where X_i has finite moment generating function M_i , then

Proposition

$$C(s,t) = \sigma^2 M_0(-(\gamma_1(s) + \gamma_2(t))) M_1(-\gamma_1(s)) M_2(-\gamma_2(t)), (s,t) \in D \times T,$$
 (3)

where $\gamma_1(s)$ and $\gamma_2(t)$ are spatial and temporal variograms.

For instance,
$$\gamma_1(s) = ||s/a||^{\alpha}$$
 and $\gamma_2(t) = |t/b|^{\beta}$.

Notice that c = corr(U, V) measures separability and $c \in [0, 1]$.

Outline

In particular, if $C_1(s; u) = \sigma_1 \exp\{-\gamma_1(s)u\}$ and $C_2(t; v) = \sigma_2 \exp\{-\gamma_2(t)v\}$ and $U = X_0 + X_1$ and $V = X_0 + X_2$, where X_i has finite moment generating function M_i , then

Proposition

$$C(s,t) = \sigma^2 M_0(-(\gamma_1(s) + \gamma_2(t))) M_1(-\gamma_1(s)) M_2(-\gamma_2(t)), (s,t) \in D \times T,$$
 (3)

where $\gamma_1(s)$ and $\gamma_2(t)$ are spatial and temporal variograms.

For instance, $\gamma_1(s) = ||s/a||^{\alpha}$ and $\gamma_2(t) = |t/b|^{\beta}$.

Notice that c = corr(U, V) measures separability and $c \in [0, 1]$.

See [Fonseca and Steel, 2008] for more details.

Mixing in space and time

We consider the process

$$\tilde{Z}(s,t) = \tilde{Z}_1(s;U)\tilde{Z}_2(t;V),\tag{4}$$

Mixing in space

$$\tilde{Z}_1(s;U) = \sqrt{1-\tau^2} \frac{Z_1(s;U)}{\sqrt{\lambda_1(s)}} + \tau \frac{\epsilon(s)}{\sqrt{h(s)}}$$
(5)

Mixing in time

$$\tilde{Z}_2(t;V) = \frac{Z_2(t;V)}{\sqrt{\lambda_2(t)}} \tag{6}$$

Mixing in space and time

We consider the process

$$\tilde{Z}(s,t) = \tilde{Z}_1(s;U)\tilde{Z}_2(t;V),\tag{4}$$

Mixing in space

$$\tilde{Z}_1(s; U) = \sqrt{1 - \tau^2} \frac{Z_1(s; U)}{\sqrt{\lambda_1(s)}} + \tau \frac{\epsilon(s)}{\sqrt{h(s)}}$$
 (5)

Mixing in time

$$\tilde{Z}_2(t;V) = \frac{Z_2(t;V)}{\sqrt{\lambda_2(t)}} \tag{6}$$

Mixing in space and time

We consider the process

$$\tilde{Z}(s,t) = \tilde{Z}_1(s;U)\tilde{Z}_2(t;V),\tag{4}$$

Mixing in space

$$\tilde{Z}_1(s;U) = \sqrt{1-\tau^2} \frac{Z_1(s;U)}{\sqrt{\lambda_1(s)}} + \tau \frac{\epsilon(s)}{\sqrt{h(s)}}$$
 (5)

Mixing in time

$$\tilde{Z}_2(t;V) = \frac{Z_2(t;V)}{\sqrt{\lambda_2(t)}} \tag{6}$$

Process $\lambda_1(s)$

$$\tilde{Z}_1(s;U) = \sqrt{1-\tau^2} \frac{Z_1(s;U)}{\sqrt{\lambda_1(s)}} + \tau \frac{\epsilon(s)}{\sqrt{h(s)}}$$

- $\lambda_1(s)$ accounts for regions in space with larger observational variance.
- $\lambda_1(s)$ needs to be correlated to induce m.s. continuity of $Z_1(s; U)$, this is equivalent to $E[\lambda_1^{-1/2}(s_i)\lambda_1^{-1/2}(s_{i'})] \to E[\lambda_1^{-1}(s_i)]$ as $s_i \to s_{i'}$.
- This is satisfied by $\lambda_1(s) = \lambda$, $\forall s \Rightarrow$ student-t process. But is does not account for regions with larger variance.
- This is also satisfied by the glg process where $\{ln(\lambda_1(s)); s \in D\}$ is a gaussian process with mean $-\frac{\nu}{2}$ and covariance structure $\nu C_1(.)$. [Palacios and Steel, 2006]

Process $\lambda_1(s)$

$$\tilde{Z}_1(s;U) = \sqrt{1-\tau^2} \frac{Z_1(s;U)}{\sqrt{\lambda_1(s)}} + \tau \frac{\epsilon(s)}{\sqrt{h(s)}}$$

- $\lambda_1(s)$ accounts for regions in space with larger observational variance.

Process $\lambda_1(s)$

$$\tilde{Z}_1(s; U) = \sqrt{1 - \tau^2} \frac{Z_1(s; U)}{\sqrt{\lambda_1(s)}} + \tau \frac{\epsilon(s)}{\sqrt{h(s)}}$$

- $\lambda_1(s)$ accounts for regions in space with larger observational variance.
- $\lambda_1(s)$ needs to be correlated to induce m.s. continuity of $Z_1(s; U)$, this is equivalent to $E[\lambda_1^{-1/2}(s_i)\lambda_1^{-1/2}(s_{i'})] \to E[\lambda_1^{-1}(s_i)]$ as $s_i \to s_{i'}$.

Process $\lambda_1(s)$

$$\tilde{Z}_1(s; U) = \sqrt{1 - \tau^2} \frac{Z_1(s; U)}{\sqrt{\lambda_1(s)}} + \tau \frac{\epsilon(s)}{\sqrt{h(s)}}$$

- $\lambda_1(s)$ accounts for regions in space with larger observational variance.
- $\lambda_1(s)$ needs to be correlated to induce m.s. continuity of $Z_1(s; U)$, this is equivalent to $E[\lambda_1^{-1/2}(s_i)\lambda_1^{-1/2}(s_{i'})] \to E[\lambda_1^{-1}(s_i)]$ as $s_i \to s_{i'}$.
- This is satisfied by $\lambda_1(s) = \lambda$, $\forall s \Rightarrow$ student-t process. But is does not account for regions with larger variance.

Process $\lambda_1(s)$

$$\tilde{Z}_1(s; U) = \sqrt{1 - \tau^2} \frac{Z_1(s; U)}{\sqrt{\lambda_1(s)}} + \tau \frac{\epsilon(s)}{\sqrt{h(s)}}$$

- $\lambda_1(s)$ accounts for regions in space with larger observational variance.
- $\lambda_1(s)$ needs to be correlated to induce m.s. continuity of $Z_1(s; U)$, this is equivalent to $E[\lambda_1^{-1/2}(s_i)\lambda_1^{-1/2}(s_{i'})] \to E[\lambda_1^{-1}(s_i)]$ as $s_i \to s_{i'}$.
- This is satisfied by $\lambda_1(s) = \lambda$, $\forall s \Rightarrow$ student-t process. But is does not account for regions with larger variance.
- This is also satisfied by the glg process where $\{ln(\lambda_1(s)); s \in D\}$ is a gaussian process with mean $-\frac{\nu}{2}$ and covariance structure $\nu C_1(.)$. [Palacios and Steel, 2006]

Simulation Results

Outline

Process h(s)

$$\tilde{Z}_1(s; U) = \sqrt{1 - \tau^2} \frac{Z_1(s; U)}{\sqrt{\lambda_1(s)}} + \tau \frac{\epsilon(s)}{\sqrt{h(s)}}$$

- h(s) accounts for traditional outliers (different nugget effects).

Process h(s)

$$\tilde{Z}_1(s; U) = \sqrt{1 - \tau^2} \frac{Z_1(s; U)}{\sqrt{\lambda_1(s)}} + \tau \frac{\epsilon(s)}{\sqrt{h(s)}}$$

- h(s) accounts for traditional outliers (different nugget effects).
- We consider the detection of outliers jointly in the estimation procedure and the variable $h_i = h(s_i), i = 1, \dots, I$ are considered latent variables

Heavy tailed processes

Outline

Process h(s)

$$\tilde{Z}_1(s; U) = \sqrt{1 - \tau^2} \frac{Z_1(s; U)}{\sqrt{\lambda_1(s)}} + \tau \frac{\epsilon(s)}{\sqrt{h(s)}}$$

- h(s) accounts for traditional outliers (different nugget effects).
- We consider the detection of outliers jointly in the estimation procedure and the variable $h_i = h(s_i), i = 1, \dots, I$ are considered latent variables
- Their posterior distribution indicate outlying observations (h_i close to 0).

Process h(s)

$$\tilde{Z}_1(s; U) = \sqrt{1 - \tau^2} \frac{Z_1(s; U)}{\sqrt{\lambda_1(s)}} + \tau \frac{\epsilon(s)}{\sqrt{h(s)}}$$

- h(s) accounts for traditional outliers (different nugget effects).
- We consider the detection of outliers jointly in the estimation procedure and the variable $h_i = h(s_i), i = 1, \dots, I$ are considered latent variables
- Their posterior distribution indicate outlying observations (h_i close to 0).
- We consider
 - $\triangleright log(h_i) \sim N(-\nu_h/2, \nu_h).$
 - $h_i \sim \text{Ga}(1/\nu_h, 1/\nu_h)$.

Process $\lambda_2(t)$

Mixing in time

$$\tilde{Z}_2(t;V) = \frac{Z_2(t;V)}{\sqrt{\lambda_2(t)}}$$

- $\lambda_2(t)$ accounts for sections in time with larger observational variance.

Process $\lambda_2(t)$

Mixing in time

$$\tilde{Z}_2(t;V) = \frac{Z_2(t;V)}{\sqrt{\lambda_2(t)}}$$

- $\lambda_2(t)$ accounts for sections in time with larger observational variance.
- This can be seen as a way to address the issue of volatility clustering, which is common in finantial time series data.

Process $\lambda_2(t)$

Mixing in time

$$\tilde{Z}_2(t;V) = \frac{Z_2(t;V)}{\sqrt{\lambda_2(t)}}$$

- $\lambda_2(t)$ accounts for sections in time with larger observational variance.
- This can be seen as a way to address the issue of volatility clustering, which is common in finantial time series data.
- We consider the log gaussian process where $\{ln(\lambda_2(t)); t \in T\}$ is a gaussian process with mean $-\frac{\nu_2}{2}$ and covariance structure $\nu_2 C_2(.)$.

Heavy tailed processes

Outline

- $(\lambda_{1i}, h_i, \lambda_{2i})$ are considered latent variables and sampled in our MCMC sampler.

Predictions

- $(\lambda_{1i}, h_i, \lambda_{2j})$ are considered latent variables and sampled in our MCMC sampler.
- Given $(\lambda_{1i}, h_i, \lambda_{2j})$ the process is gaussian and we can predict at unobserved locations and time points.
- We compare the predictive performance using proper scoring rules [Gneiting and Raftery, 2008]:
 - LPS(p, x) = -log(p(x))

4 D > 4 A > 4 B > 4 B > B

- $(\lambda_{1i}, h_i, \lambda_{2i})$ are considered latent variables and sampled in our MCMC sampler.
- Given $(\lambda_{1i}, h_i, \lambda_{2i})$ the process is gaussian and we can predict at unobserved locations and time points.
- We compare the predictive performance using proper scoring rules [Gneiting and Raftery, 2008]:

- $(\lambda_{1i}, h_i, \lambda_{2i})$ are considered latent variables and sampled in our MCMC sampler.
- Given $(\lambda_{1i}, h_i, \lambda_{2i})$ the process is gaussian and we can predict at unobserved locations and time points.
- We compare the predictive performance using proper scoring rules [Gneiting and Raftery, 2008]:
 - $\blacktriangleright LPS(p,x) = -log(p(x))$

- $(\lambda_{1i}, h_i, \lambda_{2j})$ are considered latent variables and sampled in our MCMC sampler.
- Given $(\lambda_{1i}, h_i, \lambda_{2j})$ the process is gaussian and we can predict at unobserved locations and time points.
- We compare the predictive performance using proper scoring rules [Gneiting and Raftery, 2008]:
 - ightharpoonup LPS(p,x) = -log(p(x))
 - ► $IS(q_1, q_2; x) = (q_2 q_1) + \frac{2}{\xi}(q_1 x)I(x < q_1) + \frac{2}{\xi}(x q_2)I(x > q_2)$. We use $\xi = 0.05$ resulting in a 95% credible interval.

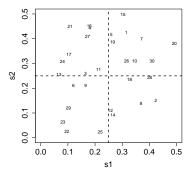
- This data set has I = 30 locations and J = 30 time points generated from a Gaussian model with no nugget effect ($\tau^2 = 0$).
- The covariance model is nonseparable Cauchy ($X_i \sim \text{Ga}(\lambda_i, 1)$, i = 0, 1, 2) in space and time with c = 0.5.
- We contaminated this data set with different kinds of "outliers" in order to see the performance of the proposed models in each situation.

- This data set has I = 30 locations and J = 30 time points generated from a Gaussian model with no nugget effect ($\tau^2 = 0$).
- The covariance model is nonseparable Cauchy ($X_i \sim \text{Ga}(\lambda_i, 1)$, i = 0, 1, 2) in space and time with c = 0.5.
- We contaminated this data set with different kinds of "outliers" in order to see the performance of the proposed models in each situation.

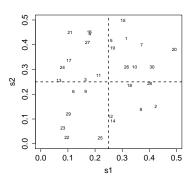
- This data set has I = 30 locations and J = 30 time points generated from a Gaussian model with no nugget effect ($\tau^2 = 0$).
- The covariance model is nonseparable Cauchy ($X_i \sim \text{Ga}(\lambda_i, 1)$, i = 0, 1, 2) in space and time with c = 0.5.
- We contaminated this data set with different kinds of "outliers" in order to see the performance of the proposed models in each situation.

Spatial domain

Outline



• The proposal for λ_{1i} , h_i , $i=1,\ldots,I$ in the MCMC sampler is constructed by dividing the observations in blocks defined by position in the spatial domain.



• The proposal for λ_{1i} , h_i , i = 1, ..., I in the MCMC sampler is constructed by dividing the observations in blocks defined by position in the spatial domain.

Description and BF

- One location was selected at random (location 7) and a random increment from Unif(1.0, 1.5) times the standard deviation was added to each observation for this location for the first 20 time points.
- The logarithm of the BF using Shifted-Gamma ($\lambda = 0.98$) estimators:

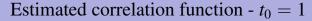
 | nug. | h (lognormal) | h (gamma) | $\lambda_1 = \lambda_1 & h$ (lognormal)
 | Gaussian | -1 | 101 | 98 | 78 | 109

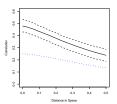
Temperature data

Description and BF

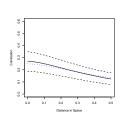
- One location was selected at random (location 7) and a random increment from Unif(1.0, 1.5) times the standard deviation was added to each observation for this location for the first 20 time points.
- The logarithm of the BF using Shifted-Gamma ($\lambda=0.98$) estimators:

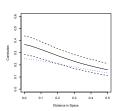
_		h (lognormal)	,		$\lambda_1 \& h \text{ (lognormal)}$
Gaussian	-1	101	98	78	109



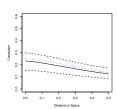


(a) Gaussian



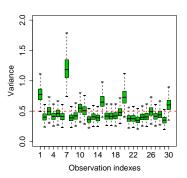


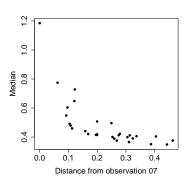
(b) Nongaussian with λ_1



(c) Nongaussian with h and λ_1 (d) Gaussian (Uncontaminated data)

Nongaussian model with λ_1

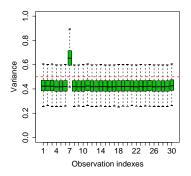




(a) Variance for each location.

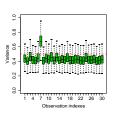
(b) Median of σ_i^2 vs. distance from obs. 7.

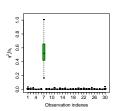
Nongaussian model with h (lognormal)



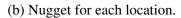
- (a) Variance for each location.
- (b) Nugget for each location.

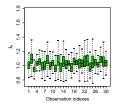
Nongaussian model with λ_1 and h



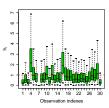


(a) Variance for each location.



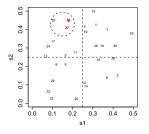


(c)
$$\lambda_{1i}$$
, $i = 1, \ldots, 30$.



(d) h_i , $i = 1, \dots, 30$.

• A region was selected and an increment from Unif(0.5, 1.5) times the standard deviation was added to each observation for the first 10 time points.

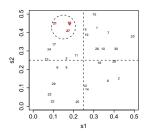


• The logarithm of the BF using Shifted-Gamma ($\lambda = 0.98$) estimators:

nug. h (lognormal) h (gamma) λ_1 λ_1 & h (lognormal)

Description and BF

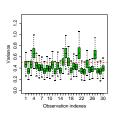
• A region was selected and an increment from Unif(0.5, 1.5) times the standard deviation was added to each observation for the first 10 time points.

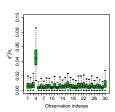


• The logarithm of the BF using Shifted-Gamma ($\lambda = 0.98$) estimators:

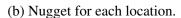
	nug.	h (lognormal)	h (gamma)	λ_1	$\lambda_1 \& h \text{ (lognormal)}$
Gaussian	44	70	72	75	110

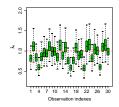
Nongaussian model with λ_1 and h



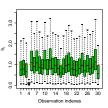


(a) Variance for each location.





(c)
$$\lambda_{1i}$$
, $i = 1, \ldots, 30$.



(d)
$$h_i$$
, $i = 1, \dots, 30$.

Data 2* - Description and BF

- A region of the spatial domain was selected (locations 4, 16, 21 and 27) and the same random increment from Unif(0.5, 1.5) times the standard deviation was added to each observation for the first 10 time points.
- The logarithm of the BF using Shifted-Gamma ($\lambda = 0.98$) estimators:

 nug. h (lognormal) h (gamma) λ_1 λ_1 & h (lognormal)

 Gaussian -2 -4 -4 24 20

Data 2* - Description and BF

- A region of the spatial domain was selected (locations 4, 16, 21 and 27) and the same random increment from Unif(0.5, 1.5) times the standard deviation was added to each observation for the first 10 time points.
- The logarithm of the BF using Shifted-Gamma ($\lambda = 0.98$) estimators:

The logarithm of the B1 dailing Shifted Gamma $(7 - 0.50)$ estimators.								
	nug.	h (lognormal)	h (gamma)	λ_1	$\lambda_1 \& h \text{ (lognormal)}$			
Gaussian	-2	-4	-4	24	20			

Description and BF

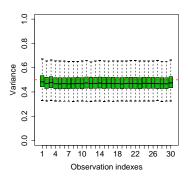
- The observations at time points 11 to 15 were contaminated by adding a random increment from Unif(0.5, 1.5) times the standard deviation to each observation for all spatial locations.
- The logarithm of the BF using Shifted-Gamma ($\lambda = 0.98$) estimators nug. h (lognormal) λ_1 λ_2 $\lambda_1 \& \lambda_2$ $\lambda_1 \& \lambda_2 \& h$ Gaussian 18 44 28 76 112 111

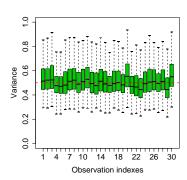
Description and BF

- The observations at time points 11 to 15 were contaminated by adding a random increment from Unif(0.5, 1.5) times the standard deviation to each observation for all spatial locations.
- The logarithm of the BF using Shifted-Gamma ($\lambda = 0.98$) estimators:

_	1110 10841141		21 051115 511111			. (, ,	o) commune	_
		nug.	h (lognormal)	λ_1	λ_2	$\lambda_1 \& \lambda_2$	$\lambda_1 \& \lambda_2 \& h$	
	Gaussian	18	44	28	76	112	111	

Nongaussian models

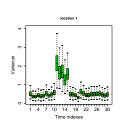


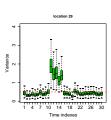


(a) Model with lognormal h(s).

(b) Model with lognormal h(s) and $\lambda_1(s)$.

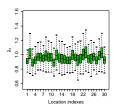
Nongaussian model with λ_1 and λ_2



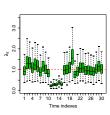


(a) Variance for each time.

(b) Variance for each time.

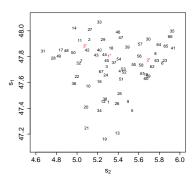


(c)
$$\lambda_{1i}$$
, $i = 1, ..., I$.



(d)
$$\lambda_{2j}, j = 1, \dots, J$$

(a) Spain and France Map.



(b) Basque Country (Zoom).

Model

Outline

• Mean function:

$$\mu(s,t) = \delta_0 + \delta_1 s_1 + \delta_2 s_2 + \delta_3 h + \delta_4 t + \delta_5 t^2$$

$$C(s,t) = \left(\frac{1}{1 + ||s/a||^{\alpha}}\right)^{\lambda_1} \left(\frac{1}{1 + |t/b|^{\beta}}\right)^{\lambda_2} \left(\frac{1}{1 + ||s/a||^{\alpha} + |t/b|^{\beta}}\right)^{\lambda_0}$$

$$\lambda_1 = \lambda_2 = 1$$
 and $c = \lambda_0/(1 + \lambda_0)$.

Model

Outline

• Mean function:

$$\mu(s,t) = \delta_0 + \delta_1 s_1 + \delta_2 s_2 + \delta_3 h + \delta_4 t + \delta_5 t^2$$

• Cauchy covariance function: $X_i \sim \text{Ga}(\lambda_i, 1)$

$$C(s,t) = \left(\frac{1}{1 + ||s/a||^{\alpha}}\right)^{\lambda_1} \left(\frac{1}{1 + |t/b|^{\beta}}\right)^{\lambda_2} \left(\frac{1}{1 + ||s/a||^{\alpha} + |t/b|^{\beta}}\right)^{\lambda_0}$$

$$\lambda_1 = \lambda_2 = 1$$
 and $c = \lambda_0/(1 + \lambda_0)$.

Likelihood

- In order to calculate the likelihood function we need to invert a matrix with dimension 2077×2077 .
- We approximate the likelihood by using conditional distributions.
- We consider a partition of Z into subvectors $Z_1, ..., Z_{31}$ where $Z_i = (Z(s_1, t_i), \dots, Z(s_{67}, t_i))'$ and we define $Z_{(i)} = (Z_{i-L+1}, \dots, Z_i)$. Then

$$p(z|\phi) \approx p(z_1|\phi) \prod_{j=2}^{31} p(z_j|z_{(j-1)},\phi).$$
 (7)

- This means the distribution of Z_i will only depend on the observations in space for the previous L time points.
- In this application we used L = 5 to make the MCMC feasible.

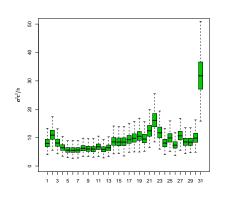
Outline Results

Bayes Factor

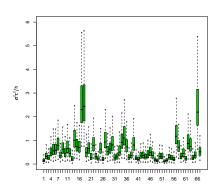
	h	λ_1	$\lambda_1 \& h$	λ_2	$\lambda_2 \& h$	$\lambda_1 \& \lambda_2$	$\lambda_1, h \& \lambda_2$
Shifted gamma	172	148	345	138	279	417	547

Table: The natural logarithm of the Bayes factor in favor of the model in the column versus Gaussian model using Shifted-Gamma ($\lambda = 0.98$) estimator for the predictive density of z.

Model with h and λ_2



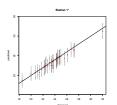
(a) $\sigma^2(1-\tau^2)/\lambda_2$.



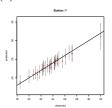
(b)
$$\sigma^2 \tau^2 / h$$
.

Outline Results

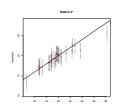
Predicted temperature at the out-of-sample stations



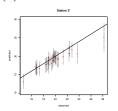
(a) Gaussian Model.



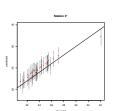
(d) Model with $\lambda_2 \& h$.



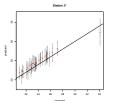
(b) Gaussian Model.



(e) Model with $\lambda_2 \& h$.



(c) Gaussian Model.



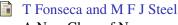
(f) Model with $\lambda_2 \& h$.

Outline Results

Model comparison

model	Average width	ĪS	LPS
Gaussian	3.78	4.35	103.81
h	3.83	4.34	102.04
λ_1	3.74	4.36	105.09
$\lambda_1 \& h$	3.75	4.48	103.79
λ_2	3.73	3.94	87.33
$\lambda_2 \& h$	3.73	3.87	86.57
$\lambda_1 \& \lambda_2$	4.51	4.65	85.89
$\lambda_1, h \& \lambda_2$	3.84	4.02	83.78

References



A New Class of Nonseparable Spatiotemporal Models *CRiSM Working Paper 08-13*. 2008.

T Gneiting and A E Raftery
Strictly proper scoring rules, prediction and estimation *JASA*. (102) 360–378, 2007.

C Ma

Spatio-temporal covariance functions generated by mixtures *Mathematical geology*. (34) 965–975, 2002.

M B Palacios and M F J Steel Non-Gaussian Bayesian Geostatistical Modeling *JASA*. (101) 604–618, 2006.

