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Abstract

Graphs are key to illustrating and understanding many complex systems and processes. This

thesis provides an introduction to the graph drawing features of TikZ, a versatile language for

creating a wide range of vector graphics that includes a framework for automatic graph layout

strategies written in the Lua programming language. Algorithms for two families of drawing

methods—spring and spring-electrical layouts of general graphs as well as layered drawings of

directed graphs—were developed specifically for TikZ. They are presented along with a discus-

sion of their underlying concepts, implementation details, and options to select, configure, and

extend them. The generated spring and spring-electrical layouts feature a high degree of sym-

metry, evenly distributed nodes and almost uniform edge lengths. The techniques developed

for layered drawings are successful in highlighting the flow of directed graphs and producing

layouts with uniform edge lengths and few crossings. By discussing many graph drawing fea-

tures valuable for end-users and researchers alike, this thesis aims at enabling a comparison to

related tools and providing the groundwork for future research and algorithm development.
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Introduction

Consider the following three drawings:

These drawings show the same graph. Clearly, the two graphics on the right aremore appealing

than the one on the left and convey more information about the structure of the graph. What

causes us to make this distinction between good and bad or informative and non-informative

are aesthetic aspects such as symmetry, distribution of nodes, or edge crossings. Graphs are

not only a formal structure to model relational data, but are also key to illustrating and under-

standing many complex systems and processes in the form of graph drawings. Three possible

applications are the visualization and analysis of social networks, the documentation of compo-

nent hierarchies in software engineering, and the illustration of the control flow of a machine

or production plant. Due to their size and for reasons of convenience, drawings of graphs are
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often generated automatically with the help of specialized software. The quality of the auto-

matic layout techniques used in these tools and the compliance with common aesthetic criteria

are critical for producing graph drawings that are visually appealing and easy to understand.

This is the central focus of graph drawing, an area of mathematics and computer science that ad-

dresses the problem of visualizing graphs by developing automatic layout strategies and eval-

uating these solutions based on aesthetic criteria. It combines elements from geometric graph

theory and information visualization and plays an important role in data analysis as well as

the production of research papers, books, lecture notes, and presentations where drawings of

graphs are needed.

Graph drawing is an active field of research with its own annual conference, the International

SymposiumonGraphDrawing [5], first held in 1995. Since its early days in the 1960s, graphdrawing

has succeeded in establishing many concepts related to the visualization of graphs. In addition

to the identification and evaluation of common aesthetic criteria such as the minimization of

edge crossings or themaximization of symmetry, a number of standard strategies and algorithm

frameworks for drawing graphs have been developed. They are often classified by their under-

lying concepts, the types of graphs they accept as their input, and the drawing conventions they

implement. Popular classifications include methods based on the simulation of physical forces,

methods for drawing trees or directed graphs, and methods that produce orthogonal, planar

or layered drawings. An introduction to the most important drawing conventions, constraints,

and aesthetic criteria as well as a detailed overview of popular techniques for drawing graphs is

given by Di Battista et al. [12].

Graph drawing algorithms such as the ones discussed in [18, 21, 27, 31, 35 and 50] have gained

recognition and are implemented in many well-known applications, including the graph draw-

ing tool Graphviz1 and the computational software Mathematica2. These tools typically provide

a special language or syntax for describing graphs. They parse these descriptions and apply

graph drawing algorithms in order to find good graph layouts. The resulting drawings are then

either rendered to the screen or converted into output formats such as PDF, EPS or PNG, allowing

them to be imported into other applications and used in documents and other graphics.

This thesis focuses on graph drawing with TikZ, a versatile language for creating a wide range of

vector graphics. Like other tools, it provides a compact syntax for specifying graphs and tech-

niques for turning these graph descriptions into proper drawings. The work presented here

was preceded by extensive research of existing graph drawing literature. Algorithms for two

families of drawing methods—force-based layouts of general graphs and layered drawings of

1
Graphviz website: http://graphviz.org

2
Mathematica website: http://www.wolfram.com/mathematica/

http://graphviz.org
http://www.wolfram.com/mathematica/
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directed graphs—were investigated and implemented specifically for use in TikZ. Even though

the examples used in this thesis mostly stem from various areas of computer science, the de-

veloped algorithms can be applied to many fields of science, education, data visualization, and

process modeling. The central topic of the subsequent chapters is to give an introduction to the

graph drawing features of TikZ and to discuss the implemented algorithms, including their im-

plementation, features, configuration options, and performance. The results produced by these

algorithms are evaluated with regards to their visual properties and common aesthetic criteria.

What sets TikZ apart from other graph drawing tools are three central features. First of all,

its scope is not limited to graph drawing. On the contrary, it has many powerful features for

creating complex drawings. Drawing graphs and combining these drawings with other graphic

elements is only one of them. In contrast to solutions such as Graphviz or the Open Graph Draw-

ing Framework3, TikZ is neither a standalone software nor a framework on top of which other

graph drawing tools are built. It can be used to produce graphics for importing into other ap-

plications. Its main purpose, however, is to allow the creation of drawings that are embedded

into the source code of documents built with the TEX typesetting system. This approach has

a number of advantages. Not only does it simplify the document production workflow by en-

abling users to store, edit, and build drawings together with the rest of their documents. It also

allows drawings to inherit font properties and typesetting features from their containing docu-

ments and from TEX, which helps in producing content with a consistent and professional look.

The third central feature of TikZ is that—thanks to its modular architecture—it can be extended

with new language features, graphics elements, and graph drawing algorithms easily. Unlike

with other tools, where such extensions are either not possible at all or require fiddling with

compiled languages and build tools, adding new graph drawing algorithms to TikZ is as simple

as dropping a script into the TEX directory tree that is written in the Lua programming language

and implements a simple function. One thing to note here is that the performance of TEX and

algorithms written in Lua is not comparable to the often optimized compiled code used in other

tools. This can be a problem with many graph drawings or drawings of large graphs. Luckily,

some variants of TEX provide workable solutions to address these issues.

Contributions

Support for algorithmic graph drawing in TikZ is provided by a dedicated subsystem called the

graph drawing engine that takes a graph description, passes it over to a Lua framework where

it is turned into an object-oriented representation of the graph and processed with the desired

3
Open Graph Drawing Framework website: http://ogdf.net

http://ogdf.net
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graph drawing algorithm. The resulting layout is returned to TikZ for rendering and embedding

into the output document.

The main contributions of this thesis are the implementation of algorithms for two popular

drawing methods applicable to many graphs. These algorithms were implemented specifically

for the Lua-based graph drawing engine of TikZ and are presented along with TikZ syntax addi-

tions for users to select and configure them. They are evaluated with regards to layout quality

and performance, based on example graphs collected from literature and lecture notes.

The force-based algorithms developed for TikZ are based on the spring model by Kamada and

Kawai [35] and the spring-electrical model by Eades [15], Fruchterman and Reingold [21]. Their

underlying idea is to model the input graph as a system of spring forces or spring and elec-

trical forces, depending on the model, and generate a layout for the graph by simulating the

node movements caused by these forces until the system energy reaches an equilibrium state.

Three such algorithms were implemented, including a spring and a spring-electrical algorithm

based on the work by Hu [31] and a modified spring-electrical algorithm based on ideas by Wal-

shaw [51]. These algorithms feature techniques for improving the generated layouts and reduc-

ing the computational cost such as a multilevel approach for escaping local energy minima and

an algorithm for approximating electric forces based on the Barnes–Hut opening criterion [2].

Scaling issues found in the original algorithms are addressed and partially solved. The produced

layouts are evenly distributed and feature an almost uniformdistribution of edge lengths aswell

as a high degree of symmetry.

The second family of drawing methods investigated are algorithms for layered drawings of di-

rected graphs based on the Sugiyama method introduced in [18 and 50]. This method intends

to highlight the flow of directed graphs by arranging its nodes in layers from the top to the

bottom. Generating layered drawings is commonly implemented in five steps: cycle removal,

layer assignment, crossing minimization, coordinate assignment, and edge routing. Since all of

these steps are hard to solve, a variety of interchangeable heuristics and accurate algorithms are

presented throughout graph drawing literature. For this thesis, a modular framework for lay-

ered drawing algorithms was developed and added to TikZ. It is based on the Sugiyama method

and provides an extension interface that allows new solutions for each of its steps to be writ-

ten and selected in TikZ easily. A number of popular sub-algorithms were implemented for the

different steps including the versatile techniques proposed by Gansner et al. [27]. In its default

configuration, the modular algorithm produces layered drawings that are comparable to those

generated by Grapvhiz and Mathematica. Its main advantage, however, is the simple extension

interface which makes experimentation with new ideas easy and which I am confident other

graph drawing researchers will find useful.
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In addition to this, a considerable amount of work was put into completing and improving the

graph drawing engine. Contributions to the Lua algorithm framework include a powerful class

for performing vector operations; a class for lowering the efforts of writing algorithms based

on iterative depth-first-search; helper classes like a Fibonacci heap, a priority queue, and a

quadtree; standard algorithms like Dijkstra and Floyd-Warshall; approximative algorithms for

detecting cycles and computing graph diameters aswell flexible iterators for arrays and hash ta-

bles. Additions to the TikZ syntax range from a new macro for creating mesh graphs to options

for fixing nodes at certain coordinates and for specifying node clusters. All of these features

were merged into the TikZ repository and are available to graph drawing researchers intending

to implement new graph drawing algorithms with TikZ.

Related Work

Graph drawing has been the topic of many books, research papers, and software projects. Early

forms of geometric drawings of graph-like structures can be found in 13th century games, family

trees in genealogy, and the square of opposition used inAristotelian logic. Forms of visualization

more akin to the abstract graph drawings of today came up along with early work on graph

theory by Euler and Vandermonde in the 18th and 19th century. An interesting survey on the

history of graph visualization was written by Kruja et al. [36].

The idea to model graphs as systems of spring and electric forces originates from work by Ka-

mada and Kawai [35], Eades [15], Fruchterman and Reingold [21]. It was extended by a multi-

level approach from graph partitioning [30] in algorithms developed by Walshaw [51 and 52]

and Hu [31] in order to overcome problems with local energy minima and thereby yield graph

layouts of better quality. In an attempt to increase the efficiency of their spring-electrical al-

gorithms, Walshaw and Hu successfully applied an algorithm for approximating the forces in

an N-body system. This technique was initially proposed by Barnes and Hut [2] and was later

improved by Dubinski [14]. Alternative force-based approaches not based on springs include

the binary stress model [34], multidimensional embeddings [53], and simulations of magnetic

fields [12].

The concept of highlighting the flow of directed graphs by arranging nodes in layers was first

brought up by Sugiyama et al. [50]. Their ideas, which are often referred to as the Sugiyama

method, have inspired an entire family of similar algorithms. Detailed surveys on these algo-

rithms are provided by Eades and Sugiyama [18], Bastert and Matuszewski [3] and Di Battista et

al. [12]. One of the most frequently quoted and implemented layered drawing algorithm with

support for optimal layer assignment was developed by Gansner et al. [27] based on the network

simplexmethod described in [10]. Articles and book chapters on individual sub-problems of the
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Sugiyama method such as the feedback arc set problem, optimal crossing minimization, and

optimal layer assignment can be found in [4, 8, 9, 17, 20 and 33],

Most of the algorithms presented in graph drawing literature, including those implemented in

this thesis, assume that nodes do not have a size that needs to be taken into account. This as-

sumption, however, does not hold inmany practical scenarios and ignoring the size of nodes can

lead to undesired overlaps between pairs of nodes as well as nodes and edges. Possible solutions

for this differ depending on the drawing method. In [29], Harel and Koren describe the chal-

lenges of supporting arbitrarily sized nodes in force-based algorithms and propose carefully

constructed extensions to support such nodes. An alternative solution based on a proximity

stress model is proposed by Gansner and Hu in [24]. An entire set of techniques for eliminat-

ing overlaps in a post-processing step of general-purpose drawing methods is presented in [41].

Friedrich and Schreiber discuss the problem of supporting arbitrarily sized nodes in layered

drawing algorithms based on the Sugiyama method. They propose a special layer assignment

algorithm that takes the size of nodes into account and allows users to choose between compact

and less compact drawings [23].

In practical scenarios nodes and edges often have labels attached to them that need to be taken

into consideration when producing graph layouts. The problem of optimal label placement is

discussed in [39] and [37].

Many of the aesthetic criteria applied to graph drawingswere initially established by developers

of graph drawing algorithms without proof of their relevance with regards to the readability

of graphs. Several empirical studies have been performed by Purchase et al. in an attempt to

improve this situation and by providing evidence for common criteria such as minimization of

edge crossings and display of symmetry [43, 44, 46 and 47].

As mentioned before, many of the algorithms developed over time have been incorporated into

software products such as graph drawing tools and frameworks. Projects related to the work

presented in this thesis include applications such as Graphviz orMathematica, frameworks such

as TULIP4 or the Open Graph Drawing Framework, and graph editors such as Gravel5 [1], yEd6 or

TikZit7. Graphviz provides a compact graph syntax similar to that of TikZ and ships a set of com-

mand line applications to produce graph layouts using different algorithms and convert them

into output formats such as PDF or PNG. It implements spring and spring-electrical algorithms

based on [31] and a layered drawing algorithm based on work by Gansner et al. [27], who are

4
TULIP website: http://tulip.labri.fr

5
Gravel website: http://www.rbergmann.info/projekte/gravel.html

6
yEd website: http://www.yworks.com/en/index.html

7
TikZit website: http://tikzit.sourceforge.net/

http://tulip.labri.fr
http://www.rbergmann.info/projekte/gravel.html
http://www.yworks.com/en/index.html
http://tikzit.sourceforge.net/
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also the developers of Graphviz itself. Mathematica is a commercial software for performing

various sorts of computations. It offers a graph syntax and graph drawing algorithms as one of

its many features. Algorithms for spring and spring-electrical layouts, multidimensional em-

beddings, layered drawings, and drawings of trees are supported [53]. These are essentially the

same as the ones implemented in Graphviz and in this thesis. The Open Graph Drawing Frame-

work and TULIP are C++ frameworks that can be used to build applications for graph drawing

and data visualization. Like TikZ they can be used to develop new algorithms. A related area

of research that combines graph drawing algorithms with graph editing interfaces is interac-

tive graph drawing. It has spawned graphical editors such as yEd and Gravel that allow users

to adjust the layouts produced by graph drawing algorithms or create their own layouts from

scratch. The TikZit software was written specifically for creating and editing TikZ graphs. It can

be used to build graphs rapidly but does not incorporate elements of automatic graph drawing.

Structure of the Thesis

The remaining chapters of the thesis is organized as follows.

Chapter 2 briefly introduces the TEX typesetting system and gives an overview of TikZ as well

as the basic elements of its compact graph syntax. It further explains the central aspects of

the graph drawing engine, including its architecture, the graph drawing process from a graph

description up to the final drawing, and the Lua interface for writing graph drawing algorithms.

The chapter closes by summing up the contributions made to TikZ in the course of the thesis.

Chapters 3 and 4 present the implemented graph drawing algorithms for force-based layouts

and layered drawings. Both chapters start off with an introduction covering the basics of the re-

spective drawingmethod, including the underlying concepts and objectives. Chapter 3 explains

how spring and electrical forces can be applied to graph drawing and describes differences, sim-

ilarities, common elements and various implementation details of the developed spring and

spring-electrical algorithms. Chapter 4 presents the building blocks of the Sugiyama method

and provides an extensive survey of various existing techniques for some of its steps. This is

followed by a description of the modular framework for layered drawing algorithms developed

as part of the thesis. Both chapters close with a detailed tutorial explaining the TikZ syntax

added for users to select and configure the new algorithms. In addition to this, chapter 4 also

explains the Lua interface for writing new algorithms for the individual steps of the Sugiyama

method.
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In chapter 5, the layouts produced by the developed algorithms for a representative collection of

example graphs are compared and evaluated based on common aesthetic criteria. The time re-

quired to process these graphs is analyzed in two benchmarks. Possible causes for the slow per-

formance of the implemented spring and spring-electrical algorithms are discussed, followed

by a description of possible optimizations and workarounds.

The thesis closes with a summary of the achievementsmade in this thesis, highlights open prob-

lems and hints at possible areas of future research or development in chapter 6.
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An Overview of TikZ and its

Graph Drawing Features

TikZ (a German recursive acronym for “TikZ ist kein Zeichenprogram”) is a powerful language

for producing a wide range of vector graphics, including graphs, diagrams, charts and plots.

It is applicable to a variety of scenarios and is frequently used in scientific publications due

to its well-documented implementation for the TEX typesetting system. In TEX distributions,

TikZ is shipped as a front-end language for the PGF (Portable Graphics Format) package that

provides drawing primitives and takes care of converting them into one of the desired output

formats such as PostScript or PDF. The PGF system is designed to be extensible, allowing new

libraries for additional TEX commands, special drawing routines andmarkups to be added easily.

It was originally created by Till Tantau and is developed as an open source project driven by

volunteers8.

One of the key applications of TikZ is drawing graphs. The traditional way to do this in TikZ was

to define a set of nodes and edges and position the nodes manually. Unfortunately, the syntax

for creating nodes and edgeswas relatively complicated and verbose compared to the graph lan-

guages of related tools. To solve this, Tantau developed a simplified graph syntax, much alike to

the syntax of the popular Graphviz software. He also added a number of semi-automatic node

placement strategies to overcome some of the problems with manual positioning. However,

these strategies are useful only to some extend and were not enough to get rid of manual posi-

tioning entirely, which can quickly turn into a time-consuming task as graphs become larger.

To solve this problem, a group of students added a framework for extending TikZwith automatic

graph drawing algorithms written in the Lua programming language.

8
The TikZ/PGF project on SourceForge.net: http://sf.net/projects/pgf

http://sf.net/projects/pgf
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When I started working on the thesis, I took over from these students, who had just finished a

first functional version of the Lua algorithm framework, called the graph drawing engine. I spent

the first weeks completing and improving this framework and invested a considerable amount

of time into making its interfaces consistent. In addition to this, a number of new classes and

further modifications to framework became necessary while implementing the graph drawing

algorithms presented in chapters 3 and 4.

In order to get an understanding of TikZ, its graph syntax, the design of the graph drawing en-

gine and its Lua interface for graph drawing algorithms, this chapter provides a detailed intro-

duction to all these aspects. In section 2.1, the basic functionality and organization of TikZ/PGF

are explained, followed by an introduction to the simplified graph syntax in section 2.2. The

graph drawing engine is presented in section 2.3. The final section of this chapter, section 2.4,

sums up my own contributions to TikZ/PGF in the course of this thesis and briefly describes

some of the modifications made. These modifications are partly a result of the initial cleanup

and partly consist of side products created while working on the graph drawing algorithms pre-

sented in the subsequent chapters.

2.1 TikZ as a Front-End Language for the PGF Graphics Package

The TEX typesetting system was written by Donald Knuth and is frequently used for scientific

publications, presentations, lecture notes and books. It features a powerful syntax, an inter-

preter and processing tools to convert TEX documents into a variety of output formats such as

DVI, PostScript or PDF. Unlike documents created with WYSIWYG (What You See Is What You

Get) word processing tools such as the one included in LibreOffice, TEX documents are written

as source code and are structured and annotated using special elements called macros. Macros

look bear similarities with functions known fromprogramming languages. However, they differ

from functions in that they produce only text. When a TEX document is processed, macros are

expanded and replaced by the text they produce. Various tricks developed over time turn the

TEX macro syntax into a powerful programming language that can be used to extend the basic

functionality and core macros provided by TEX.

The PGF system is a macro package that implements a number of powerful programming con-

cepts on top of the basic TEX macros and provides a powerful set of features to create complex

graphics. It consists of three different layers. The system layer acts as an abstraction layer on

top of output drivers—applications that are able to generate special output formats but that all

have their own input syntax—and provides a single abstract interface for converting PGF graph-

ics into different output formats. On top of this sits the basic layer that provides TEX macros

to produce complex graphics and consists of a core system and a set of libraries, each of which
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wraps special-purpose functionality e.g. for plotting data or for decorating objects. While the

basic layer provides enough to create various kinds of complex drawings, it is tedious to use the

macros all the time. Therefore, PGF has a front-end layer that provides its own set of high-level

macros and a special graphics syntax that is more convenient to use. Providing a syntax similar

toMETAPOST, TikZ is one such front-end and, in fact, the only complete one at the time of writing.

TikZ provides a syntax for PGF drawing primitives and high-level graphics objects—such as

graphs or decorated paths—that is significantly less verbose and cryptic than the correspond-

ing basic layer macros. Take, for instance, the following example graphic that connects a circle

with a rectangle, first with PGF basic layer macros and then with TikZ.

\startpgfpicture
\pgfsetstrokecolor{black!60}
\pgftransformshift{\pgfpoint{0cm}{0cm}}
\pgfnode{circle}{center}{A}{a}{\pgfusepath{stroke}}
\pgftransformshift{\pgfpoint{2cm}{0cm}}
\pgfnode{rectangle}{center}{B}{b}{\pgfusepath{stroke}}
\pgfpathmoveto{\pgfpointanchor{a}{east}}
\pgfpathlineto{\pgfpointanchor{b}{west}}
\pgfusepath{stroke}

\stoppgfpicture

A B

\tikz[every node/.style={anchor=center,draw=black!60}] {
\node [circle] (a) at (0cm,0cm) { A };
\node [rectangle] (b) at (2cm,0cm) { B };
\draw (a) -- (b);

}

A B

This example illustrates some of the basic features of TikZ, namely a special syntax for speci-

fying nodes (\node), a special syntax for specifying paths (--), a key-value syntax for graphic

parameters (draw=black!60), and grouping of parameters using styles (every node/.style).

Notable other features of TikZ include a special syntax for edges, trees, actions on paths, coor-

dinate transformation.

Its powerful set of mathematical and graphics macros, the simple TikZ syntax, the high ren-

dering quality, and the vast amount of special-purpose libraries shipped with it—ranging from

key-value management and loop constructs to object and path decorations as well as arbitrar-

ily complex syntax additions—make PGF one of the most versatile graphics packages for the

TEX world. Embedding the source code of TikZ graphics directly into TEX documents has the
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advantage of inheriting a syntax for mathematical formulas as well as font and typesetting fea-

tures without the need to manually update and export graphics every time the document font

changes, as is oftennecessarywhenusing external graphics tools. This, alongwith thewell-writ-

ten manual9 comprising more than 800 pages of extensive documentation—including many ex-

amples and tutorials—, may be another reason why TikZ and PGF have become popular tools in

many areas of academia.

In the rest of this thesis, the term TikZ is used as a synonym for the entire graphics package.

2.2 A Special Syntax for Specifying Graphs

The basic graphic elements required for defining and drawing graphs are nodes and edges, with

optional labels attached to them. The traditional way to create these elements in TikZ is via the

syntax used in the initial TikZ/PGF example:

\tikz[every node/.style={draw,circle}] {
\node (a) at (0, 0) [label=above:1] { A };
\node (b) at (2, 0) [label=above:2] { B };
\node (c) at (0,-2) { C };

\draw (a) edge node[above,draw=none] { x } (b);
\draw (a) edge (c);

}

A

1

B

2

C

x

While this syntax is easy to get used to and the naming ofmacros and options is fairly predictable

and intuitive, creating complex graphs like this quickly becomes a tedious task. The syntax is

verbose compared to tools like Graphviz, where creating nodes and edges is as simple as writing

A -> B. The resulting source code is often complex compared to that required to draw graphs

with tools like Graphviz, where creating nodes and edges is as simpl as writing A -> B. This may

easily result in graph descriptions that are inflexible and hard to understand.

For this reason, the development version of TikZ and PGF features a simplified graph syntax that

allows to specify graphs more quickly with significantly less syntactical overhead. This syntax,

which already existed before this thesis was started, comes in the form of a special graphics

instruction called \graph, is provided by a dedicated library graphs that can be loaded with the

following instruction.

9
Link to the TikZ/PGF manual: http://mirrors.ctan.org/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf

http://mirrors.ctan.org/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf


A Special Syntax for Specifying Graphs 13

\usetikzlibrary{graphs} % LaTeX
\usetikzlibrary[graphs] % ConTeXt

The graph syntax is inspired by the Graphviz graph language and supports features such as a

simplified syntax for nodes and edges, node chains to connect nodes and edgesmore easily, node

groups to connect groups of nodes and apply the same options to multiple nodes at once, color

classes to create logical sets of nodes, and special macros for creating standard graphs such as

complete graphs or cycles. Using this syntax the above graph example can bewritten as follows:

\tikz \graph [nodes={draw,circle},
grow right=2cm,
branch down=2cm]

{
A ["1"] --["x"] B ["2"],
A -- C

};

A

1

B

2
x

C

2.2.1 Syntax for Nodes and Edges

Nodes may have a name and are created using a syntax that matches one of the following pat-

terns. Regular nodes are created with 〈node name〉. When using this notation, the node name

is not only used as the text to display inside a node but is also the name via which the node

can be referenced when creating edges. In situations where it is preferred to have a node with

different reference name and text, the 〈node name〉__〈node text〉 syntax can be used. Here,

the node name is used for referencing while the node text is used as the text displayed inside

the node. Notes created with either of these formats may be assigned optional options that are

appended in brackets: 〈node name〉__〈node text〉 [〈options〉]. Anonymous nodes that can-

not be referenced internally may be created by omitting the 〈node name〉 part. Due to the way

parsing works, certain special characters may not be used in the node name, including commas,

semicolons, hyphens, braces, dots, parentheses. In the 〈node text〉 they are only supported if

wrapped inside { and }.

Edges are created between nodes or node groups using one of the supported graph operators

such as -- for undirected edges, ->, <- and -> for directed edges and -!- for deleting edges

previously created. Like nodes, edgesmay be configured using optional parameters, as is shown

in the finite state machine example below.
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\tikz \graph [no placement] {
q1__$q_1$ [at={(0,0)},state,initial],
q2__$q_2$ [at={(2,0)},state,accepting],
q3__$q_3$ [at={(2,-2)},state],

q1 -> ["0"] q2,
q1 -> ["1"] q3,
q2 -> ["{0,1}",loop right] q2,
q3 -> ["{0,1}",loop right] q3,

};

q1start q2

q3

0

1

0,1

0,1

2.2.2 Node Chains and Chain Groups

Two useful features that reduce the code required to build complex graphs are node chains and

groups. As the name suggests, node chains allow a sequence of pairwise connected nodes to be

specified using a slightly simplified syntax:

\tikz \graph { a -> b -> c -- d <-> e }; a b c d e

Each of the nodes and edges in a chain may be specified using the syntax explained in sec-

tion 2.2.1.

Chain groups make creating graphs easier by allowing two things: create multiple edges with

a single statement and apply options to several individual nodes at once. Groups of nodes may

be placed anywhere in a graph definition where individual nodes are allowed. The example

below demonstrates how node groupsmay be used to connectmultiple nodes at once and assign

options to nodes in two different groups:

\tikz \graph {
a -> {

[edges={dashed}] b, c -> { d, e }
} -> f -> {

[nodes={draw,circle}] g, h, i
},

};

a b

c d

e

f g

h

i

This example already shows that chain groups may be nested, making compact definitions of

hierarchical graphs possible, which is a feature that is particularly useful when creating trees:
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\tikz \graph [grow down,branch right] {
a -> {

b -> { c, d },
e -> f,

}
};

a

b

c d

e

f

Chain groups also support so-called graph operators, that is, algorithms that receive the nodes

of a group as input and create edges between them automatically or semi-automatically. One

such operator provided by the graphs.standard library is the clique operator, which connects

all nodes in a group:

\tikz \graph [clockwise=4,phase=135] {
{ [clique] a, b, c, d }

};

a b

cd

Node chains, chain groups and operators are powerful tools for creating graphs. The above

examples only highlight a small set of their features. The list of operators provided by TikZ out

of the box is long and can be extend by custom ones easily.

2.2.3 Graph Macros

Often, graphs are composed of nodes connected by standard patterns such as cliques, circles or

meshes. This is the basic idea behind the graph macros provided by TikZ. These macros allow

standard subgraphs to be created without having to create nodes and connect nodes individu-

ally. Some of these standard graphs will be used frequently in the remaining chapters of this

thesis and it is thus helpful to know their syntax.

A graph macro consists of a name and has options that define how many nodes are created and

how they are connected. The following example illustrates how a complete subgraph (K_5), a

circle with five nodes (C_5) and a small mesh are created using graph macros:

\tikz \graph [clockwise=5]
{ subgraph K_n[n=5] };

\tikz \graph [clockwise=5]
{ subgraph C_n[n=5] };

\tikz \graph [grid placement]
{ subgraph Grid_n[n=9] };

1

2

34

5

1

2

34

5

1 2 3

4 5 6

7 8 9
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2.3 The Graph Drawing Engine and its Lua Interface

The graph syntax is a notable improvement compared to the previous verbose notation. How-

ever, it does not eliminate the other main challenge of drawing graphs: arranging nodes so that

a graph is visually appealing and easy to understand. Along with the new graph syntax, TikZ

introduces a number of semi-automatic placement strategies like the ones used in examples

section 2.2. Supported placements include Cartesian placement, circular placement, grid

placement, and manual placement. If no other options are passed to the \graph macro, TikZ

defaults to Cartesian placement, which starts with the first node and arranges the others by

moving either along the grow axis or branch axis, depending on whether a node belongs to the

same node chain or a different chain group. The circular placement strategy allows nodes to

be placed in a circle based on an angle, a radius and a direction, which may be either clockwise

or counterclockwise. Placing nodes in a grid with grid placementwas contributed as part of

the thesis and is explained in section 2.4.

Starting from a formal definition of a graph, users often have no visual representation in mind

before they create a drawing. Automatic or algorithmic graph placements may help in find-

ing such a representation and may even generate drawings pleasing enough to require no fur-

ther adjustments. Even though the semi-automatic placement strategies provided by TikZ are

reasonably powerful and sufficient in many situations, they are limited as soon as graphs get

larger. Large graphs and the various existing drawing paradigms—ranging from trees and lay-

ered drawings to orthogonal drawings and force-based layouts—demand for more advanced

methods. For this purpose, a new graph drawing subsystem called the graph drawing engine was

recently added to TikZ/PGF.

The graph drawing engine allows arbitrarily complex algorithms to be implemented using a

modern and lightweight scripting language—Lua. Since TEX has a reputation of being slow and

difficult to program with, the development of complex drawing algorithms purely using TEX

macroswould not have been realistic. Lua on the other hand is not only a smallmodern language

known to be fast, powerful and easy to learn; it also comes embedded in the prominent LuaTEX

system built on top of TEX. With the \directlua macro provided by LuaTEX, Lua code can be

executed in TEX documents easily, allowing arbitrary data to be exchanged between TEX and

Lua scripts. This is what finally made the framework for graph drawing algorithms—a feature

long planned by Tantau—possible.

2.3.1 Basic Concepts and Architecture of the Graph Drawing Engine

The central idea of the graph drawing subsystemprovided by the graphdrawing library is to col-

lect the nodes and edges declared in a graph drawing scope, e.g. a \graphmacro, and hand them
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over to a Lua framework where an object-oriented representation of the graph is constructed

and processed with automatic graph drawing algorithms. These algorithms assign positions to

the individual nodes and may inject additional TikZ options into the nodes and edges defined

by users in order to shape edges and adjust the visual appearance of the final drawing in gen-

eral. Once this process is completed, themodified nodes and edges are returned to the TEX layer

where PGF takes care of rendering the graph. When graphs, nodes and edges are parsed, the

graph drawing engine splits their options up into graph drawing options and regular TikZ op-

tions. The graph drawing options are parsed, evaluated and are either passed to Lua along with

requests to create graph, nodes, and edge objects or are used to determine which graph draw-

ing algorithm to run. Dedicated libraries such as graphdrawing.force are used to implement

special graph drawing algorithms and provide additional TikZ options to configure them.

The Graph Drawing Process

To illustrate the basic control flow of the graph drawing engine, let us take a simple example:

\tikz \graph [nodes={draw,circle},
layered drawing,
orient=a-c]

{
a -> b, a -> [layered drawing={minimum levels=2}] c,

};

a

b

c

The elements in this drawing are:

• a \graph object that defines the graph drawing scope,

• a regular TikZ option (nodes={...}) that remains untouched by the graph drawing engine,

• a layered drawing option that specifies the drawing algorithm to be used,

• an orient graph drawing option, which is passed down to Lua for the graph drawing engine

to rotate the final drawing,

• three nodes (a, b, and c), and

• two directed edges (a -> b and a -> c), of which the second has an algorithm-specific op-

tion (minimum levels) that is used to separate a and c by a minimum number of levels or

layers.

Whenever TikZ encounters an algorithm such as layered drawing that selects a graph drawing

algorithm, it calls the \pgfgdbeginscope macro, which in turn enables the recording of node

and edge declarations with the help of edge and node callbackmacros. This macro also requests
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that the Lua framework allocates a new graph object by calling Interface:newGraph and pass-

ing graph parameters like layered drawing and orient to this method call. The \graphmacro

is not the only create a graph or trigger automatic graph drawing algorithms. More information

about the alternatives is included in the TikZ manual.

When a node declaration is detected, TikZ calls \pgf@gd@positionnode@callback, which di-

vides options into regular TikZ options and options specific to graph drawing and subsequently

calls Interface:addNode, passing to it the two sets of options as well as the node's internal

name and dimensions. For all edges declared in a graph drawing scope, \pgfgdedge is called

after all nodes have been created. This macro separates graph drawing options from regular

TikZ options and calls the method Interface:addEdge to create a Lua edge object based on the

names of the edge's end nodes, the edge direction as well as its options.

When the graph drawing scope is closed, TikZ calls the \pgfgdendscopemacro, which instructs

the Lua framework to run the desired graph drawing algorithm (Interface:drawGraph) and

return the modified graph elements back to TikZ for rendering (Interface:finishGraph).

Organization of the Graph Drawing Subsystem

The graph drawing engine, including the graphdrawing library, the Lua framework, and spe-

cial-purpose libraries such as graphdrawing.force, resides in /generic/pgf/graphdrawing

inside the PGF directory tree. Its directory structure is split up into core functionality and algo-

rithms. The core consists of TikZmacros and syntax additions, located in core/tikzlayer, a set

of PGF basic layer macros in core/basiclayer as well as the Lua interface and framework with

its classes, residing in core/lualayer. The algorithms tree contains a directory for each fam-

ily of algorithms, e.g. algorithms/force for force-based algorithms and algorithms/trees for

tree algorithms. Each of these directories includes a file representing the TikZ library for the

family, called pgflibrarygraphdrawing.〈family〉.code.tex by convention. This file imple-

ments the TikZ options necessary to select and configure the graph drawing algorithms associ-

ated with the family. The algorithms themselves are stored in scripts that are required to follow

the pgfgd-algorithm-〈algorithm〉.lua naming scheme.

New algorithms or algorithm families do not need to be added to /generic/pgf/graphdrawing.

Instead, they can be developed and stored anywhere in the TEXMF tree. The only requirement

is for the corresponding filenames to match the filename naming schemes explained above.
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2.3.2 Interface for Graph Drawing Algorithms

Extending the graph drawing engine by new algorithms is a process that involves two steps.

First, the algorithm needs to be made available to TikZ users by adding the necessary TikZ op-

tions to the pgflibrarygraphdrawing.〈family〉.code.tex file. This includes a definition of

the algorithm itself as well as graph, node and edge options to configure the algorithm and the

drawings it produces. The second step is to add a script that actually implements the algorithm.

For an algorithm family 〈family〉 and an algorithm 〈algorithm〉, the name of this script would

be algorithms/〈family〉/pgfgd-algorithm-〈algorithm〉.lua.

Defining Options for Selecting and Configuring Algorithms

In TikZ, options are stored in a key-value tree that is in some ways similar to the directory tree

on UNIX systems. This allows to separate options into different branches or namespaces and

evaluate only parts of the entire key-value tree on demand. General TikZ options like draw,

red or decoration are stored inside /tikz, while options introduced by the graphs library

are located inside /tikz/graphs. All options related to graph drawing are stored in /graph

drawing.

The main problem with TikZ options is that they are only available in TikZ/PGF and need to

be transfered to Lua in a way that allows algorithms to access them easily. The graph drawing

engine solves this by making /graph drawing options available in TikZ graphics using a tech-

nique called key-forwarding and by filtering all options related to graph drawing using special

key handlers—macros that are executed whenever an option is set. Graph drawing specific op-

tions set for graphs, nodes and edges are forwarded to the Lua framework where they are stored

in associative arrays in the corresponding graph, node and edge objects.

In order to give a basic understanding of how the declaration of algorithms and options works,

the below example demonstrates this for a simple algorithm that places nodes on a circle and

optionally allows nodes to be moved to a virtual circle with a different radius.

\pgfgdset{
circular layout/radius/.graph parameter=evaluate math expression,
circular layout/radius/.parameter initial=2cm,
circular layout/node radius/.node parameter=evaluate math expression,

}
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\pgfgddeclarealgorithmkey
{flexible circle} % the TikZ algorithm name
{circular layout} % the family whose options to evaluate
{

algorithm=flexible circle, % the actual name of the algorithm
}

Once the options for an algorithm like flexible circle are set up, the algorithm can be se-

lected and configured in TikZ graph drawings:

\tikz \graph [flexible circle] {
1 [flexible circle={node radius=2cm}],
subgraph K_n[n=5]

};
1

2
3

4
5

Implementing Algorithms in Lua

The second step of adding a new algorithm for automatic graph drawing in TikZ is to actually

implement it using the Lua scripting language. TikZ makes this easy by automatically detect-

ing new algorithms after they have been dropped into the TEXMF directory tree in the form of

a pgfgd-algorithm-〈algorithm〉.lua script. Here, 〈algorithm〉 is the same string that would

be passed to the /graph drawing/algorithm option, except that spaces are replaced by dashes.

Thus, when an algorithm such as algorithm=flexible circle is used in TikZ, the graph draw-

ing engine will attempt to load pgfgd-algorithm-flexible-circle.lua and run the algo-

rithm implemented in this script.

In its Lua script, every algorithm is required to implement a special function that is used as an

entry point and is called whenever the algorithm needs to be executed. The name of this func-

tion is once again the name passed to /graph drawing/algorithm, although this time spaces

and dashes are replaced by underscores. The resulting basic structure of every graph drawing

algorithm in TikZ is shown below.

pgf.module('pgf.graphdrawing')

function graph_drawing_algorithm_〈algorithm〉(graph)
...

end
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The first line imports the pgf.graphdrawing module and makes all core classes and functions

available in the script. The graph_drawing_algorithm_〈algorithm〉 function is where the al-

gorithm logic is implemented. This function is called whenever a graph needs to be arranged

with the algorithm. It receives an instance of the Lua Graph class that represents the TikZ graph

created by the user. Its task is to assign every node in the graph a position consisting of x- and
y-coordinates.

The pgf.graphdrawing module provides a number of useful classes for working with graphs,

ranging from the base Graph class to powerful iterators, a callback-based depth-first-search im-

plementation, several standard graph algorithms and data structures such as a priority queue.

Of course, the central classes are Graph, Node and Edge, which can be used to traverse the nodes

and edges of the input graph, read and generate TikZ options and create auxiliary copies of the

graph. The following example demonstrates how the flexible circle algorithm can be im-

plemented using a simple node traversal. It also shows how to use the node.pos:set method

to change the coordinates of individual nodes.

pgf.module("pgf.graphdrawing")

function graph_drawing_algorithm_flexible_circle(graph)
local radius = tonumber(

graph:getOption('/graph drawing/circular layout/radius')
)

local alpha = 2 * math.pi / #graph.nodes
local i = 0

for node in table.value_iter(graph.nodes) do
local node_radius = tonumber(

node:getOption('/graph drawing/circular layout/node radius')
or radius

)

node.pos:set{
x = node_radius * math.cos(i * alpha),
y = node_radius * math.sin(i * alpha)

};

i = i + 1
end

end

All algorithms start from this basic structure with the goal to assign coordinates to all nodes in a

way that satisfies a number of drawing conventions, aesthetic criteria and visual constraints. As
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wewill see in the following chapters, algorithmsmay implement arbitrarily complex placement

strategies based on the Lua classes provided by the graph drawing engine. In order to focus on

the contributions made as part of the thesis, not all classes and features of the graph drawing

framework are discussed further in this chapter. Note, however, that the TikZ/PGF manual

includes tutorials on implementing new algorithms and also provides extensive documentation

on how to use the fundamental classes provided by Lua.

2.4 Contributions to TikZ in the Course of this Thesis

This section highlights some of the features I added to the graphs library and graph drawing

subsystem while working on the thesis.

2.4.1 Graph Drawing Algorithms

Despite contributing many changes to the graph drawing subsystem, mymain efforts went into

researching and implementing the graph drawing algorithms presented in the following two

chapters. Overall, the following algorithms were added: a simple algorithm for drawing arbi-

trary trees (whetherell tree), a spring algorithm (Hu2006 spring), two spring-electrical al-

gorithms (Hu2006 spring electrical and Walshaw2000 spring electrical), an algorithm

framework for layered drawings (modular layered) and several techniques for creating lay-

ered drawings.

2.4.2 Modifications and Additions to the Lua Framework

Improvements of the Core Framework

While working on the graph drawing engine and the graph drawing algorithms presented in

this thesis, I made several modifications to existing Lua classes and added a few useful classes

as well.

The Graph, Node and Edge classes were modified to store nodes and edges in the order they are

declared in TikZ. An implementation of a pseudo-diameter algorithm was added to the graph

class in the form of the Graph:getPseudoDiameter function. Edge options were implemented

in the TikZ and Lua layers as well as optional bend points, allowing graph drawing algorithms

to define the shape of edges. Last but not least, the Edge class was extended to allow edges
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to be reversed. All methods affected by this were modified to honor reversed edges, includ-

ing the node methods Node:getInDegree, Node:getOutDegree, Node:getIncomingEdges and

Node:getOutgoingEdges and edge methods like Edge:getHead, Edge:getTail, Edge:isHead

and Edge:isTail.

A class that I added to manipulate the positions of nodes is the Vector class, which provides

a powerful interface for managing vectors of arbitrary length, including support for vector

operations such as adding (Vector:plus, Vector:plusScalar), subtracting (Vector:minus,

Vector:minusScalar), dividing (Vector:dividedBy, Vector:dividedByScalar), multiplying

(Vector:timesScalar, Vector:dotProduct) and working with vector norms (Vector:norm,

Vector:normalized). Like many other classes and functions in the Lua graph drawing frame-

work, the Vector class is inspired by functional programming. In addition to typical vector

operations, it provides methods Vector:update and Vector:limit that can be used to update

or limit the elements of a vector using callback functions that receive an existing index and el-

ement and return a new value for this pair. The Vector class also supports setting a reference

or origin vector with the Vector:setOriginmethod.

Another notable class added to the graph drawing framework is DepthFirstSearch, which pro-

vides a general-purpose interface to writing iterative depth-first search algorithms. Depth-first

search is very simple to implement using recursive function calls. However, if implemented iter-

atively—which has the benefit of avoiding stack overflows—depth-first search requires manual

stack management. Combined withmanual tracking of the traversal status, this oftenmakes al-

gorithms require more code, and thereby, harder to understand. The DepthFirstSearch class

provides a simple interface for pre-order and post-order algorithms based on depth-first search.

All that algorithms need to specify are an initialization function, a visit function and a complete

function. These functions are called at the beginning of the depth-first search, whenever a node

is visited for the first time andwhen all its children in a directed graph or tree have been visited,

respectively. The code snippet below shows how such an algorithm would be implemented.

local function initialize(dfs)
-- push initial items to the DFS queue using dfs.stack:push(item)

end

local function visit(dfs, node)
-- a node is visited for the first time; push children to the DFS stack

end

local function complete(dfs, node)
-- post-order call; all children of the node have been completed

end

DepthFirstSearch:new(initialize, visit, complete):run()
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While working on the graph drawing algorithms, a number of other, mostly special-purpose

classes were added to the Lua framework. These include a PriorityQueue implementation

based on new new FibonacciHeap class as well as the classes CoarseGraph, QuadTree, Ranking

and NetworkSimplex, whose purpose will become clear when reading the following chapters.

New Iterators and Helper Functions

As mentioned before, the Lua graph drawing framework is strongly influenced by functional

programming. The result of this can be seen when looking at the various iterators and helper

functions that were added to it as part of my work.

In Lua, an iterator is a function that has knowledge about an underlying data structure. If called

multiple times, e.g. in a loop, it yields the elements of this data structure one by one. Lua only

has one complex data structure called table that is used for flat arrays, associated arrays and

objects alike. As a result, all iterators in Lua serve the purpose of looping over the indices, keys,

values or pairs of such a table.

The following functions were added to the Lua graph drawing framework to generate itera-

tor functions for tables: table.value_iter, table.key_iter, table.reverse_value_iter,

table.randomized_value_iter, table.randomized_pair_iter. These iterators created can

bemodified on the fly using filter andmapping functions that are appliedusing theiter.filter

and iter.map functions.

Modifying tables in graph drawing algorithms has become easy thanks to the addition of func-

tions such as table.filter_keys, table.filter_values and table.filter_pairs for filter-

ing table values; table.combine_values and table.combine_pairs for mapping the values or

key-value pairs of a table to a single value; table.map, table.map_keys, table.map_values,

table.map_pairs to copy a table and map its data to something else;table.remove_values,

table.remove_pairs, table.update_values, table.reverse_values to change the content

of a table itself; or table.merge_custom and table.copy_custom to merge and copy tables

along with the object metadata associated with it.

Other helpers added to the framework include algorithms such as algorithm.dijkstra, based

on the PriorityQueue class, and algorithms.classify_edges, which performs a depth-first

search in a directed graph and classifies edges into forward, cross and back edges. There is also

a traversal module featuring a traversal.topological_sorting iterator function that allows

to traverse the nodes of a directed graph in topological order. Many algorithms need to remove

loops and merge multiple edges before they can process the graph. The manipulation module

provides functions such as manipulation.remove_loops and manipulation.restore_loops

to do this and revert it at a later stage.



Contributions to TikZ in the Course of this Thesis 25

2.4.3 Newly Added TikZ Options

Options for Changing the Orientation of Algorithmically Generated Drawings

An alternative drawing orientation to that produced by graph drawing algorithms—such as

the ones explained in the following chapters—is often desired. Sometimes, the majority of

edges in a graph are supposed to point in a specific direction, e.g. from left to right. In other

situations, a node is expected to appear to the left of or above another node. For this pur-

pose, the /tikz/graphs/orient=〈orientation〉 and /tikz/graphs/orient'=〈orientation〉

options were created. They are implemented as a post-processing step performed at the end of

Interface:drawGraph and are thus automatically applied whenever Lua graph drawing algo-

rithms are used.

The 〈orientation〉 defines an axis consisting of two nodes and a rotation angle. It may can be

specified using one of the following three notations:

1 The 〈first axis node〉-〈second axis node〉 syntax will rotate the drawing so that the

node with the internal name 〈first axis node〉 is positioned left of 〈second axis node〉

parallel to the x-axis.
2 〈first axis node〉|〈second axis node〉will adjust the orientation of the drawing so that

〈first axis node〉 appears on top of 〈second axis node〉 in parallel to the y-axis.
3 The third notation, 〈first axis node〉:〈angle〉:〈second axis node〉 allows a custom an-

gle to be used for the axis created via the two nodes.

The /tikz/graps/orient' option provides the same functionality and syntax but causes the

drawing to be flipped over the axis. The use of these two options is illustrated below.

\tikz \graph [spring layout,orient=a-b]
{ a -- b -- c -- d -- a };

\tikz \graph [spring layout,orient=a|b]
{ a -- b -- c -- d -- a };

\tikz \graph [spring layout,orient=a:45:b]
{ a -- b -- c -- d -- a };

a b

cd a

b c

d

a

b

c

d

\tikz \graph [spring layout,orient=a-b]
{ a -- b -- c -- a };

\tikz \graph [spring layout,orient'=a-b]
{ a -- b -- c -- a };

c

a b c

a b
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2.4.4 Graph Macros and Placements

The Grid_n standard subgraphwas added to the graphs.standard library. It takes two parame-

ters, /tikz/graphs/n=〈N〉 and optionally /tikz/graphs/wrap after=〈C〉, and creates a mesh

of 〈N〉 nodes, which is something I needed for testing the spring and spring-electrical algorithms

presented in chapter 3. These nodes are connected so that the resulting mesh has 〈C〉 columns.

If wrap after is not set, the macro attempts to create a b
√
〈N〉c × b

√
〈N〉c mesh. See below for

an example demonstrating the use of the Grid_n subgraph.

\tikz \graph [grid placement] {
subgraph Grid_n [n=6,wrap after=2]

};
\tikz \graph [grid placement] {

subgraph Grid_n [n=6,wrap after=3]
};
\tikz \graph [grid placement] {

subgraph Grid_n [n=6,wrap after=4]
};

1 2

3 4

5 6

1 2 3

4 5 6

1 2 3 4

5 6

In addition to this, a grid placement strategywas implemented in the graphs library using TEX

macros. It places nodes in a N ×M grid and is useful even though it is not as powerful as some

of the graph drawing algorithms. The number of columns M is either set to wrap after, if this

option is set, or is computed automatically as b
√
|V(G)|c, where V(G) is the set of nodes in the

graph. N is the number of rows needed to lay out the graph in a grid with M columns. The grid

placement strategy can be used to drawmesh graphs and non-mesh graphs alike, as the follow-

ing example demonstrates. Note that for this placement to work, the option /tikz/graphs/n

always needs to be set.

\tikz \graph [grid placement] {
subgraph I_n[n=6, wrap after=3]

};
\tikz \graph [grid placement] {

subgraph Grid_n [n=9]
};
\tikz \graph [grid placement] {

[n=6, wrap after=3]
a -- b -- c -- d -- e -- f

};

1 2 3

4 5 6

1 2 3

4 5 6

7 8 9

a b c

d e f
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Force-Based Graph Drawing

Algorithms for Arbitrary Graphs

This chapter covers force-based drawings of directed and undirected graphs and presents the

algorithms implemented as part of this thesis. An example of a drawing produced by one of

these algorithms is shown below, along with the corresponding TikZ syntax.

\tikz \graph [spring electrical layout] {
1 -> 2 -> 3 -> 4,
1 -> 5 -> 6,
6 -> 7,
6 -> 8,
1 -> 8,
6 -> 3,
4 -> 2,

};

7

8

3
4

62

5
1

The discussion of algorithms for generating force-based layouts starts off with an introduction

and background information section 3.1. This is followed by a presentation of the three algo-

rithms implemented in the thesis, split across sections 3.2 and 3.3. Section 3.2 describes the

general structure and building blocks of the spring and spring-electrical algorithms by Hu [31]

and Walshaw [51 and 52]. Section 3.3 goes on to discuss the details and differences of these al-

gorithms as well as their implementation in TikZ. The chapter closes with section 3.4 describing

the various options added to TikZ for generating and fine-tuning spring and spring-electrical

layouts.
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3.1 Introduction to Force-Based Graph Drawing

Force-based or force-directed methods are a family of algorithms that simulate physical forces in

order to produce visually appealing and balanced drawings of graphs. They are general-purpose

methods in that they can be used to draw undirected and directed graphs alike. The two central

aspects of these methods are the choice of the force model and the minimization of the overall

system energy from which the final graph layout is derived. Researchers have experimented

with simulating a variety of forces, ranging from spring forces to forces in an electric or mag-

netic field. A general introduction to force-based methods and an overview of various related

techniques is given in [12].

The basic idea of a popular and often implemented force-based method is to arrange graphs by

simulating the movements caused by attaching springs between pairs of nodes. The algorithm

by Kamada and Kawai [35] connects all pairs of nodes with springs whose desired equilibrium

length is set to be proportional to the graph distance of these nodes. Each spring is associated

with a spring force that compresses or extends the spring depending on its actual length. De-

pending on whether two nodes are positioned too far apart or too close to each other, this force

will either pull them closer to together or push them apart. A modification of this idea was

developed by Eades [15], Fruchterman and Reingold [21]. In their algorithms, springs are only

attached to pairs of nodes that are connected by an edge. In addition to this, all nodes are mod-

eled as electrically charged particles or metal rings. While the spring force attempts to hold

connected nodes at a certain distance, the electric charge induces an electric force between all

pairs of nodes that has an attractive or repulsive effect, depending on its polarity. The drawings

resulting from these two approaches are similar but differ in some aspects, as we will see later.

In graph drawing literature, spring methods based on the above ideas are referred to as spring

algorithms and spring-electrical algorithms, the latter incorporating the electric forces by Eades,

Fruchterman and Reingold. The generated drawings are sometimes called spring layouts and

spring-electrical layouts. The term spring embedder is also popular andmay refer to both concepts.

Throughout this thesis the terms spring algorithm/layout and spring-electrical algorithm/lay-

out are used consistently. The spring and electric forces are commonly—and somewhat mis-

leadingly—called attractive forces and repulsive forces. The terms spring force and electric force

are more accurate and thus replace common terminology in this chapter.

There aremany reasonswhy spring and spring-electricalmethods are popular in graph drawing

literature and applications. One of theirmain advantages is that they are easy to understand due

to their physical analogies and simple structure. Furthermore, they are known for producing

good results with evenly distributed nodes, uniform edge lengths, and high degree of symmetry

for small andmedium-sized graphs. They also have the tendency to draw identical substructures
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in a visually similar way, which is important when drawing grid-like graphs. Last but not least,

several types of constraints can be implemented easily, including fixed node positions and node

clusters [12].

The main disadvantages of spring and spring-electrical methods are poor running times and

convergence towards local but not global energy minima. Minimizing the total system energy

is an iterative process whose performance depends on the running time of the force computa-

tion at each step and the speed at which the solution converges towards the equilibrium state.

Computing all electric forces in the spring-electrical system and moving nodes accordingly re-

quires all pairs of nodes to be visited at least once. This is known asN-body simulation in physics.

Solving it accurately requiresO(|V(G)|2) operations. The overall convergence of the simulation

depends on many factors and is commonly estimated to be in the order ofO(|V(G)|) iterations.
Overall, this implies a running time of O(|V(G)|3), which is problematic as soon as graphs be-

come larger. The other problem of spring and spring-electrical approaches is that systems of

forces typically have many local energy minima, in particular so with large graphs. Starting

from a random initial layout, a spring or spring-electrical algorithm is likely to settle for such a

local but not global minimum and thereby produce a layout of lower quality.

Various techniques have been proposed to overcome these problems. Fruchterman and Rein-

gold use a grid-variant algorithm that divides the plane into a grid of squares and only computes

electric forces between nodes in nearby squares. This method is claimed to have a linear time

complexity instead of a quadratic one if nodes are distributed uniformly on the grid [21]. A

modified version of this approach was adopted in [51 and 52]. Fruchterman and Reingold also

suspect that the cooling scheme used to reduce movements gradually over time—a mechanism

to avoid infinite execution—is worth tuning in order to reduce the running time of spring and

spring-electrical algorithms. Hu argues that the grid-variant algorithm ignores long-range elec-

tric forces and is unable to distribute far awaynodes evenly. He instead proposes to approximate

electric forces with the quadtree algorithm presented by Barnes–Hut [2 and 31], reducing the

time complexity toO(|V(G)| log |V(G)|).

A popular strategy to avoid the problem of local minima is to apply amultilevel approach where

the input graph is reduced to coarser and coarser graphs until its size falls below a certain

threshold. The coarsest graph is then processed with a regular spring or spring-electrical al-

gorithm that simulates the node movements step by step. Afterwards, the coarsening steps are

reverted one by one while interpolating node positions from the previous layout and applying

the spring or spring-electricalmethod once again at each of these steps. This approach is similar

tomoving whole parts of the graph at once and has been used successfully in graph partitioning

before [30]. Fruchterman and Reingold suspect that the choice of force functions may have an



30 Force-Based Graph Drawing Algorithms for Arbitrary Graphs

impact on the convergence towards a global minimum as well. They state that some of them

may be better suited to overcome local minima than others [21].

3.2 Common Structure and Elements of Spring and

Spring-Electrical Algorithms

In the course of the thesis, the algorithms presented in [21, 31, 35 and 51] were investigated. I

chose to implement the spring and spring-electrical algorithms by Hu [31] and the spring-elec-

trical algorithm by Walshaw [51] as they looked most promising and are documented well. My

implementation of theWalshaw algorithm, however, differs from the original idea in that it em-

ploys the same multilevel approach and force approximation used in the Hu algorithms. This

makes the algorithms almost identical in structure and emphasizes the effects that the few dif-

ferences have on the layouts produced. These differences include the choice of force functions,

the way tomove nodes along a force, the cooling scheme, and the initial layout as well as scaling

parameters. In this section, the structure and building blocks that all three algorithms have in

common are presented.

3.2.1 Forces in Spring Algorithms

In the spring model by Kamada and Kawai [35], springs are attached to any pair of nodes. The

scalar spring force is defined so that it satisfies Hooke's law, which requires the force to be

proportional to the distance between the corresponding nodes.

Hooke's law expresses the restoring spring force as

Fs = −Cs(l − k) (3.1)

whereCs is called the spring constant that encodes thematerial stiffness and l−k is the difference
between the actual length l and equilibrium length k of the spring. Applied to spring graph

drawing algorithms, a natural choice for the spring force fs is

fs(u, v) = −Cs (||xu − xv|| − k · d(u, v)) , {u, v} ∈ S(G) (3.2)

where xu and xv are positions of the nodes u and v on the plane and d(u,v) denotes the graph
distance between u and v. S(G) refers to the set of springs attached to nodes in the graph G.

In this model, the factor k describes the desired length of a single edge on the shortest path

between u and v rather than the equilibrium length of the spring itself.
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3.2.2 Forces in Spring-Electrical Algorithms

In the spring-electrical model by Eades [15], Fruchterman and Reingold [21], edges are mod-

eled as springs that aim at keeping their end nodes at an equilibrium distance. In addition to

this, nodes are regarded as electrically charged particles. The corresponding spring and elec-

tric forces are defined so that they satisfy Hooke's and Coulomb's laws, which require the spring

force to be proportional to the distance between two end nodes and the electric attraction or

repulsion of two nodes to be inversely proportional to the square of their displacement.

The Coulomb force of two charged particles is given by

Fe = Ce
q1q2

r2 (3.3)

with Ce encoding properties of the space and q1, q2 representing the electric charge of two par-

ticles; r is the distance between these two particles. Applied to spring-electrical graph drawing

algorithms, a natural choice for the spring force fs and the electric force fe is

fs(u, v) = −Cs (||xu − xv||) − k) , {u, v} ∈ S(G), (3.4)

fe(u, v) = Ce
weight(u) · weight(v)

||xu − xv||2
, u 6= v ∧ u, v ∈ V(G) (3.5)

where xu and xv are positions of the nodes u and v on the plane and the weights of u and v are

used to represent their electric charge. S(G) once again is the set of springs in the graph—in this

case between pairs of adjacent nodes. This similar to what Eades and Di Battista et al. propose

in [12 and 15].

Given these functions, the combined force on a node u can be expressed as

f (u) =
∑

v∈V(G)
u 6=v

fe(u,v) xv − xu
||xv − xu||

+
∑

{u,v}∈S(G)
fs(u,v) xv − xu

||xv − xu||
(3.6)

which turns the scalar forces fs and fe into vector forces and gives the overall force a direction.

Note that if we set fe(u,v) = 0 for all u,v ∈ V(G), the same formula can be used for the combined

force in spring algorithms.

3.2.3 The Problem of Overlapping Nodes

In order to avoid overlapping nodes, most implementations of spring and spring-electrical al-

gorithms use a simple trick. If two nodes are located at the same position, one of them is tem-

porarily displaced by a small random amount. This usually has a strong repulsive effect that will

push the two nodes apart. All algorithms implemented in this thesis support this feature.



32 Force-Based Graph Drawing Algorithms for Arbitrary Graphs

Another problem is that the above force function disregard the size of nodes. This is fine if nodes

are uniformly sized and the natural spring dimension k is chosen large enough. In practical

scenarios where nodes may contain numbers, words as well as entire paragraphs of text, the

former is often not the case. In such graphs with arbitrarily sized nodes, disregarding the size

may introduce undesired overlaps. To overcome this problem, several advancedmethods haven

been proposed [24, 29 and 34]. Straight-forward extensions of fs, fe and f that take the shape of
nodes into account are also possible. The algorithms implemented in this thesis ignore the node

size, leaving solutions up to future development. Possible approaches are described in chapter 6.

3.2.4 Multilevel Algorithm Structure

The common structure of the three algorithms implemented in the thesis is a result of using the

same iterative force simulation approach andmultilevel technique in order to avoid settling for

local minima. This technique consists of the following steps:

1 Iterative graph coarsening

2 Computation of an initial force-based layout

3 Iterative graph expansion and force-based layout refinement

In the coarsening phase, the input graph is repeatedly reduced to coarse graphs G1, . . .,Gl,

whereG1 is the input graph andGl is first graphwhose number of nodes reaches or drops below

the threshold min size. Several techniques to reduce the number of nodes are discussed in [31

and 51]. Walshaw proposes to collapse amaximal set of independent edges inGi to generate the

next coarse graph Gi+1. A graph partitioning algorithm by Hendrickson and Leland [30] is used

to find a maximal edge matching and collapse these edges. The weights of the two end nodes of

each collapsed edge are merged and their weights are summed up. In a similar way the weights

of edges adjacent to both end nodes of a collapsed edge are updated. The maximal matching is

constructed by visiting unmatched nodes in random order and picking the edge that connects

them to an unmatched neighbor with minimum weight.

A similar coarsening technique is adopted by Hu [31]. The only difference is that the maximal

matching is constructed by selecting heavy edges rather than edges to light neighbors. Hu com-

pares this technique to a method that uses the nodes of a maximum independent vertex set for

the next coarse graph. An implementation of both methods is intended in TikZ; however, at

the time of writing only collapsing edges is implemented as it tends to produce slightly better

results [31]. The light-vertex matching method proposed by Walshaw is not implemented as it

is stated to produce similar results [31].
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Once all coarse graphs have been generated, the coarsest graph Gl is laid out randomly. Even

though the initial layout has a strong impact on the size and edge lengths in the final drawing,

neither Hu nor Walshaw specify how exactly it is to be generated. After some experimentation

with different random layout generators, it became obvious that the Hu2006 and Walshaw al-

gorithms react different to the initial with regards to scaling. The TikZ implementation of the

three algorithms includes various modifications to cope with these differences and to produce

drawings with similar size and edge lengths.

After the initial random layout has been computed, the regular spring or spring-electrical algo-

rithm is applied to the coarsest graph. Hu and Walshaw present different variations of such an

algorithm, which are explained in sections 3.3.2, 3.3.1 and 3.3.3. These variations are similar in

structure but differ mainly with regards to the force and cooling functions being used.

Following this initial layout, the coarsening steps are reverted step by step. When the graph

Gl−1 is reconstructed from Gl, the positions of nodes in Gl−1 are interpolated from the corre-

sponding supernodes in Gl. Usually, all nodes u ∈ V(Gl−1) that correspond to a node v ∈ V(Gl)
are assigned the same coordinate as v. After reconstruction, a spring or spring-electrical layout
is computed for the coarse graph Gl−1, applying the same force-based algorithm that is used

to arrange the initial layout. This procedure—graph expansion and force-based layout refine-

ment—is repeated for each coarse graphGl−2,Gl−3, . . .,G1. Themultilevel algorithm returns the

final layout computed for the graph G = G1.

If the coarsening is disabled, only step 2 is performed, that is, an initial random layout is com-

puted followed by the regular force-based algorithm. This multilevel structure that all three

algorithms implemented have in common is shown as pseudocode in listing 3.1. The differences

are the computation of the random initial layout, the choice of the spring force fs, the electric
force fe, the nodemovementMOVE-NODE-ALONG-FORCE, and the step size control UPDATED-STEP-SIZE.

3.2.5 Approximation of Electric Forces

In order to reduce the running time required to compute electric forces in the system, Hu [31]

uses the tree-based quadtree algorithm proposed by Barnes and Hut [2]. Walshaw employs a

different technique based on ideas by Fruchterman and Reingold [21]. The TikZ spring-elec-

trical implementation of the Hu and Walshaw algorithms both use the Barnes–Hut technique.

Note that, due to the absence of electric forces, this feature is not applicable and therefore not

available in the implementation of Hu's spring algorithm.

Modeling and computing physical forces in a system of particles is known as N-body simula-

tion. In order to obtain an exact solution for such a simulation, the forces between all pairs of
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Listing 3.1 Common structure of the spring and spring-electrical algorithms implemented in

this thesis. The parameters min size and min ratio are used to decide when to stop coarsening

the input graph. step size is used to control the node movements. The maximum node move-

ment is compared against the natural spring dimension k as a convergence criterion with a tol-

erance of tol.

MULTILEVEL-ALGORITHM(Gi, . . .)
1 if coarsening disabled or |V(Gi)| ≤min size or (i > 1 and

|V(Gi)|
|V(Gi−1)| ≤ 1 −min ratio) then

2 GENERATE-RANDOM-LAYOUT(Gi, . . .)
3 SPRING-OR-SPRING-ELECTRICAL-ALGORITHM(Gi, . . .)
4 else

5 Gi+1← COARSEN(Gi, . . .)
6 MULTILEVEL-ALGORITHM(Gi+1, . . .)
7 INTERPOLATE-COORDINATES(Gi+1, Gi)

8 SPRING-OR-SPRING-ELECTRICAL-ALGORITHM(Gi, . . .)

SPRING-OR-SPRING-ELECTRICAL-ALGORITHM(G, . . .)
1 converged← false

2 iterations← 0

3

4 while iterations <max iter and not converged do

5 iterations← iterations + 1
6

7 for each node u ∈ V(G) do
8 f ← ~0
9 for each spring {u,v} ∈ S(G) do
10 f ← f + fs(u, v) · (xv − xu) / ||xv − xu||

11 for each node v ∈ V(G) with u 6= v do

12 f ← f + fe(u, v) · (xv − xu) / ||xv − xu||

13

14 xu←MOVE-NODE-ALONG-FORCE(u, f , step size, . . .)
15

16 step size← UPDATE-STEP-SIZE(G, step size, . . .)
17

18 ifmaximum node displacement ≤ (k · tol) then
19 converged← true

particles need to be computed, which has a time complexity of O(N2). N-body simulations are

often used for analyzing systemswithmany particles. A popular application is the calculation of

gravitational forces in planetary systems and the prediction of movements of objects in space.

To perform simulations of large systems a feasible running time, Barnes and Hut propose an

algorithm that approximates electric forces in O(N log N) time. Its basic idea is to represent
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the mass distribution of the system as a hierarchical tree structure of cells, each of which holds

either a single particle or a list of subcells together with cumulated information about the total

mass and gravitational center of particles in the subcells. The hierarchical cell structure is con-

structed as follows. First, an empty root cell is created that is large enough to contain all nodes.

Particles representing the individual nodes are inserted one by one. As soon as a cell contains

more than one particle, it is divided into four uniformly sized subcells. Its particles are moved

into these subcells according to their position. If this process is continued until all particles

have been inserted, the resulting cell hierarchy will have only empty inner cells with subcells

and leaf cells to hold at most one particle. In a final step, the total masses and centers-of-mass

are propagated and cumulated from the leaf cells up to the root cell such that every cell is tagged

with the total mass and center-of-mass of its cell hierarchy.

Given this construction, the force on a particular node is approximated by collecting cells from

the hierarchy in an interaction list. Instead of computing the electric force between the node

and all other nodes, only the repulsion caused by cells in this interaction list—which has an

average size of log|V(G)|—is taken into account. The interaction list is allocated empty and is

filled using a recursive traversal of the cell hierarchy, starting at the root cell. Barnes and Hut

propose the following criterion for choosing which cells to add to the list. Let l be the length of

the cell currently being processed and D the distance between the cell's center-of-mass and the

node particle p. The cell is added to the interaction list if it is a leaf or if l / D < θ where θ is

a parameter to control the accuracy of the approximation. Cells that do not meet this criterion

are resolved into their four subcells, each of which is recursively examined in the sameway. The

construction of the cell hierarchy as well as the force approximation are illustrated in figure 3.1.

Figure 3.1 Construction of hierarchical cells in the Barnes–Hut algorithm. (i) shows an almost

uniform distribution of equally weighted particles on the plane. The cell hierarchy created for

this distribution is illustrated in (ii). (iii) demonstrates which of the cells are used to compute

forces on particle v along with the number of particles they represent. The higher the number

the more computations are saved.
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Due to its approximative nature the Barnes–Hut algorithm may compute forces inaccurately

and therefore result in drawings of lower quality. The effects are critical with small graphs in

particular where deviations from perfect layouts may easily disturb authors and viewers alike.

However, this optimization can lead to significant speedups and thus becomes valuable when

laying out large graphs.

3.3 Spring andSpring-Electrical Algorithms Implemented forTikZ

In this section, the algorithms written for TikZ are discussed in detail, including a coverage of

implementation details and modifications. All algorithms are based on the multilevel struc-

ture and common elements presented in the previous section. Thus, only the differences are

described here.

3.3.1 Hu's Spring-Electrical Algorithm

Choice of Spring and Electric Forces

The algorithm presented by Hu [31] is based on the spring-electrical model. Inspired by earlier

work of Fruchterman and Reingold [21], Hu defines the forces as

fs(u, v) = ||xv − xu||
2

k
, (3.7)

fe(u, v) = −Ck2

||xv − xu||
. (3.8)

These forces bare little resemblance to those given by Hooke's and Coulomb's law (formula 3.4)

at first sight. This is because they already incorporate and compensate the interaction of at-

traction and repulsion. The forces fs(u,v) and fe(u,v) cancel each other out exactly if the nodes

u and v have the desired distance k and C = 1.

Drawings generated by spring-electrical algorithms suffer from peripheral distortion, meaning

that in the periphery tend to be closer to each other than nodes in the center. This becomes

particularly visible with mesh-like structures in the form of a magnifier effect. Hu provides

an in-depth analysis of this problem, identifying strong long range electric forces as the main

reason for the distortion. To overcome this, he proposes a general electric force model defined

as

fe(u, v) = −Ck1+p

||xv − xu||p
, p > 0. (3.9)
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The larger p, the weaker the long range electric force and therefore the peripheral distortion.

This model is an generalization of the previous definition of fe, which is obtained by setting

p = 1.

The consideration of node weights and Barnes–Hut cell masses when computing the force be-

tween either two nodes or a node and a cell is important for the system energy optimization

to work properly. Throughout [31], node weights are assumed to be 1. This implies that the

mass of a Barnes–Hut cell is the number of nodes it contains. Inspired by Walshaw, I decided to

support arbitrary node weights by including the node weight and cell mass in fe as a factor:

fe(u, v) =
−C · weight(v) · k1+p

||xv − xu||p
, p > 0. (3.10)

When using the Barnes–Hutmethod,weight(v) is replaced with themass of individual cells used

to approximate the electric forces on u. In this case, the mass of a cell is defined as the sum of

weights of the nodes contained in the cell and all its subcells. Instead of xv, the center-of-mass of

the cell is used. Thismodification also allowsusers to specifyweights for individual nodes, which

is useful in situations where nodes need to be isolated visually. Note that, unlike in formula 3.4,

only the weight of v needs to be included in fe(u,v) since the electric force between u and v is

computed twice—the second time as fe(v,u), which includes the weight of u.

Node Movement

Once the total force f on a node u has been computed (line 8–12 in listing 3.1), the node is

moved along this force. The force itself is a two-dimensional vector with a direction and a

length, the latter of which represents the strength of the force. One would expect that this

strength is reflected in the node's movement. Surprisingly, Hu chose to move all nodes by the

same amount—step size—and interpret the force only as a direction vector [31]. Thus, in Hu2006

spring electrical, the node movement is implemented as follows.

MOVE-NODE-ALONG-FORCE(u, f , step size)
1 return xu + step size · f / ||f ||

Again, this implies that despite forces of varying strength, all nodes are moved by the same

amount. In [31], Hu provides no reasons or evidence for this decision.

Step Size Control and Convergence

Nodes are moved by the amount specified using the step size step size. In order to reducing the

movements over time and converge towards aminimum energy layout, this step size is updated
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after every iteration (line 16 in listing 3.1). This is called cooling. The cooling function by which

step size is updated needs to support escaping local minima as well as a quick convergence of

the algorithm. Many techniques are discussed in [21] including simulated annealing, sintering,

simmering, and quenching.

Huuses twodifferent cooling functions [31]. In the refinement phase of themultilevel algorithm

a simple scheme is employed where step size is gradually reduced by a cooling f actor < 1 until

it is zero:

UPDATE-STEP-SIZE(step size, cooling f actor)
1 return step size · cooling f actor

Hu proposes to set cooling f actor = 0.9, which is stated to be adequate enough if the layout to

be refined is not entirely random.

When applying the regular spring-electrical algorithm to a random initial layout, however, a

more advanced adaptive coolingmethod is employed. Its central idea is to keep the step size un-

changed if the total system energy is being reduced once but to increase the step size after five

consecutive improvements. The step size is reduced only if the energy increases. This adap-

tive method requires a modification to the energy optimization loop (lines 4–16 in listing 3.1).

Three variables are introduced, called progress, energy prev, and energy that hold the number

of consecutive improvements and the computed system energy after the previous and current

iteration, respectively. These variables are passed to UPDATE-STEP-SIZE, which looks as follows.

UPDATE-STEP-SIZE(step size, progress, cooling f actor, energy prev, energy)
1 if energy < energy prev then

2 progress← progress + 1
3 if progress ≥ 5 then

4 progress← 0
5 step size← t / cooling f actor
6 else

7 progress← 0
8 step size← step size · cooling f actor
9 return step size, progress

The total system energy is defined as the squared sum of the combined forces (3.6) on all nodes

energy =
∑

u∈V(G)
f 2(u). (3.11)

and is computed along with the forces and movements.
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Hu further states that a suitable choice of the natural spring dimension k and the constant C is

helpful in converging towards a minimum energy layout. Ideally, these parameters reflect the

scaling and node distances in the initial layout. Throughout [31], C is fixed at C = 0.2 while k is
held variable.

Initial Layout and Scaling

InHu's spring-electrical algorithm, the initial layout is generated randomly. No details are given

about the scaling of this initial layout. A common technique used in [21 and 51] is to generate

a random initial layout and then set the natural spring dimension k to the average length of all

edges. This, however, implies that users only have indirect control over the scaling and natural

spring dimension by changing the range of the random values.

Clearly, a more intuitive and predictable approach is to choose a random distribution that re-

sults in an average node separation of k in the final layout and let the user choose k. This

is roughly what the Hu2006 spring electrical implementation in TikZ does. While exper-

imenting with a variety of initial placements I noticed that, for dense graphs like Kn, the algo-

rithm tends to generate compressed-looking drawings if the initial layout is scaled poorly. To

overcome this problem, my implementation of Hu2006 spring electrical distributes nodes

in a range that is proportional to the desired natural spring dimension k and the density of the

graph, denoted by density(G). More precisely, all random initial positions lie in an area defined

by

pos(v) = (random(−r,+r), random(−r,+r)) , v ∈ V(G) (3.12)

where r is a scaling factor proportional to the graph density:

r = 3k · density(G) ·
√
|V(G)| / 2. (3.13)

After the initial layout has been generated, the natural spring dimension specified by the user

and used for the random distribution is replaced with the average edge length in the initial

layout. Even though this choice still does not guarantee an average edge length of k in the final

drawing, it works reasonably well with dense and sparse graphs alike. If the input graph or

the coarsest graph contains only two nodes, one is placed at (0,0) while the other is placed r
apart in a random direction. This initial placement may appear somewhat artificial and other

techniques may yield even better results. However, taking the density of the input graph into

account seems to make a notable difference and is this worth to investigated further in future

research.
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When reverting the graph coarsening from a coarse graphGi to a less coarse graphGi−1, a naive

interpolation of node coordinates and application of the regular spring-electrical algorithm to

Gi−1 maydestroy useful properties inherited fromGi. In order to avoid this, Huproposes to scale

the coordinates of Gi−1 after interpolation from Gi and before applying the regular spring-elec-

trical algorithm [31]. The factor si−1 that he uses to scale the coordinates of Gi−1 is defined as

si−1 = diam(Gi−1) / diam(Gi), (3.14)

where diam(G) denotes the pseudo-diameter of a graph G, that is, an approximation of the

longest shortest path fromanynode to another. There aremanyways to compute thepseudo-di-

ameter, including such versatile methods as the one proposed by Paulino et al. [45]. My imple-

mentation of Hu's spring-electrical algorithm finds the pseudo-diameter by starting at a node u
with minimum degree. It computes the graph distances to all other nodes and from the nodes

that are farthest away it picks the node v with the smallest degree. The graph distance between

u and v is stored as the temporary pseudo-diameter. This process is repeated with v as the new

starting node until the pseudo-diameter cannot be increased further. While this algorithm fails

to always find an exact solution, it is expected to converge quickly.

3.3.2 Hu's Spring Algorithm

Choice of Spring and Electric Forces

The second algorithmbyHu [31] is based on the springmodel byKamada andKawai [35]. Springs

are attached to any pair of nodes in the graph, with the ideal distance being proportional to the

graph distance between the two nodes. This has two implications. Firstly, there is no electric

force between nodes, that is, fe(u,v) = 0 for all pairs u,v ∈ V(G). The spring force is expressed

as in formula 3.2:

fs(u,v) = ||xv − xu|| − k · d(u,v), {u,v} ∈ S(G). (3.15)

This model has no analogy for electrically charged nodes and thus, node weights are not sup-

ported by fs. The second implication is that, since there are no electric forces, the Barnes–Hut

algorithmcannot be applied, whichmeans that the runtime cannot be reduced belowO(|V(G)|2)
per iteration. Inmy benchmarks I found the standard definition of fs to work well enough to not

require any modifications.
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Node Movement, Step Size Control and Convergence

Nodes are moved exactly as in Hu's spring-electrical algorithm. Furthermore, the same cooling

schemes and convergence criteria are applied.

Initial Layout and Scaling

The initial layout generated by Hu2006 spring differs from that produced by Hu2006 spring

electrical only in terms of scaling parameters. In the experiments performed, drawings gen-

erated by Hu2006 springwere notably larger than spring-electrical layouts of the same graphs.

Thus, order to produce drawings of similar scaling, a different range is used for the random dis-

tribution in Hu2006 spring, that is, r is defined as

r = 2k · density(G) ·
√
|V(G)| / 2. (3.16)

Like in Hu2006 spring electrical, the natural spring dimension used internally is set to the

average length of edges in the initial layout once it has been generated.

3.3.3 Walshaw's Spring-Electrical Algorithm

Choice of Spring and Electric Forces

The spring-electrical algorithm presented by Walshaw [51 and 52] simulates the same electric

force as is used by Hu's algorithm (see formula 3.7). However, Walshaw's original formula al-

ready incorporate the node weight as linear factor. Like with Hu2006 spring electrical, my

Walshaw2000 spring electrical implementation of replaces this basic electric forcewith the

general electric forcemodel from formula 3.10 in order to give users control over the peripheral

distortion:

fe(u, v) =
−C · weight(v) · k1+p

||xv − xu||p
, p > 0. (3.17)

The spring force used byWalshaw differs from the one employed in [31] mainly in that the elec-

tric force between adjacent nodes is subtracted from the spring force, meaning that electric

forces only act between nodes that are not connected. Walshaw further extends the spring

force arguing that the contribution of the spring force between a node u and its neighbor v is

(||xv−xu||−k)/ |Γ(u)| in the direction of v, where Γ(u) denotes the set of neighbors of u. Another
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difference of the spring force used by Walshaw2000 spring electrical is that the deviation

from the natural spring dimension is not squared:

fs(u,v) = ||xv − xu|| − k
|Γ(u)| − fe(u,v), {u,v} ∈ S(G). (3.18)

There are two problemswith the above forces. One is that the absence of electric forces between

adjacent nodesmakes it impossible to implement an electric charge option that users can adjust

for each node. A node with high electric charge would only push non-neighbor nodes apart

while its neighbors would remain at a close distance, which would come unexpected for users.

In the implementation, this problem is worked around by not subtracting fe(u,v) if the node

u has a charge weight(u) 6= 1. The other issue is that fe(u,v) is not computed for all pairs u
and v of nodes when the electric forces are approximated using the Barnes–Hut algorithm. An

incomplete workaround for this was implemented in TikZ that only subtracts the electric force

fe(u,v) if the cell holding only v has an influence on the overall force on u. The electric force on
u caused by cells containing more than one node is assumed to be 0 in fs.

Node Movement, Step Size Control and Convergence

UnlikeHu,Walshawproposes to use not only the direction but also the strength of the combined

forces when calculating themovement of a node. In his algorithm, the step size is an upper limit

for this movement:

MOVE-NODE-ALONG-FORCE(u, f , step size)
1 return xu + f / ||f || ·MIN(step size, ||f ||)

Walshaw applies a simple conservative rather than adaptive cooling function that gradually

reduces the step size and thereby the node movement:

UPDATE-STEP-SIZE(step size)
1 return 0.95 · step size

Initial Layout and Scaling

Like Hu, Walshaw generates the initial layout randomly. My implementation ofWalshaw's algo-

rithm uses the same random value distribution as in formulas 3.12 and 3.13. The two algorithms

differ in that Walshaw scales the natural spring dimension rather than scaling the node posi-

tions when reversing the coarsening process. When interpolating the graphGi from the coarser

graph Gi+1, the natural spring dimension ki used for Gi is computed as follows:



TikZ Syntax and Options for Creating Spring and Spring-Electrical Layouts 43

ki =
√

4 / 7 · ki+1. (3.19)

For the coarsest graph Gl, Walshaw sets kl to the average edge length in the random initial

layout. To make the scaling of the generated drawings more predictable, I decided to set

kl = k /
(√

4 / 7
)l
, (3.20)

which results in a natural spring dimension k1 = k for the original input graph.

3.4 TikZ Syntax and Options for Creating Spring and

Spring-Electrical Layouts

3.4.1 Syntax to Enable Spring and Spring-Electrical Layouts

Like all families of graph drawing algorithms, implementations of force-based algorithms are

grouped in a dedicated TikZ library, called graphdrawing.force. Loaded together with the

graphs and graphdrawing libraries, graphdrawing.force makes all force-based algorithms

available to the user.

Spring layouts can be activated using the /graph drawing/spring layout TikZ option. This

applies the default spring algorithm to the graph in question:

\tikz \graph [spring layout,orient=a-d] {
{ [clique] a, b, c },
{ [clique] d, e, f },
a <-> d,

};

b

da

c e

f

The default spring algorithm is Hu2006 spring. As soon as other spring algorithms are added

to TikZ, the default algorithm used for spring layout can be changed like this:

\pgfkeys{
/graph drawing/spring layout/default algorithm=〈other algorithm〉

}

Spring-electrical layouts are created in the same manner using the /graph drawing/spring

electrical layout option as is shown below.
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\tikz \graph [spring electrical layout,
orient=a-d] {

{ [clique] a, b, c },
{ [clique] d, e, f },
a <-> d,

};

b
da

c e

f

The default spring-electrical algorithm is Hu2006 spring electrical, which can be changed

to Walshaw200 spring electrical or any other spring-electrical graph drawing algorithm by

setting the /graph drawing/spring electrical layout/default algorithm option. Both,

spring and spring-electrical algorithms may also be activated by entering their name rather

than using one of the two layout options.

\tikz \graph [Walshaw2000 spring electrical,orient=a-d] {
{ [clique] a, b, c },
{ [clique] d, e, f },
a <-> d,

};

b
da

c e

f

The spring and spring-electrical drawing algorithms are very similar in terms of their parame-

ters and the constraints they can handle. They thus share a number of common TikZ options for

fine-tuning. These options are split up into graph options that can be applied once to the entire

graph and node options that can be specified for individual nodes.

3.4.2 Common Graph Parameters

Length of Springs

One of the key parameterswith the strongest andmost predictable effect on the scaling of spring

and spring-electrical layouts is the natural spring dimension k. It defines the equilibrium length

of edges in the drawing and can be changed in TikZ using the natural spring dimension op-

tion. The following example shows how a simple graph can be scaled by changing the natural

spring dimension:

\tikz \graph
[spring layout={natural spring dimension=0.5cm},
orient=1-2] { subgraph K_n[n=4] };

1

4

2

3
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\tikz \graph
[spring layout={natural spring dimension=1.1cm},
orient=1-2] { subgraph K_n[n=4] };

1

4

2

3

Changing the natural spring dimensionmayhave unexpected side-effects such as a change in ro-

tation or nodepositions, which iswhy the above example uses the orient option to fix the orien-

tationof the twodrawings. Whenusedwith spring algorithms, thenatural spring dimension

specifies the desired length of individual edges rather than the dimension of springs, whichmay

span multiple edges if the graph distance between its nodes is greater than 1. The option is ca-

pable of parsing mathematical expressions and coordinates and is set to 1cm by default.

Step Size Update and Convergence Control

As can be seen in listing 3.1, minimizing the system energy by computing the forces and move-

ments of the nodes is an iterative process. Depending on the characteristics of the input graph

and the parameters chosen for the spring or spring-electrical algorithm, minimizing the system

energymay require many iterations. In these situations it may come in handy to limit the num-

ber of iterations. By default, the upper limit for the number of iterations is set to be 500. This

can be changed, however, using the iterations option, as is shown below.

\tikz \graph [spring layout={iterations=10}]
{ a -> b -> c -> a };

\tikz \graph [spring layout={iterations=100}]
{ a -> b -> c -> a };

c

a b

c

a b

This example demonstrates that the number of iterations has a strong impact on the quality of

the generated drawings. Limiting this number to something small may improve the running

time of the algorithm, which may be critical with large graphs. This of course comes at the cost

of drawings of lower quality.

Apart from reducing running times, another use case of the iterations option is to draw the

same graph multiple times with a different number of iterations and thereby demonstrate how

the spring or spring-electrical algorithm improves drawings step by step. This may prove to be

useful when debugging new algorithms or when presenting and explaining them to others.

The initial value of the step size that limits or controls the node movement along its force can

be changed with the initial step dimension option. Like natural spring dimension this
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parameter is able to parse mathematical expressions. If set to its default value 0, the natural

spring dimension is used as the initial step size internally.

Another parameter that controls how layouts evolve over time is the cooling factor. It is used

to gradually reduce the step size between one iteration to the next. A small positive cooling fac-

tor ≥ 0 means that the movement of nodes is quickly or abruptly reduced, while a large cooling

factor ≤ 1 allows for a smoother step by step layout refinement at the cost of more iterations.

The following example demonstrates how a smaller cooling factor may result in a less balanced

drawing. By default, Hu2006 spring, Hu2006 spring electrical, and Walshaw2000 spring

electrical use a cooling factor of 0.95.

\tikz \graph [spring layout={cooling factor=0.1}]
{ a -> b -> c -> a };

\tikz \graph [spring layout={cooling factor=0.5}]
{ a -> b -> c -> a };

c

a

b

c

a

b

All spring and spring-electrical algorithms implemented in the thesis terminate as soon as the

maximummovement of any node drops below k · tol. This tolerance factor can be changed with

the convergence tolerance option:

\tikz \graph [
spring layout={convergence tolerance=0.001}

] { { [clique] 1, 2 } -- 3 -- 4 -- { 5, 6, 7 }
};
\tikz \graph [

spring layout={convergence tolerance=1.0}
] { { [clique] 1, 2 } -- 3 -- 4 -- { 5, 6, 7 }
};

57
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The above example illustrates that a high tolerance may result in poorly arranged drawings.

Therefore, Hu2006 spring and Hu2006 spring electrical both use a default tolerance of

0.01. Walshaw2000 spring electrical algorithm slightly differs from this by using 0.001 as

the default value.

Multilevel Algorithm Configuration

In order to compare the results, users might want to switch between the regular spring or

spring-electrical algorithm and the multilevel version. Toggling the graph coarsening process
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is possible using the boolean coarsen option, which can be either false, true or empty. If un-

set or empty, all three algorithms will default to assuming that coarsening is enabled and will

apply the multilevel technique. The difference is often barely noticeable when drawing small

graphs. However, with larger graphs, disabling coarsening usually reduces the running time of

the algorithm at the cost of low-quality drawings. For such an example see chapter 5.

The minimum number of nodes down to which the graph is coarsened can be set with the

coarsening/minimum graph size option. The first graph that has a smaller or equal num-

ber of nodes becomes the coarsest graph Gl , where l is the number of coarsening steps. The

algorithm proceeds with the steps described earlier in this chapter.

In the following example the same graph is coarsened down to two nodes the first time and four

nodes the second time. The layout of the original graph is interpolated from the random initial

layout and is not improved further because the forces are not computed (0 iterations). Thus, in

the two graphs, the nodes are placed at exactly two and four coordinates in the final drawing:

\tikz \graph [
spring layout={

iterations=0,
coarsening={minimum graph size=2}

}
] { subgraph C_n [n=8] };

123
8

4
567

\tikz \graph [
spring layout={

iterations=0,
coarsening={minimum graph size=4}

}
] { subgraph C_n [n=8] };

12

3

8

4
567

Another parameter that controls how far the graph is coarsened is the coarsening/downsize

ratio option. It specifies the percentage by which the size of the graph needs to be reduced in

order for coarsening to continue. The default downsize ratio is 0.25, meaning that coarsening

will stop as soon as a coarse graph Gi does not have at least 25% fewer nodes than its parent

Gi−1. Increasing this option potentially reduces the number of coarse graphs computed during

the coarsening phase. This may speed up the algorithm but if the size of the coarsest graph

Gl is much larger than the minimum graph size, the benefits of the multilevel approach may

vanish:
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\pgfgdset{
spring electrical layout/default algorithm=%

Walshaw2000 spring electrical
}

\tikz \graph [spring electrical layout={
coarsening={downsize ratio=1.0},

}] { { [clique] 1, 2 } -- 3 -- 4 -- { 5, 6, 7 } };

\tikz \graph [spring electrical layout={
coarsening={downsize ratio=0.2},

}] { { [clique] 1, 2 } -- 3 -- 4 -- { 5, 6, 7 } };

1
2

3

4

5

6

7
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During the coarsening phase, the number of nodes in the graph is repeatedly reduced using a

coarsening scheme such as coarsening/collapse independent edges or its alternative, the

coarsening/connect independent nodes scheme. If collapse independent edges is en-

abled, which happens to be the default setting, coarse versions of the input graph are generated

by finding a maximal independent edge set and by collapsing the edges from this set. Nodes ad-

jacent to each of these edges aremerged into supernodes by which they are replaced in the next

coarse version of the graph. Edges and nodes that are not related to the maximum independent

edge set are maintained in the new graph.

Collapsing the edges of a maximum independent edge set reduces the number of nodes of the

graph by up 50%—but never more than that. This means that the upper limit for reasonable

values of downsize ratio to be used in combinationwith collapse independent edges is 0.5.

Compared to connect independent nodes this is the less aggressive coarsening scheme and

typically yields better drawings. At the time of writing, only collapse independent edges is

implemented.

Miscellaneous

Drawings produced by spring and spring-electrical algorithms may occasionally appear unfin-

ished or visually twisted. Asymmetry and undesired edge crossings are often caused by an unfa-

vorable random distribution in the initial layout. In order to improve or unravel such drawings,

the seed used for Lua's pseudo-random number generator may be changed in TikZ using the

random seed option. The effects of changing the random seed are unpredictable, so experi-

menting with different values is sometimes necessary. The below example shows how to set the

random seed to a different value, the default being 42:
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\tikz \graph [spring layout={random seed=1}] { ... };

3.4.3 Common Node Parameters

Fixing nodes at certain positions is a constraint that can be useful in many situations. A TikZ

node option that provides such a feature is /graph drawing/desired at. This is a global op-

tion that is not only available in force-based algorithms. It enables users to define a desired

position for individual nodes and is supported by the three spring and spring-electrical algo-

rithms implemented in the thesis. Here is a demonstration of this feature:

\tikz \graph [spring layout] {
a -- b,
{ [clique] b, c, d }

};
\tikz \graph [spring layout] {

a [desired at={(0,0)}] -- b [desired at={(0,-2cm)}],
{ [clique] b, c, d }

};

a

b

c
d

a

b
c

d

3.4.4 Dedicated Options for Spring-Electrical Layouts

Computing the electric forces in a graph G accurately requiresO(|V(G)|2) operations in each it-

eration of spring-electrical algorithms. With approximate electric forces set to true, elec-

tric forces are approximated using the Barnes-Hut algorithm described in section 3.2.5. This re-

duces the number of operations needed to compute the electric forces toO(|V(G)| · log |V(G)|)
per iteration, whichmay improve the running time of spring-electrical algorithms significantly.

However, this optimization often comes at the cost of less appealing drawings which is notice-

able in particular with small graphs. Even though the differences can be very subtle, the often

reduced quality is the reason why this feature is turned off by default and only makes sense

to speed up rendering with large graphs. The following code provides an example where the

degraded quality of a drawing with electric force approximation becomes obvious:

\tikz \graph [spring electrical layout]
{ subgraph C_n[n=5] };

\tikz \graph [spring electrical layout={
approximate electric forces

}] { subgraph C_n[n=5] };
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Sometimes when drawing symmetric andmesh-like graphs, the peripheral distortion caused by

long-range electric forcesmaybeundesired. The general electric forcemodel proposedbyHual-

lows to reduce long-range forces and distortion effects by increasing the order of electric forces

(see formula 3.10). In the Hu2006 spring electrical and Walshaw2000 spring electrical

algorithms, this order can be changed with the electric force order option, which defaults

to 1. Values between 0 and 1 increase long-range electric forces and the scaling of the gener-

ated layouts. Value greater than 1 decrease long-range electric forces and results in shrinking

drawings.

Spring-electrical algorithms support a special node option called electric charge that gives

users the chance to adjust the electric charge of individual nodes. This charge is applied as a

linear factor to the electric force between a node and all others. Its default value is 1, meaning

that all nodes have the same charge that does not affect the electric force (see e.g. formula 3.10).

A value greater than 1 will cause a stronger repulsion between a node and others while negative

values will attract other nodes rather than repulsing them. This effect is demonstrated in the

following example.

% negative electric charge, attractive effect
\tikz \graph [spring electrical layout] {

1 [spring electrical layout={electric charge=-5}],
1 -- 2 -- 3 -- 4 -- 1,

};

% zero charge, reduced repulsive effect
\tikz \graph [spring electrical layout] {

1 [spring electrical layout={electric charge=0}],
1 -- 2 -- 3 -- 4 -- 1,

};

% charge of 1, uniform electric forces
\tikz \graph [spring electrical layout] {

1 [spring electrical layout={electric charge=1}],
1 -- 2 -- 3 -- 4 -- 1,

};

% positive charge > 1, repulsive effect
\tikz \graph [spring electrical layout] {

1 [spring electrical layout={electric charge=5}],
1 -- 2 -- 3 -- 4 -- 1,

};
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Algorithms for Layered Drawings

of Directed Graphs

The second family of algorithms investigated in the thesis are algorithms for producing lay-

ered drawings of directed graphs. For comparison with the spring and spring-electrical layouts

covered in the previous chapter, a layered drawing is shown below.

\tikz \graph [layered drawing] {
1 -> 2 -> 3 -> 4,
1 -> 5 -> 6,
6 -> 7,
6 -> 8,
1 -> 8,
6 -> 3,
4 -> 2,

};

1

2
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4

5

6

7 8

Section 4.1 provides a detailed introduction to the Sugiyamamethod, a commonly used concep-

tual framework for layered drawing algorithms. It also gives an overview of various heuristics

that have been developed for the individual steps of this method. As part of the thesis, the

Sugiyama framework was implemented as a modular algorithm that can be extended with new

solutions easily. This modular implementation is described in section 4.2. The chapter closes

with a description of the TikZ options added to configure the modular algorithm in section 4.3

and a presentation of the extension interface in section 4.4.
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4.1 An Algorithm Framework Based on the Sugiyama Method

Like undirected graphs, directed graphs can be arranged with general-purposemethods such as

force-based algorithms. However, the direction of edges usually encodes additional information

that is worth paying attention to. A popular method tailored to drawing directed graphs is

the so-called Sugiyama method. It was introduced in [50] and was followed up by an extended

survey [18] that discusses many ground-breaking ideas still being used today. The Sugiyama

method is based on the observation that directed graphs often have a general direction or flow.

Its fundamental idea is that drawings of such graphs should highlight this flow. The building

blocks of this method, as proposed in [18 and 50], have inspired an entire family of specialized

graph drawing algorithms that differ from generic methods substantially in that they arrange

nodes in horizontal or vertical layers so that the majority of edges in the graph points into the

same direction. The layouts resulting from these algorithms are called layered drawings.

A natural goal of any approach to drawing graphs is to improve the layout quality by avoiding

artifacts that hinder viewers comprehending the information represented by the graph. There-

fore, algorithms inspired by the Sugiyama method aim at satisfying basic aesthetic criteria es-

tablished in [18 and 50] such as minimization of edge crossings and creation of short, straight

and uniform edges that place neighbors close to each other. These objectives are supported by

empirical studies such as the ones performed by Purchase et al. [43 and 46], which have identi-

fied edge crossings and bends to be particularly distracting.

The layered graph drawing method proposed by Sugiyama et al. is inherently modular. Despite

using inconsistent terminology, most algorithms inspired by this method implement the fol-

lowing steps in the same order.

1 Cycle removal

2 Layer assignment (sometimes called node ranking)

3 Crossing minimization (also referred to as node ordering)

4 Node positioning (or coordinate assignment)

5 Edge routing

All of these steps have awell-defined input and output format, allowing them to be implemented

and replaced independently. Despite 30 years of research efforts having been invested into the

design and analysis of algorithms for producing layered drawings, no perfect all-in-one solution

has been developed yet. Since each of the above steps has a strong influence on the resulting

layouts, it is well worth experimenting with different ideas for each of them, in particular so

as even the most promising heuristics fail to always generate optimal layouts. For instance, a

cycle removal algorithm sounds perfectly reasonable if it reverses a provable minimum amount
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of edges. If poorly designed, however, such an algorithmmight ignore the overall structure and

flow of the graph and therefore generate odd results. Making experimentation possible allows

for an analysis of how well the various heuristics work together.

The rest of this section is a survey of graph drawing literature related to layered drawings of

directed graphs. It gives an overview of existing methods developed by researchers for each

step of the Sugiyama framework and compares their structure and performance. Notes on their

implementation and usage in TikZ are provided in sections 4.2 and 4.3.

4.1.1 Algorithms for Cycle Removal

This section describes some of the heuristic solutions to the problem ofmaking a directed graph

acyclic while changing the direction of as few edges as possible. A more complete survey can be

found in [3]. This problem is closely related to the maximum acyclic subgraph problem where the

aim is to find a maximum set Ea ⊂ E for a graph G = (V,E) such that the subgraph Ga = (V,Ea)
contains no cycles. An alternative approach to describing the same thing is via the minimum

feedback arc set problem. Here, the goal is to find a minimum set Ef ⊂ E of edges such that the

remaining graph G\f = (V,E \ Ef ) is acyclic. Both of these problems have been among the first

problems proven to be NP-hard [25 and 33].

It is easy to prove that reversing the edges in Ef instead of removing them also yields a graph

without cycles. This is important because the presence of these edge has a strong impact on the

final drawing. By simply reversing said edges, the original adjacency information is preserved

and the edges along with their weights remain part of the graph. The purpose of all heuris-

tics presented here is to find an approximative solution to the minimum feedback arc set problem

efficiently that reverses as few edges as possible.

A Simple Greedy Algorithm

Berger and Shor present a linear-time greedy algorithm for cycle removal based on a simple

observation: if for every node either its incoming or its outgoing edges are added to Ea and all

its edges are removed from the graph, the resulting subgraph Ga turns out to be acyclic [6]. In

an analogous manner, adding either the incoming or outgoing edges to Ef results in an acyclic

subgraph G\f .

Their GREEDY-CYCLE-REMOVAL algorithm processes the nodes of the input graph one by one in the

order of their creation. For every node it checks whether there are more remaining outgoing
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than incoming edges. It reverses the type of which there are fewer edges and thereby guaran-

tees to reverse no more than half of the edges overall. The algorithm runs in linear time as it

examines each node and edge only once.

The upper bound it guarantees for the size of Ef is neither hard to see nor is it very useful.

Any cycle removal algorithm reversing more than half of the edges can be transformed to have

the same upper bound—or a better one even—simply by reversing the Ea instead of Ef . The

algorithm can be shown to perform poorly on directed acyclic graphs. Since DAGs are acyclic

by definition, no edges would need to be reversed at all. Yet, if the nodes are specified or stored

in an unfortunate order, the simple greedy algorithm ends up reversing a significant amount of

the edges, resulting in highly unpleasant zig-zag drawings. This is demonstrated in figure 4.1.

Figure 4.1 Illustration of the zig-zag effect caused by applying th GREEDY-CYCLE-REMOVAL algo-

rithm to a graph specified in an unfortunate order.

1 2 3 4 5

2 4

1 3 5

Order of nodes: 1, 2, 3, 4, 5.

No edges are reversed

Order of nodes: 2, 4, 1, 3, 5.

Edges (1,2) and (3,4) are reversed.

A Greedy Heuristic Prioritizing Sources and Sinks

The simple greedy algorithmprocesses nodes in the order they are storedwith in the setV(G). If
V(G) is represented as a flat array or a vector, they are examined in the order of their definition.

While this ordermay somehow reflect the structure of the input graph, paying special attention

to less obvious properties instead can improve the results. This may not only avoid the zig-zag

effect but also also helps in further reducing the guaranteed maximum size of Ef .

One useful property is that directed graphs often have a number of sources and sinks, that is,

nodes with no incoming or outgoing edges. Obviously, edges incident to these nodes cannot

be part of cycles and thus never need to be reversed. In [16], Eades et al. propose a modifica-

tion of the simple greedy algorithm that prioritizes sources, sinks, and nodes with a maximum

difference of out- and indegree over other nodes. This algorithm is shown in listing 4.1.

The enhanced greedy algorithm has been proven to always generate an feedback arc set with a

size of at most
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Listing 4.1 Enhanced greedy algorithm that prioritizes sources, sinks, and nodes with a max-

imum difference of out- and indegree.

PRIORITIZING-GREEDY-CYCLE-REMOVAL(G)

1 Ea←∅

2 while V(G) is not empty do

3 while G contains a sink v do

4 add INCOMING-EDGES(G, v) to Ea
5 remove INCOMING-EDGES(G, v) from E(G)

6

7 delete isolated nodes from V(G)

8

9 while G contains a source v do

10 add OUTGOING-EDGES(G, v) to Ea
11 remove OUTGOING-EDGES(G, v) from E(G)

12

13 if V(G) is not empty then

14 v← node with maximum value

15 OUTGOING-EDGES(G, v).size -
16 INCOMING-EDGES(G, v).size
17

18 add OUTGOING-EDGES(G, v) to Ea
19

20 remove INCOMING-EDGES(G, v) from E(G)

21 remove OUTGOING-EDGES(G, v) from E(G)

22

23 remove v from V(G)

24

25 for each edge e ∈ E(G)\ Ea do

26 reverse edge e

|Ef | ≤
|E(G)|

2 −
|V(G)|

6 ,

assuming that the graph contains no cycles involving only a single pair of nodes [3]. As multiple

edges are removed prior to the cycle removal step in algorithms based on the Sugiyamamethod,

we can safely expect this assumption to hold. Obviously, this upper bound for the number of

reversed edges is a slight improvement over the previous method. The runtime of PRIORITIZ-

ING-GREEDY-CYCLE-REMOVAL is once again linear in the size of the input graph [16].

What is more interesting though is that by filtering out sources and sinks in each iteration prior

to reversing any edge, the algorithm generates an optimal feedback arc set for directed acyclic

graphs. The only situationwhere edges aremarked to be reversed is in lines 13–23, which is if no
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sources, sinks, and isolated nodes are left in the graph. If the input graph is acyclic, all nodes are

removed iteratively in lines 3–5. This, in turn, implies that the condition in line 13 is never met

and thus no edges are reversed. It is also not hard to see that for any graph containing only a

single cycle, only one edge is reversed to break the cycle. As a result, the PRIORITIZING-GREEDY-CY-

CLE-REMOVAL algorithm is the ideal choice for directed acyclic graphs and graphs with only a

single cycle.

A Randomized Algorithm

An even better overall performance guarantee has been shown for a randomized algorithm

based on GREEDY-CYCLE-REMOVAL. This algorithm computes a random ordering of the nodes be-

fore processing them in exactly the same way as the simple greedy algorithm [6]. Its provable

upper bound for the size of Ef is

|Ef | ≤

12 −Ω
 1√
∆(G)

 |E(G)|,

where ∆(G) denotes the maximum degree of any node in V(G) andΩ describes a lower bound

up to a constant factor. For the sake of completeness, the randomized linear-time algorithm is

included in listing 4.2. Despite the improved maximum size of Ef , this method suffers from the

same disadvantages as the simple greedy algorithm.

Listing 4.2 A randomized greedy algorithm with an improved upper bound for the size of Ef .

RANDOMIZED-CYCLE-REMOVAL(G)

1 V(G)← SHUFFLE(V(G))

2 GREEDY-CYCLE-REMOVAL(G)

An Algorithm Based on Edge Classifications

In TikZ, graphs are usually created by humansmanually. This allows tomake assumptions about

the input graph that would otherwise not be possible. For instance, it seems reasonable to as-

sume that the order in which nodes and edges are entered by the user somehow reflects the

natural flow the user has had in mind for the graph.

In order to preserve the natural flow of the input graph, Gansner et al. propose to remove cycles

by performing a series of depth-first searches starting at individual nodes in the order they

appear in the graph [27] (see listing 4.3). This algorithm implicitly constructs a spanning tree

of the nodes reached during the searches. It thereby partitions the edges of the graph into tree
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edges and non-tree edges. The non-tree edges are further subdivided into forward edges, cross

edges, and back edges, as is illustrated in figure 4.2. Forward edges point from a tree nodes to

one of their descendants. Cross edges connect unrelated branches in the search tree. Back edges

connect descendants to one of their ancestors.

Figure 4.2 The different types of edges in a depth-first search.

tree edge

forward edge

cross edge

back edge

It is not hard to see that reversing back edges will not only introduce no new cycles but will

also make any directed graph acyclic. Gansner et al. argue that this approach is more stable

than others in that fewer inappropriate edges are reversed compared to other methods [27],

despite the lack of a provable upper bound for the number of reversed edges [3]. With a linear

runtime the algorithm is comparable to the other solutions discussed before. According to [27],

the resulting drawings are more informative than those obtained by alternative methods such

as merging all nodes of a cycle into a supernode or duplicating one of the nodes in each cycle as

was suggested by others [7, 18 and 48].

4.1.2 Algorithms for Layer Assignment

Algorithms for producing layered drawings place nodes on discrete layers from top to bottom.

These layers can be formalized as a partition L = {L1, . . .,Lh} of the nodes with
⋃h

i=1 Li = V(G).
Let layer : V(G)→ {1, . . ., h} with layer(v) = i iff v ∈ Li be the characteristic or layer assignment

function of this partition.

Layer assignment is the problem of finding a partition L so that for all edges e = (u,v) ∈ E(G) the
equation layer(u) < layer(v) holds. Such a partition is called a layering. This definition can be

extended by introducing edge weights or priorities and minimum length constraints which has

practical applications and allows users to fine-tune the results. Edge weights are defined by a

functionw : E(G)→N. Theminimum length of an edge e = (u,v) is theminimumallowed layer

difference layer(v)− layer(u) of its nodes, denoted by minlength(e). The actual length layer(v)−
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Listing 4.3 Cycle removal algorithm based on reversing back edges of a depth-first search.

DFS-CYCLE-REMOVAL(G)

1 for each node v ∈ V(G) in the order of creation do

2 v.visited = false
3 v.stacked = false
4

5 for each node v ∈ V(G) in the order of creation do

6 DFS-VISIT(G, v)

DFS-VISIT(G, v)
1 if not v.visited then
2 v.visited = true
3 v.stacked = true
4

5 for each edge e ∈ OUTGOING-EDGES(G, v) in the order of creation do

6 u = GET-NEIGHBOR(G, e, v)
7

8 if u.stacked then
9 e.reversed = true // e is a back edge

10 else

11 DFS-VISIT(G, u)
12

13 v.stacked = false

layer(u) of an edge e = (u,v) is often abbreviated as length(e). This modification—which we will

refer to as length-constrained layer assignment—describes the problem of finding a partition L so

that for all edges e = (u,v) the equation layer(v)− layer(u) ≥ minlength(e) is true. In contrast to

the regular layer assignment problem, length-constrained layer assignments allow the nodes u
and v of an edge e = (u,v) with minlength(e) = 0 to be placed on the same layer.

A layering L resulting from length-constrained layer assignment highlights the general flow

of an acyclic input graphs by pointing all its edges into the same direction. Another aesthetic

criterion to be satisfied by the layer assignment step is locality of information, that is, plac-

ing neighbors at short distance. Short edges are not only desirable in general, they also have

an impact on the runtime of later steps like crossing minimization and node positioning. The

weighted length-constrained layer assignment problem allows individual edges to be prioritized

when it comes to deciding which ones to make short and which to make long. It can be de-

scribed with the following linear optimization program:
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minimize
∑

(u,v)∈E(G)
weight(u, v) · (layer(v) − layer(u)) (4.1)

subject to layer(v) − layer(u) ≥ minlength(u, v) for all (u, v) ∈ E(G)

and layer(v) ∈N for all v ∈ V(G).

Throughout graph drawing literature there is a mix of algorithms that work on this linear pro-

gram and algorithms that follow different ideas. Most of these require a directed graph without

multiple edges, loops, and cycles as their input. Removing multiple edges and loops is usually

implemented as a pre-processing step (see section 4.2). Strategies to eliminate cycles are cov-

ered in the previous section. Thus, we can safely assume receiving such simple input graphs. In

the following, three approaches to solving the layer assignment problem are discussed. A more

complete survey can be found in [3 and 18].

Proper Layerings

Algorithms for the subsequent node positioning step (section 4.1.4) requires a proper layering to

be generated beforehand. A layering is called proper if every edge e ∈ E(G) has a length of 1.

This means that any pair of neighbors needs to be placed on adjacent layers. If this requirement

is not satisfied by the layer assignment step already, a proper layering can easily be obtained

by inserting so-called dummy nodes along edges e = (u,v) with a length(e) > 1. In the proper

layering, edges e = (u,v) with a length k are replaced by a path (u = v1,v2, . . ., vk = v) of length
k. The dummy nodes v2, . . ., vk−1 are placed in the layers between u and v, as is illustrated in

figure 4.3.

It is unclear how to distribute theweights of the original edges (u,v) to the edges (vi,vi+1). Divid-
ing the original weight by the number of dummy edges and assigning the result to the individual

edges (vi,vi+1) is only one possible strategy. The TikZ implementation simply assigns the original

weight to all edges of the path. This is supposed to give long edges with many internal dummy

edges a higher priority when deciding which edges to straighten in the node positioning step.

The results do not indicate other weight choices to be necessary.

Layerings for a Given Width

The height of a layering is defined as the number h of layers. Its width is the maximum number

of nodes on any of these layers. A natural approach is to minimize the height or width while the

other dimension is fixed or bound by an upper limit. The Coffman-Graham algorithm [8] which

originates from job scheduling takes as input a number w and a graph without transitive edges.
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Figure 4.3 A regular layering (i) and its proper version (ii) with dummy nodes v2,v3 (painted

as gray dots) inserted along the edge (u,v).

u

v

u = v1

v = v4

v2

v3

(i) (ii)

It generates a layered drawing of width at most w while trying to minimize the height. This

method is able to compute an optimalminimumheight layering forw ≤ 2. Overall, the resulting
height h can be shown to be bounded by

h ≤
(
2 − 2

w

)
hopt (4.2)

relative to the optimal height hopt.

The pseudocode for an adaption of this algorithm for graph drawing can be found in [3].

Layerings with a Minimum Height

Another technique originally developed for use in job scheduling is the longest-path algorithm.

It aims at minimizing the height of the layering while not giving any upper bound guarantee

for the resulting width per se. As is shown in listing 4.4, the algorithm works by traversing

the nodes of the input graph in a topological order, assigning to each node its minimum allowed

layer depending on its predecessors in the graph topology. The resulting layering is often called

a longest-path layering as the height is equal to the length of the longest path between any two

nodes in the graph, at least if minlength(e) is set to 1 for all edges e ∈ E(G). In addition to

always generating layerings with a minimum height and being very simple, another advantage

of thismethod is its linear runtime [40]. It has however been reported to generatemany dummy

nodes and occasionally result in an unfavorable density of edges [42]. A topological order can

be computed in linear time by iteratively visiting of the graph and removing them immediately

afterwards [32]. Lines 3-8 of the algorithm shown in listing 4.4 examine each node and edge

exactly once, resulting in an overall linear runtime of the algorithm.
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Listing 4.4 The longest-path algorithm applied to the layer assignment problem.

LONGEST-PATH-LAYER-ASSIGNMENT(G)

1 V← TOPOLOGICAL-ORDERING(G)

2

3 for each node v ∈ V do

4 v.layer = 1
5

6 for each edge e ∈ INCOMING-EDGES(G, v) do
7 u = GET-NEIGHBOR(G, e, v)
8 v.layer = MAX(v.layer, u.layer + e.minlength)

A Solution Based on the Network Simplex Method

As mentioned before, the generated layering is transformed into a proper layering prior the

node positioning step. This typically results in a larger graph due to the insertion of dummy

nodes and the corresponding edges. As many researches have noted [3, 18 and 27] it is critical

to keep the number of dummy nodes low. Not only does the potential quadratic increase in size

make subsequent steps more expensive, dummy nodes are also the only cause for edge bends in

the final drawing (see section 4.1.5). Although there are various ways to straighten edges, more

dummy nodes usually means more bends. Finally, the need to add dummy nodes reflects the

presence of long edges which in turnmake drawings harder to understand and should generally

be avoided.

Solving the linear program for the weighted length-constrained layer assignment problem (see

formula 4.1) has been proven to minimize the total length of the edges and thus the number of

dummy nodes that need to be added [22]. Furthermore, Eades and Sugiyama state that mini-

mizing the number of dummy nodes yields a drawing with minimum overall height [18]. The

minimum possible height is limited by the longest path from any node in the graph to all others

which in turn depends on howwell the cycle removal step performs. Gansner et al. propose that

the linear program be solved by transforming the layer assignment problem into an equivalent

minimum-cost flow problem or by applying the simplex algorithm [27]. For their graph draw-

ing tool Graphviz they chose to implement a solution based on the network simplex method

which is a specialized version of the simplex algorithm known from linear programming. More

precisely, it is a variation of the bounded-variable primal simplex method specifically designed

for solving the minimum-cost flow problem [10, 28 and 38].

A few additional definitions introduced in [10 and 27] are helpful in describing and understand-

ing the concepts behind this method. Please note that throughout the work of Gansner et al.,
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the terms rank, ranking, and rank assignment are used instead of layer, layering, and layer as-

signment. A feasible layering is a layering that satisfies the minimum length constraint, that is

length(e) ≥ minlength(e) holds for all e ∈ E(G). The slack of an edge is defined as the difference

of its length and its minimum length. This in turn means that a layering is feasible if and only

if all edges of the input graph have a non-negative slack. Edges are further called tight if they

have zero slack.

The network simplex method is built around the idea of constructing and modifying an undi-

rected spanning tree of the input graph. Such a spanning tree always corresponds to a layering

of the graph. This layering can be constructed by picking an initial node of the spanning tree

and assigning it a layer. The other nodes are then layered iteratively by assigning them the layer

of an already ranked node adjacent in the original directed graph, incremented or decremented

by the minimum length of the connecting edge, depending on whether the current node is the

head or tail node of this edge. Note that this layering is not unique as a different initial node and

an alternative order of nodes in the iterative layer assignment may yield other valid layerings.

A spanning tree that allows a feasible layering is called a feasible spanning tree. Due to the way

feasible spanning trees are constructed all their edges are tight.

Given a directed input graph and a corresponding feasible spanning tree, a cut value can be de-

fined for each tree edge. Assuming that a tree edge is deleted, the spanning tree will break into

two partial spanning trees, one of which is called the tail componentwhile the other is called the

head component. The classification of either component as head or tail is determined by the direc-

tion of the original directed edge corresponding to the deleted tree edge. The cut value of this

tree edge is defined as the weighted sum of directed edges from the tail to the head component

minus the weighted sum of edges pointing into the other direction.

These definitions allow for a relatively straight-forward description of the network simplex

method for layer assignment. Given an arbitrary feasible layering generated at the beginning

of the algorithm, an initial feasible spanning tree of tight edges is constructed. In order to min-

imize the weighted sum of edge lengths (see formula 4.1), the network simplex method itera-

tively replaces tree edges with negative cut values by appropriate non-tree edges with mini-

mum slack. Degeneracy problems put aside, a negative cut value typically indicates that the

total weighted sum of edge lengths can be reduced by lengthening the tree edge. By making

this tree edge as long as possible, one of the head to tail component edges eventually becomes

tight. Exchanging these two edges in the tree and updating the cut values and layers of all nodes

yields a new feasible spanning tree. This procedure is repeated until no further improvement is

possible, that is, all edges of the spanning tree have non-negative cut values. The complete algo-

rithm is shown in listing 4.5. In addition to minimizing the total weighted sum of edge lengths,

it also normalizes layers so that they are in the range 1,2, . . ., h. Lastly, in a final balancing step
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it attempts to distribute nodes evenly on these layers while of course preserving the minimum

length constraint of the edges.

Listing 4.5 The network simplex layer assignment algorithm, as proposed in [27].

NETWORK-SIMPLEX-LAYER-ASSIGNMENT(G)

1 T← INITIAL-FEASIBLE-TREE(G)

2

3 while T contains an edge with negative cut value do

4 e← GET-EDGE-WITH-NEGATIVE-CUT-VALUE(G, T)
5 f ← FIND-TIGHT-NON-TREE-EDGE(G, T, e)
6 REPLACE-TREE-EDGE(G, T, e, f )
7

8 NORMALIZE-LAYERS(G)

9 BALANCE-LAYERS(G)

The Graphviz implementation presented in [27] includes a number of optimizations that make

updating the cut values more efficient. Gansner et al. also propose a more efficient technique

for checking whether a node lies in the head or tail component of a tree edge. These optimiza-

tions are crucial as the same algorithm is later applied to the node positioning problem that is

explained in section 4.1.4.

4.1.3 Algorithms for Crossing Minimization

The number of edge crossings in a layered drawing is determined by the ordering of nodes at

each of its layers. Therefore, crossing minimization is the problem of reordering the nodes at

each layer so that the overall number of edge crossings isminimized. The crossingminimization

step takes a proper layering where every edge connects nodes in neighbored layers, allowing

algorithms to minimize crossings layer by layer rather than all at once. While this does not

reduce the complexity of the problem, it does make it considerably easier to understand and

implement. Techniques based on such an iterative approach are also known as layer-by-layer

sweep methods. They are used in many popular heuristics due to their simplicity and the good

results they produce.

Sweeping refers tomoving up and down fromone layer to the next, reducing crossings along the

way. In layer-by-layer sweepmethods, an initial node ordering for one of the layers is computed

first. Depending on the sweep direction this can either be the first layer or the last; in rare

occasions the layer in the middle is used instead. Followed by this, the actual layer-by-layer

sweep is performed. Given an initial ordering for the first layerL1, a downward sweep first holds

the nodes in L1 fixed while reordering the nodes in the second layer L2 to reduce the number
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of crossings between L1 and L2. It then goes on to reorder the third layer while holding the

second layer fixed. This is continued until all layers except for the first one have been examined.

Upward sweeping and sweeping from the middle work analogous.

Obviously, the central aspect of the layer-by-layer sweep is how the nodes of a specific layer

are reordered using a neighbored layer as a fixed reference. This problem is known as one-sided

crossing minimization, which unfortunately is NP-hard [19, 20 and 26]. In the following various

heuristics to solve this problem are presented. A formalization of the crossing minimization

problem and an extensive survey of the heuristics available are once more given in [3 and 18].

The Barycenter and Median Heuristics

The barycenter and median heuristics are based on the assumption that, in order to reduce edge

crossings, nodes should be positioned close to their neighbors. Both methods are simple, rela-

tively fast and produce pleasing results.

Let Li be the layer that is reordered and Li−1 the layer held fixed. The barycenter method first

assigns to each node v ∈ Li the barycenter (average) of the positions of its neighbors in Li−1,

defined as Ni−1(v) = {u | (u,v) ∈ E(V)}:

barycenter(v) = 1
|Ni−1(v)|

∑
u∈Ni−1(v)

posi−1(u), (4.3)

where posi−1(u) denotes the position of u in the layer Li−1. Nodes v,w ∈ Li that are assigned

the same value barycenter(v) = barycenter(w) need to be moved apart by a small amount. In a

second step, the nodes of Li are sorted according to their barycenter values.

An interesting property of the barycenter heuristic is that it generates an ordering with no

crossings if one is possible at all [9]. Computing the barycenter values requires linear time. If the

barycenter values and layer positions are restricted to be integers, sorting can be implemented

in O(n) as well using integer sorting algorithms such as bucket sort or radix sort. This results

in a linear runtime for the overall layer-by-layer sweep.

Themedianmethod assigns to each node v ∈ Li themedian of the x-coordinates of its neighbors
Ni−1(v). Let u1,u2, . . .,uj be the neighbors of v with posi−1(u1) < posi−1(u2) < . . . < posi−1(uj).
In this case the median is defined as

median(v) =


posi−1(u

d
j
2 e

) if j is odd and j > 1,

posi−1(u j
2−1) if j is even, or

1 if j = 0.

(4.4)
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Likewith the barycentermethod, the nodes ofLi are sorted by theirmedian values afterwards. It

can be shown that, for the one-sided crossingminimization problem, themedianmethod always

generates orderings with at most three times as many edge crossings than in the minimum

solution. An interesting statement in this context comes from [18], where it is claimed that

there is no fast method known to produce drawings with an overall number of crossings within

a constant factor of the minimum. Like the barycenter heuristic, the median approach can be

implemented to run in linear time.

The Greedy Switch Heuristic

Unlike the barycenter and the median heuristics the greedy switch method explicitly counts

the number of crossings between two layers. This makes it more expensive as all pairs of edges

between the two layers need to be checked with regard to whether they cross or not.

A pair (l,u) and (r,v) of edges with u,v ∈ Li and l,r ∈ Li−1 crosses if the tail and head nodes are

not in the same order, that is if

sign(posi(v) − posi(u)) 6= sign(posi−1(r) − posi−1(l)). (4.5)

The crossing number cuv of two consecutive nodes u,v ∈ Li with posi(u) < posi(v) is defined as

the number of crossings between edges incident to u and edges incident to v. Switching the

positions of u and v changes the total number of crossings in the drawing by cvu − cuv. This

observation is the basis for the main idea behind greedy switching.

At each layer to be reordered tominimize crossings, the greedy switch algorithm iterates over all

consecutive pairs u,v of nodes. Whenever it comes across a pair for which cvu < cuv, it switches

the positions of the two nodes. This is repeated until no further improvement is possible.

The crossing numbers can be precomputed in linear time according to [49]. Thus, the overall

complexity of this method is O(|Li|
2) for each layer Li [3]. As others have noted [27], greedy

switching is particularly useful as a post-processing step in combination with other heuristics

due to its nature of making changes only when improvements are possible.

A Combination and Refinement of the Individual Strategies

Gansner et al. combine an initial ordering based on a depth-first search with the median and

greedy switch heuristics applied in the form of an alternating layer-by-layer sweep based on a

weighted median [27]. The basic structure of their algorithm is shown in listing 4.6.
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Listing 4.6 Crossing minimization using a combination of the median and greedy switch

layer-by-layer sweeping heuristics.

COMBINED-CROSSING-MINIMIZATION(G)

1 ordering← COMPUTE-INITIAL-DFS-ORDERING(G)

2 best← ordering
3

4 for i← 0, . . ., iterations do
5 if i is even then

6 ordering←WEIGHTED-MEDIAN-SWEEP(G, ordering, 'up')
7 else

8 ordering←WEIGHTED-MEDIAN-SWEEP(G, ordering, 'down')
9

10 ordering← GREEDY-SWITCH-SWEEP(G, ordering, 'down')
11

12 if COUNT-CROSSINGS(G, ordering) < COUNT-CROSSINGS(G, best) then
13 best← ordering
14

15 return best

The initial ordering is constructedwhile traversing the directed acyclic graphusing a depth-first

search, starting at its source nodes. Nodes are placed from left to right on layers that correspond

to levels in the depth-first search tree. This means that the sources are moved to the first layer,

their immediate children in the search tree are moved to the second layer and so forth.

The weighted median sweep is a refined version of the regular median heuristic. Compared to

the original method it only behaves differently in situations where the number of neighbors on

the fixed layer is even. If there are only two neighbors on the fixed layer, the arithmetic mean

of their position is used as the median value. If the number of neighbors is even and there are

more than two neighbors, a weighted median is applied that moves nodes to the side where

their neighbors are more closely packed [27].

4.1.4 Algorithms for Node Positioning and Horizontal Balancing

The second last step of the Sugiyamamethod decides about the final x- and y-coordinates of the
nodes. The main objectives of this step are to position nodes so that the number of edge bends

is kept small and edges are drawn as vertically as possible. Another goal is to avoid node and

edge overlaps which is crucial in particular if the nodes are allowed to have non-uniform sizes.

The y-coordinates of the nodes have no influence on the number of bends. Obviously, nodes

need to be separated enough geometrically so that they do not overlap. It feels natural to aim
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at separating all layers in the drawing by the same amount, which we will refer to as the level

distance in the following, denoted by leveldist(G). Large nodes, however, may force node posi-

tioning algorithms to override this uniform level distance in order to avoid overlaps. Friedrich

and Schreiber discuss ways to solve this problem inmore detail [23]. The ideas presented in this

section assume uniform node heights. This allows to associate each layer with a specific y-co-
ordinate and compute y-coordinates of all nodes in a straight-forward way using the following

formula:

y(v) = layer(v) · leveldist(G), v ∈ V(G). (4.6)

The main problem to solve in this step is to find x-coordinates that are in accordance with the

objectives described above. Most solutions found in graph drawing literature are based on the

methods developed for previous steps by reusing techniques from layer assignment and crossing

minimization in particular. In the following, two of these solutions are discussed. Additional

ideas are presented in [3, 18 and 27].

Algorithm Based on the Median Heuristic

Bastert and Matuszewski [3] and Gansner et al. [27] describe an algorithm based on the median

heuristic used in crossing minimization. The basic idea is to first compute initial x-coordinates
for all nodes, for instance by positioning them from left to right in the order generated during

crossing minimization, followed by several iterations of improving this layout. This iterative

improvement involves three phases: positioning, straightening, and packing. Positioning ap-

plies such techniques as the median heuristic and variations of it. As this may result in many

edge bends, the next phase attempts to straighten the edges again, usually by trying to assign all

nodes along a path of dummy nodes and edges the same x-coordinate. These two steps may in-

crease the width of the drawing. Hence, a packing algorithm is applied afterwards to compress

the drawing in horizontal direction without introducing new edge bends.

This iterative approach is stated to generate good layouts in little time on one hand but is also

described as difficult to implement on the other hand [27].

Exact Algorithm Based on the Network Simplex Method

The problem of finding x-coordinates for nodes so that edges are drawn as straight and vertical

as possible can also be defined as an integer optimization problem, as is proposed in [27]:
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minimize
∑

e=(u,v)∈E(G)
priority(e) · weight(e) · |x(v) − x(u)| (4.7)

subject to x(b) − x(a) ≥ minxdist(a, b),

where a is the left neighbor of b in the same layer and minxdist(a,b) is the minimum horizontal

distance allowed between the centers of a and b. Given a minimum allowed node separation

siblingdist(G) between any two nodes in the same layer, the minimum distance between two

specific nodes a and b is defined as

minxdist(a,b) = a.width + b.width
2 + siblingdist(G). (4.8)

The function priority(e) is used to straighten long edges with higher priority than short edges.

As edges between original nodes in adjacent layers can always be drawn straight, the priority

needs to be higher for edges incident to dummy nodes. It is thus defined as

priority(u,v) =


1 if u and v are original nodes,

2 if one of u,v is a dummy node, or

8 if u,v are both dummy nodes.

(4.9)

This optimization problem can be transformed into linear program and be solved with the sim-

plexmethod. Unfortunately, this increases the size of the simplexmatrix quadratically, making

it unreasonable for larger graphs [27].

In [27], Gansner et al. therefore propose the application of the network simplex method to an

auxiliary graph G′ that is combinatorially analog to the mathematical transformation into a

linear program. The graph G′ has the same nodes as the input graph G plus a new node nuv for

every edge e = (u,v) ∈ E(G). Two types of edges are present in G′. The first are used to separate
nodes in the same layer. If u is the left neighbor of v in a layer, a new edge eu→v is created with

minlength(eu→v) = minxdist(a,b) and weight(eu→v) = 0. The second type of edges is used to

straighten the original edges of G as much as possible. For each original edge e = (u,v) ∈ E(G),
there are two new edges enuv→u = (nuv,u) and enuv→v = (nuv,v). Each of these edges are set to

have aminimum length of 0 and aweight ofweight(e)·priority(e). This construction is illustrated
in figure 4.4. Gansner et al. show that applying the layer assignment problem to the auxiliary

graph yields a layering that directly corresponds to an optimal solution for the horizontal node

positioning problem.

4.1.5 Algorithms for Edge Routing

The original layered drawing method described by Eades and Sugiyama in [18] does not include

the routing or shaping of edges as a main step. This makes sense if all nodes have the same size
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Figure 4.4 Construction of the auxiliary graph for computing x-coordinates with the network

simplex method.

nuv

u

v w

enuv→
u

enuv→v

e

ev→w

and shape. In practical scenarios, however, this assumption often does not hold. In these cases,

advanced techniques may have to be applied in order to avoid overlaps of nodes and edges.

Due to time constraints, this problem was not investigated in this thesis. I felt that a simple

comparison of the different drawing styles for bent edges would suffice, given that supporting

non-uniformly sized nodes would require further adjustments to the other steps as well.

Three basic edge drawing styles are shown in figure 4.5. The traditional way to draw bent edges

is to draw them as series of connected line segments called polygonal chains or polylines. Polyline

drawings contain only straight lines and are thus easy to create at low computational cost. They

may, however, emphasize sharp corners too much and result in busy drawings of larger graphs.

An alternative to polylines are polylines with rounded corners. Their visual appearance is sim-

ilar to that of polyline drawings and yet they may result in drawings that look less cluttered

andmore smooth in general. The radius of rounded corners can often be adjusted, whichmakes

corner rendering more flexible and scalable.

Figure 4.5 Different ways to draw bent edges.

Polyline drawing Polyline drawing with

rounded corners

Edges drawn as

Bézier curves

Another way to draw bent edges is to replace the bend points with Bézier curves or splines.

Bézier curves are specified by defining two end points and a number of control points (typically
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two) that define the shape of the curve. Drawings generated with curves or splines have the

advantage of looking very smooth but may look unbalanced if they are created independently

for edges with different lengths.

4.2 Modular Implementation of the Framework in TikZ

The methods discussed in section 4.1 follow different approaches and all have their own char-

acteristics and impacts on the final drawing of a directed graph. It is not always easy to see how

solutions for the different steps interact and influence each other. Also, a particular solution

may work well with one graph but may fail with another. Thus, in the context of this thesis,

I chose to implement the layered drawing framework in the form of a modular layered draw-

ing algorithm. Unlike other tools that ship hard-coded graph drawing algorithms, including

Graphviz [27] andMathematica [53], my solution provides a simple extension interface allowing

interested researchers to add new implementations for each of the main steps of the Sugiyama

method. Users are given the choice between different heuristics for each step by means of a

straight-forward TikZ syntax that is explained in section 4.3.

4.2.1 Additional Steps and Outline of the Modular Algorithm

For the different steps to work with multiple edges and loops and in order to support features

like user-defined node clusters, a number of intermediate steps are necessary in addition to

cycle removal, layer assignment, crossing minimization, node positioning and edge routing.

Unlikemultiple edges, loops—that is, edges pointing from a node to itself—have no influence on

any of the algorithm steps except for the final pass where edges are routed and rendered. They

can thus be removed from the graph prior to all other steps and only need to be restored before

routing edges.

Multiple edges between different nodes are slightly more complicated to deal with. Depending

on the heuristics selected, their weight may be used to decide which edges are made short and

which are allowed to be longer. Theweight is also used as a factor in deciding howmuch priority

is given to making them appear as close to straight lines as possible. In the following, the terms

weight and priority are used interchangeably. In order to avoid special handling of multiple

edges in the implemented heuristics, the modular TikZ algorithm merges multiple edges into a

single superedge whose weight is set to the sum of weights of the individual edges. Like loops,

multiple edges are restored before routing edges.
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Node clusters provide a way to place groups of nodes on the same layer or to align them at the

same x-coordinate. Nodes in horizontal clusters need to be merged into cluster supernodes be-

fore the layer assignment step. The incoming and outgoing edges of these nodes need to be

updated so that they leave or enter the corresponding supernodes instead. After layer assign-

ment, the individual nodes need to be restored, adopting the relevant properties—the assigned

layers in this case—from their supernodes. Creating supernodesmay lead to the creation of new

cycles, multi-edges, and loops, so care needs to be taken of removing these after merging clus-

ters and restoring the original edges after expanding them again later. Vertical layers are also

possible but were not investigated in this thesis.

Listing 4.7 Complete outline of the modular layered drawing algorithm implemented in TikZ,

including support for horizontal clusters, loops, and multiple edges. Vertical clusters are not

supported in this algorithm yet.

GENERATE-LAYERED-DRAWING(G)

1 GC← G
2

3 merge horizontal clusters in GC
4 remove loops in GC
5 merge multiple edges in GC
6

7 remove cycles in GC
8 assign layers to nodes V(GC) of GC
9 apply layer information to the nodes V(G) of G
10 minimize edge crossings of G
11 position nodes of G
12 route edges of G

The final outline of the modular algorithm is shown in listing 4.7. Note that instead of merging

edges and nodes in the original graph and expanding them again later, the graph is copied once

and layers assigned to nodes in the copied version are applied back to the corresponding nodes

in the original graph before minimizing edge crossings.

4.2.2 Algorithms Implemented for the Individual Steps

Asmentioned before, themodular algorithm ismore like an algorithm framework than an actual

algorithm on its own. The methods used at every of the main steps listed in section 4.1 can be

changed with a special TikZ option, as is explained section 4.3.5. Table 4.1 gives an overview of

all heuristics implemented for each of the steps as part of the thesis.
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Of the cycle removal algorithms discussed in section 4.1.1, the simple greedy algorithm (named

BergerS1990a), the PRIORITIZING-GREEDY-CYCLE-REMOVAL algorithm (EadesLS1990), the RANDOM-

IZED-CYCLE-REMOVAL algorithm (BergerS1990b, based on the Lua pseudo-random number gener-

ator) and the DFS-CYCLE-REMOVAL algorithm (GansnerKNV1993) were implemented.

Table 4.1 Algorithms for the individual steps of the layered drawing framework.

cycle

removal

layer

assignment

crossing

minimization

node

positioning

edge

routing

GansnerKNV1993 GansnerKNV1993 GansnerKNV1993 GansnerKNV1993 simple

BergerS1990a longest path

BergerS1990b

EadesLS1990

For layer assignment, the network simplexmethod (GansnerKNV1993) and the longest-path lay-

ering method (longest path) were implemented in TikZ.

The GansnerKNV1993 algorithm is based on the reference implementation in Graphviz. It in-

cludes most of the optimizations proposed in [27] and produces similar layouts. The main no-

table difference is that nodes may be stored and visited in a different order, which can result

in slightly different layerings or layer orderings. The network simplex method frequently tra-

verses the graph using depth-first search algorithms, all of which are implemented recursively

in Graphviz. I chose to implement most of these searches iteratively in order to avoid potential

stack overflows with large graphs. Unfortunately, iterative DFS requires manual stack manage-

ment andmakes in- and post-order operations harder to implement. Thiswas solved by adding a

general-purpose DepthFirstSearch class that takes an initialization function used for defining

the nodes to start with, a visit function to be called whenever a node is visited and a complete

function, which is called post-order. Given that Lua's default recursion depth is 20000 on most

machines, these efforts are less beneficial than they sound at first. In other situations, however,

having an iterative DFS implementation that is flexible and easy to use may prove to be useful.

Considering that the GansnerKNV1993 algorithm for layer assignment computes an optimal re-

sult, the longest path was merely added to have something to compare against. The version

implemented in TikZ is based on the topological ordering algorithm by Kahn [32] and fills layers

from top to bottom, meaning that the resulting drawings typically are more dense an the top as

opposed to other implementations of the same algorithm where most nodes are located at the

bottom of the drawing.
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For crossing minimization and node positioning, only the methods presented by Gansner et al.

in [27] were implemented. Their crossing minimization algorithm incorporates several of the

other ideas, such as the layer-by-layer sweep, the median heuristic, and greedy switching. As

a consequence, implementing these individual methods separately is not expected to provide

better results. The GansnerKNV1993 algorithm for node positioning reuses the network simplex

code already implemented for the layer assignment algorithm with the same name. This made

it simple to implement. All that had to be done was to construct the auxiliary graph described

earlier. Since this algorithm yields optimal results fast, no other technique was investigated in

the course of the thesis.

Edge routingwas implemented in themost trivialwaypossible. In the simple algorithm shipped

with TikZ, all dummynodes along an edge are replaced by bend points, resulting in regular poly-

line drawings. Using the /tikz/rounded corners option for edges, such drawings can easily

be transformed into polyline drawings with rounded corners.

4.3 TikZ Syntax and Options for Creating Layered Drawings

4.3.1 Syntax to Enable Layered Drawings

Like all types of drawing algorithms, algorithms for layered drawings are located in a dedicated

TikZ library called graphdrawing.layered. This library needs to be loaded together with the

graphdrawing library as is explained in section 2.3. Having loaded these libraries, the layered

drawing of a TikZ graph can be obtained via the /graph drawing/layered drawing option that

activates the default algorithm for layered drawings. As the time of writing, the modular algo-

rithm presented in this thesis is the only algorithm available and is thus selected by default.

\tikz \graph [layered drawing] {
a -> {

b -> c,
d -> { e, f },

}
};

a

b

c

d

e f

Alternatively, the name of the algorithm itself can be used instead of layered drawing.

\tikz \graph [modular layered] { ... };
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4.3.2 Separation of Layers and Nodes

Nodes and layers need to be separated by a certain distance along the x- and y-axis. By default,
the horizontal and vertical distance is set to 1cm, which is a sane choice for graphs with rela-

tively small nodes rendered on A4 or A5 paper. This covers many graphs found in literature and

lecture notes about combinatorial mathematics and computer science.

The vertical separation of the different layers of a drawing can be changed by setting the /graph

drawing/level distance option to a mathematical expression that may include units.

\tikz \graph [layered drawing] { a -> b };
\tikz \graph [layered drawing,level distance=1cm] { a -> b };
\tikz \graph [layered drawing,level distance=0.5cm*3] { a -> b };

a

b

a

b

a

b

The horizontal separation between consecutive nodes on the same layer can be adjusted in a

similar way by using the /graph drawing/sibling distance option.

\tikz \graph [layered drawing]
{ a -> { b, c } };

\tikz \graph [layered drawing,sibling distance=2*1cm]
{ a -> { b, c } };

a

b c

a

b c

4.3.3 Support for Node Clusters

The modular layered drawing algorithm supports horizontal clusters of nodes that are posi-

tioned on the same layer. Clusters are defined by passing the /tikz/graphs/new cluster op-

tion to the \graph macro. This option takes a cluster name as its only argument and may be

usedmultiple times to createmore than one cluster. Nodes are added to a cluster by passing the

cluster name to them as an option. In the following example, three clusters first, second and

third are defined, forcing all nodes in each cluster to be placed on the same layer.
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\tikz \graph [
layered drawing,
new cluster=first,
new cluster=second,
new cluster=third,

] {
a [first] -> {

b [second],
c [first],
d [third] -> { e [third], f [second] },

}
};

a

b

d

c

f

e

Without node clusters the same graph is drawn as a tree with all edges pointing downwards.

\tikz \graph [layered drawing] {
a -> {

b,
c,
d -> { e, f },

}
};

a

b c d

e f

4.3.4 Edge Parameters

In adherence to the layer concept, edges are drawn pointing downwards with a minimum span

of at least one layer. However, there are many scenarios where support for horizontal edges

is important, e.g. when working with graphs of finite state machines. Also, forcing certain

edges to have an increased minimum span can sometimes unravel drawings with undesired

edge crossings. For this purpose, the modular layered drawing algorithm provides the /graph

drawing/layered drawing/minimum layers edge option. This option takes an integer greater

or equal to zero and can be used to adjust the minimum layer span of individual edges, as is

demonstrated in the following examples. First, let us take a look at a very simple graph drawn

with default parameters.

\tikz \graph [layered drawing]
{ a -> { b, c, d } };

a

b c d
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In the next example, the same graph is used, only this time two of its edges have zero minimum

layer span. The algorithm is not capable of detecting overlapping edges between nodes in the

same layer and thus, the ordering is not optimal. This requires one of the edges to be bent to

the left. In the example this is done using the /tikz/bend left option that generates a simple

Bézier curve.

\tikz \graph [layered drawing] {
a ->[layered drawing={minimum levels=0}] b,
a ->[layered drawing={minimum levels=0},bend left] c,
a -> d,

};

a b c

d

In the final example, the same graph is drawnwith its three edges having aminimum layer span

of 1, 2, and 3, respectively.

\tikz \graph [layered drawing,level distance=0.5cm] {
a -> b,
a ->[layered drawing={minimum levels=2}] c,
a ->[layered drawing={minimum levels=3}] d,

};

a

b

c

d

Several of the main algorithm steps, that is, layer assignment, crossing minimization, and node

positioning support weights or priorities to be attached to individual edges. The modular lay-

ered drawing algorithm has an edge option called /graph drawing/layered drawing/weight

for this. It takes any integer or floating point number greater or equal to zero and is set to 1 by

default. Edges with a higher weight are prioritized when it comes to making edges short and to

straightening them. The following example demonstrates this effect by showing the drawing of

a graph with and without prioritizing its longest edge (a,d).

\tikz \graph [layered drawing] {
a -> b -> c -> d,
a -> d,
b -> d,

};
\tikz \graph [layered drawing] {

a -> b -> c -> d,
a ->[layered drawing={weight=10}] d,
b -> d,

};

a

b

c

d

a

b

c

d
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4.3.5 Options for Changing the Individual Steps

As is explained in section 4.2.2, TikZ ships a number of algorithms for the different steps of

the modular layered drawing algorithm By default, the GansnerKNV1993 methods are used at

every step, except for edge routing, which defaults to the simple algorithm. This behavior can

be changed easily with the help of dedicated options that TikZ provides as part of the library

graphdrawing.layered. To remove cycles with the BergerS1990b algorithm, for example, the

/graph drawing/layered drawing/cycle removal option needs to be changed.

\tikz \graph [layered drawing] {
a -> b -> c -> d,
a -> d

};
\tikz \graph [layered drawing={cycle removal=BergerS1990b}]
{

a -> b -> c -> d,
a -> d

};

a

b

c

d

a

b

c

d

In the same way, alternatives for all the other steps may be selected using the options layer

assignment, crossing minimization, node positioning and edge routing.

4.4 Extension Interface of the Algorithm Framework

The modular layered drawing algorithm provides an easy way for graph drawing researchers

and other people interested in experimenting with layered drawings to extend the list of algo-

rithms shown in table 4.1.

4.4.1 Prerequisites and Naming Schemes

Adding a new implementation for any of the steps is as simple as dropping a Lua script into

the TEXMF directory tree. The framework defines a strict naming scheme for scripts containing

algorithms for the individual steps of the Sugiyama method, namely

pgfgd-algorithm-modular-layered-cycle-removal-〈algorithm〉.lua
pgfgd-algorithm-modular-layered-layer-assignment-〈algorithm〉.lua
pgfgd-algorithm-modular-layered-crossing-minimization-〈algorithm〉.lua
pgfgd-algorithm-modular-layered-node-positioning-〈algorithm〉.lua
pgfgd-algorithm-modular-layered-edge-routing-〈algorithm〉.lua
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where 〈algorithm〉 is allowed to contain alphanumeric characters (A-Z, a-z, 0-9), dashes (-)

and underscores (_) only. Lua scripts matching this scheme are automatically picked up by TikZ

without the need to touch any of the internal files. Each of the algorithms is associated with a

Lua class that holds the actual implementation and is expected to reside in the corresponding

Lua script. In TikZ, each algorithm can be accessed via a simple name that is mapped to the

corresponding class and file name internally.

Resolving a sub-algorithm works by taking a human-readable name such as longest path or

GansnerKNV1993 from a TikZ option like layer assignment and mapping it to a file and class

name. Filenames are generated by simply converting all spaces to dashes. In the above ex-

amples, longest path would therefore be converted to longest-path, while a name such as

GansnerKNV1993would remain untouched. The result is combinedwith the file naming scheme

described above. The filename expected of a longest path algorithm for layer assignment

therefor is

pgfgd-algorithm-modular-layered-layer-assignment-longest-path.lua

The names of Lua classes shipped with TikZ are in camel case style, that is, instead of separating

words with spaces, the first letter of each word is capitalized. In order to map algorithm names

to camel case class names, the following rules are applied in order. First, the name of the step,

e.g. layer assignment, and the name of the algorithm are concatenated. Dashes and under-

scores are converted to spaces. Afterwards, the initial letter of every word is capitalized and all

spaces are stripped from the name. Thus, in our examples the resulting class names would be

LayerAssignmentLongestPath and LayerAssignmentGansnerKNV1993.

Classes for sub-algorithms are required to implement two methods, new() and run(), used to

instantiate and run the algorithm. Both methods have different signatures depending on the

step the class implements. This is explained in more detail below.

4.4.2 Interface for Cycle Removal Algorithms

Themodular layered drawing algorithm instantiates cycle removal implementations by passing

a Graph object to the new()method. The run()method on the other hand takes no arguments

and has no return value. For the subsequent steps to work properly, however, cycle removal

algorithms are required to remove all cycles in the input graph.

As explained in section 4.1.1, cycles can be removed by reversing a subset of the edges called

the feedback arc set. A natural approach to designing the cycle removal interface would be to

have the run() method return such a set. However, I decided that it would be more conve-

nient to implement an edge reversal feature in the Edge class itself and activate it by setting
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the reversed property of an edge. This way, no data structure housekeeping is necessary and

methods like Edge:getIncomingEdges() or Edge:getOutDegree() work transparently. Also,

the main algorithm can later restore the original input graph by simply clearing the reversed

property.

Overall, the basic recipe for cycle removal algorithms is this:

pgf.module("pgf.graphdrawing")

CycleRemoval〈algorithm〉 = {}
CycleRemoval〈algorithm〉.__index = CycleRemoval〈algorithm〉

function CycleRemoval〈algorithm〉:new(graph)
local algorithm = { graph = graph }
setmetatable(algorithm, CycleRemoval〈algorithm〉)
return algorithm

end

function CycleRemoval〈algorithm〉:run()
... use 'edge.reversed = true' to reverse edges whenever necessary ...

end

4.4.3 Interface for Layer Assignment Algorithms

Layer assignment implementations take a Graph object as the input to their new() method.

Their run() method has no parameters and is supposed to return a Ranking object that rep-

resents a valid layering for the input graph.

The Ranking class provides a convenient way to manage and update the layers and layer order-

ings in a graph. It stores, for each node, its layer—which is set using Ranking:setRank(node,

rank)—and its position in this layer. For each layer it stores the set of nodes assigned to it.

The class also provides methods to enumerate and normalize the layers—i.e. shift them so that

the minimal layer is 1—and reorder them by switching the position of two nodes or by comput-

ing new positions for all nodes in a layer at once. Another noteworthy feature of the Ranking

class is that it supports arbitrary layers, that is, no distinction is made between discrete layers

such as 1,2,3. . . or non-integer layers like 28.5 or 166.233734. This allows the class to be reused
in the node positioning step where layers correspond to x-coordinates, which may be floating

point numbers. The TikZ manual has a detailed description of the methods and features of the

Ranking class.
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Implementing a new layer assignment algorithm essentially boils down to implementing the

same algorithm structure as is used for cycle removal algorithms, except that the algorithm

class is named LayerAssignment〈algorithm〉.

4.4.4 Interface for Crossing Minimization Algorithms

The main task of crossing minimization is to the reorder nodes at each layer so that the overall

number of edge crossings is reduced to a minimum. The previous layer assignment step re-

turns a layering in the form of a Ranking object which is used as the initial layering of crossing

minimization. As a consequence, crossing minimization algorithms take a Graph and a Ranking

object as parameters to their new()method. Their run()method is required to return another

Ranking object in which nodes have potentially been rearranged.

There are two approaches to generating new layer orderings. The first one is to create an en-

tirely new Ranking instance and add nodes to layers in the desired order. The other method is

to take the input Ranking and reorder nodes by calling one of the following methods (assuming

that the object is called layering):

layering:switchPositions(left_node, right_node)
layering:reorderLayer(layer, get_index_func, is_fixed_func)

The reorderLayer() function is of particular interest as it allows to reorder an entire layer at

once. In this case, get_index_func is a function that takes a position and a Node object and

returns a new position for the node—e.g. the median of its neighbors. The is_fixed_func pa-

rameter is a function that takes the same input parameters and tells whether or not a node has a

fixed position—which is the case with nodes that have no neighbors in the fixed neighbor layer.

With this in place, updating the positions based on precomputed median values (with a median

less than zero referring to a fixed node) is as simple as this:

local function get_index(n, node) return median[node] end
local function is_fixed(n, node) return median[node] < 0 end

layering:reorderLayer(layer, get_index, is_fixed)

Aside from a different class name and input/output conventions, the basic structure of crossing

minimization algorithms follows the scheme used in previous steps.
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4.4.5 Interface for Node Positioning Algorithms

Algorithms implementing node positioning once again receive a Graph object and a Ranking as

input parameters. Their task is to assign each node in the input graph an x- and an y-coordinate,
like so:

node.pos:set{ x = ..., y = ... }

The run()method is expected to modify the graph in-place and thus, takes no arguments and

returns nothing. The layers and node positions at each layer of the input layering already re-

flect the relative placement of the nodes. However, the exact coordinates may differ across

algorithms and depend on the dimensions of individual nodes as well as the desired horizontal

and vertical separation.

A code template for node positioning algorithms can once again be extracted from previous

steps by changing the class name prefix to NodePositioning and changing the function signa-

tures.

4.4.6 Interface for Edge Routing Algorithms

Edge routing algorithms are used to adjust the shape of edges in the final drawing. Their job is

to remove all dummy nodes and edges from the graph and draw the original edges in a visually

pleasing way, ideally without edge/node overlaps. As input to new(), these algorithms receive

a Graph object and a list of dummy nodes. In addition, each non-dummy edge in the graph

has a list of corresponding dummy nodes stored in its bend_nodes property. No arguments are

passed to its run()method and no return value is expected from a call to it either. However, if

any dummy nodes remain in the graph this will lead to errors when passing the graph back to

the TEX layer.

There are two ways to shape edges. Polyline edges (see figure 4.5) can be generated by filling

the bend_points table of each edge with coordinates. To replace the dummy nodes along an

edge, all that needs to be done is the following.
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for edge in table.value_iter(graph.edges) do
-- check whether we have an original edge
if #edge.bend_nodes > 0 then

for dummy_node in table.value_iter(edge.bend_nodes) do
-- convert the dummy node into a bend point
table.insert(edge.bend_points, dummy_node.pos:copy())
graph:deleteNode(dummy_node)

end
end

end

Amore flexible approach to bending edges is the algorithmically_generated_options prop-

erty of edges. It can be used to inject TikZ options into an edge, possibly overriding the options

already specified by the user. The possibilities with this method are almost unlimited and range

from simple left/right bends to complex path instructions by means of the /tikz/to path op-

tion. As usual, the TikZ manual contains more information on this topic. The example below

demonstrates how an edge can be bent to the left, entering/leaving at an angle of 135/45 de-

grees, and how it can be decorated as a zig-zag curve:

edge.algorithmically_generated_options['bend left'] = 45
edge.algorithmically_generated_options['postaction'] =

'{decorate,decoration=zigzag}'

The basic structure of edge routing algorithms is exactly the same as that of the prior steps.
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Evaluation and Benchmarks

In this chapter, the implemented graph drawing algorithms described in the previous chapters

are evaluated. This evaluation is performed using standard graphs, graphs found in related lit-

erature and lecture nodes, and special such as graphs with clusters or graphs of finite state ma-

chines. Unlike other evaluation approaches that perform a detailed benchmark of the number

of edge crossings, edge length distribution and other measurable properties of graph drawings,

the evaluation in this chapter focuses on less technical aspects and a comparison of the dif-

ferent solutions implemented. It also briefly discusses performance matters for both types of

algorithms I worked on in the course of the thesis.

Section 5.1 presents and compares drawings generated by the spring and spring-electrical al-

gorithms presented in chapter 3 and discusses some of the known issues of these algorithms.

In the second part of the chapter, section 5.2, the same evaluation is performed for the modu-

lar layered algorithm from chapter 4 and the different heuristics that I implemented. Layered

drawings are often easy to tweak if they are not matching the expectations of users. Therefor,

section 5.2 also presents some tricks to fix or adjust these drawings. The time required to draw

all individual example graphs used in this chapter is measured and listed at the end of each part

of the evaluation in order to give a hint at the overall performance of the developed algorithms.

5.1 Evaluation of the Spring and Spring-Electrical Algorithms

Chapter 3 broadly discusses the design of the new spring and spring-electrical algorithms added

to TikZ. It also presents options to configure these algorithms. However, the drawings produced

by these algorithms for realistic input graphs are never shown or compared. This is the main

purpose of this section.
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5.1.1 Spring and Spring-Electrical Layouts of Standard Graphs

Figures 5.1, 5.3, 5.5 present a set of spring and spring-electrical layouts generated for standard

graphs—consisting of complete graphs (Kn), circles (Cn) and grids—with the multilevel tech-

nique enabled. The same graphs are also drawn without the multilevel technique in figures 5.2,

5.4 and 5.6.

The main observation concerning the Hu2006 spring algorithm is that the layouts generated

for standard graphs with and without graph coarsening look very similar and feature a high de-

gree of symmetry. A noticeable difference can be observed with regards to scaling, as the draw-

ings produced without the multilevel technique are typically larger and feature longer edges.

This is something I noticed with most of the graphs I used for testing, even though the grid

graphs with 6 and 16 nodes are an exception to this rule and additional exceptions can be found

through experimentation. Another property of the Hu2006 spring algorithm is that it yields

drawings with shorter edges the larger the input graphs get. See the grid with 16 nodes com-

pared to the grid with 9 nodes, for instance, or the drawing of K10 compared to that of K4. In

general, both variations of the algorithm yield drawings with almost uniformly distributed edge

lengths.

In chapter 3 it is stated that spring algorithms do not suffer from peripheral distortion. Given

the slightly concave layouts generated for the grid examples this appears to be only partly true.

The distortionmay be less prominent compared to the spring-electrical layouts shown in figures

such as 5.3, yet it is clearly present.

Like Hu2006 spring, the Hu2006 spring electrical algorithm succeeds in producing layouts

that are highly symmetric. In terms of scaling, the drawings generated with and without graph

coarsening are similar to the ones generated by Hu2006 spring. The relative positioning of

nodes also resembles that of the corresponding spring layouts. What appears to be one of the

few differences compared to the results of Hu2006 spring is that the spring-electrical drawings

are not perfectly symmetric, which can be seen in the slightly distorted drawing ofK10. Another

observation is that the size of graphs drawn with Hu2006 spring electrical does not have

an impact on the edge lengths as strong as with Hu2006 spring. This cannot be said for all

graphs—see K10 compared to K4—but with coarsening enabled the edge lengths in drawings

generated for grid graphs does only change subtly from the 9-nodes grid to the 16-nodes grid,

if at all. The Hu2006 spring electrical results without coarsening are once again similar to

those with coarsening except that that they are slightly larger.

What may come as a surprise is that the multilevel technique has almost no impact on the qual-

ity of drawings generated by both algorithms. This is different with the Walshaw2000 spring

electrical algorithm, whose results are shown in figures 5.5 and 5.6. The quality of drawings
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produced by this algorithm strongly depend on whether the multilevel technique is used or

not. Without it, the results look as if they are unfinished. The situation can be improved for

some graphs by allowing more iterations—e.g. 1000 instead of the default 500—but even that

is often insufficient to produce good layouts. Overall, this supports the claims by Hu [31] and

Walshaw [51] that the multilevel approach leads to be better layouts and suggests to turn on it

on by default. This is also what TikZ does.

The Walshaw2000 spring electrical algorithm has a significantly different scaling behav-

ior compared to the Hu2006 algorithms. While the issues with dense graphs were solved suc-

cessfully for these algorithms by scaling the initial layout—see section 3.3.1, drawings of dense

graphs produced by Walshaw2000 spring electrical still suffer from strong compression.

This can most likely be attributed to the absence of electric forces between adjacent nodes (see

formula 3.18). Without the repulsive effect of electric forces, the only objective of the algorithm

is to produce edges with a length that equals the natural spring dimension. It does so almost

accurately by yielding an average edge length between 0.71cm and 0.88cm for the graphs in fig-

ure 5.5, even though this alone does not lead to visually appealing drawings. The only solutions

to this might be to subtract only a fraction of the electric force of adjacent nodes, depending

on the density of the graph, or to simply increase the natural spring dimension when drawing

dense graphs.

A major disadvantage of using the Walshaw2000 spring electrical algorithm for standard

graphs is that the results are distorted stronger compared to the Hu2006 algorithms. In partic-

ular, none of the Cn graphs looks as expected and the grid graphs appear as if they fall over to

one side.

The drawings shown in figure 5.7 demonstrate that the developed spring-electrical algorithms

performwell not only for small but also for large graphs. Despite working with two dimensional

node coordinates, the resulting layouts reflect the three dimensional structure of the example

graphs and in particular of the torus.

5.1.2 Spring and Spring-Electrical Layouts of Graphs from Literature

Figures 5.8, 5.9 and 5.10 show the results of applying the three spring and spring-electrical al-

gorithms to graphs found in literature and lecture notes. Aside from different scaling behavior,

less distortion and some problems with overlapping nodes in the drawings produced by Hu2006

spring, the visual structure of all layouts in these figures is similar. The generated drawings

once again are highly symmetric.

What is worth noting is that Mathematica and Graphviz both ship implementations of the same

Hu2006 spring and Hu2006 spring electrical algorithm. While their implementationsmay
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Figure 5.1 Spring layouts of standard graphs drawn with Hu2006 spring and graph coarsen-

ing enabled. The natural spring dimension is set to 0.8cm, other parameters are kept at their

standard values.

K4 K6 K10

C4 C6 C10

Grid with 6 nodes Grid with 9 nodes Grid with 16 nodes
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Figure 5.2 Spring layouts of standard graphs drawn with Hu2006 spring and graph coarsen-

ing disabled. The natural spring dimension is set to 0.8cm, other parameters are kept at their

standard values.

K4 K6 K10

C4 C6 C10

Grid with 6 nodes Grid with 9 nodes Grid with 16 nodes
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Figure 5.3 Spring-electrical layouts of standard graphs drawnbyHu2006 spring electrical
and graph coarsening enabled. The natural spring dimension is set to 0.8cm, other parameters

are kept at their standard values.

K4 K6 K10

C4 C6 C10

Grid with 6 nodes Grid with 9 nodes Grid with 16 nodes
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Figure 5.4 Spring-electrical layouts of standard graphs drawnbyHu2006 spring electrical
and graph coarsening disabled. The natural spring dimension is set to 0.8cm, other parameters

are kept at their standard values.

K4 K6 K10

C4 C6 C10

Grid with 6 nodes Grid with 9 nodes Grid with 16 nodes



90 Evaluation and Benchmarks

Figure 5.5 Spring-electrical layouts of standard graphs drawn with Walshaw2000 spring
electrical and graph coarsening enabled. The natural spring dimension is set to 0.8cm, other

parameters are kept at their standard values.

K4 K6 K10

C4 C6 C10

Grid with 6 nodes Grid with 9 nodes Grid with 16 nodes
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Figure 5.6 Spring-electrical layouts of standard graphs drawn with Walshaw2000 spring
electrical and graph coarsening disabled. The natural spring dimension is set to 0.8cm, other

parameters are kept at their standard values.

K4 K6 K10

C4 C6 C10

Grid with 6 nodes Grid with 9 nodes Grid with 16 nodes
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Figure 5.7 Spring-electrical layouts generated for large graphswith graph coarsening enabled

and a natural spring dimension of 2cm. The results are scaled down to fit onto fit onto the page.

Cylinder with 250 nodes drawn with Hu2006 spring electrical

Torus with 250 nodes drawn with Hu2006 spring electrical

Torus with 250 nodes drawn with Walshaw2000 spring electrical



Evaluation of the Spring and Spring-Electrical Algorithms 93

differ frommine in details, the drawings produced by my implementation for the Mathematica

and Traffic-Lights graphs—which were taken from [53] and the Graphviz website—are almost

identical.

5.1.3 Graphs with Clusters

While working on the spring and spring-electrical algorithms, I was interested in seeing how

well they would work on graphs with a nested cluster-like structure. One such example would

be a graph with a number of nodes connected in a circle, with a complete subgraph like K3

attached to each of these nodes. For my experiments I created different cluster graphs to which

I applied the three algorithms. The results are shown in figures 5.11, 5.12 and 5.13.

What can be noticed is that, while rendering the pair of triples graph best of all algorithms,

Hu2006 spring produces clusters so narrow that nodes tend to overlap. The drawings gener-

ated by Hu2006 spring electrical present the same behavior, albeit in a less distinct way.

Both algorithms yield layouts with a high degree of symmetry. The drawings produced by the

Walshaw2000 spring electrical algorithm are not always as well-balanced, see for instance

the quadruple graph. However, they are distributed more evenly and the clusters have less

tendency to collapse into narrow subgraphs with overlapping nodes.

5.1.4 Performance

A major downside of spring and spring-electrical algorithms is their poor computational per-

formance. In order to obtain a better understanding of how fast or slow the implemented al-

gorithms are when being applied to typical graphs, their running times on all example graphs

used in this evaluation were measured. The results of this are listed in table 5.1.

It is important to note here that all test graphs are small compared to some of the graphs used

in other benchmarks. The effect of approximating electric forces on the performance of the

spring-electrical algorithms was not measured as this makes sense only for graphs with a size

of 50 nodes and more. The measured running times therefore only give a rough indication of

the performance of the implemented algorithms in practical scenarios. Nevertheless, they do

present a few interesting differences between these algorithms.

The first thing to notice is that, despite a few exceptions, the running times of all three algo-

rithms are significantly shorter when graph coarsening is enabled. The speedup ranges from
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Figure 5.8 Spring layouts of graphs collected from literature drawn with Hu2006 spring and
graph coarsening enabled. The natural spring dimension is set to 0.8cm, other parameters are

kept at their standard values.
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Figure 5.9 Spring-electrical layouts of graphs collected from literature drawn with Hu2006
spring electrical and graph coarsening enabled. The natural spring dimension is set to

0.8cm, other parameters are kept at their standard values.
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Figure 5.10 Spring-electrical layouts of graphs collected from literature drawnwithWalshaw2000
spring electrical and graph coarsening enabled. The natural spring dimension is set to

0.8cm, other parameters are kept at their standard values.
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Figure 5.11 Spring layouts of clustered graphs drawn with Hu2006 spring and graph coars-

ening enabled. The natural spring dimension is set to 0.8cm, other parameters are kept at their

standard values.

Pair of triples Triple of triples

Quadruple of quadruples 10-circle of triples
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Figure 5.12 Spring-electrical layouts of clustered graphs drawnwithHu2006 spring electrical
and graph coarsening enabled. The natural spring dimension is set to 0.8cm, other parameters

are kept at their standard values.

Pair of triples Triple of triples

Quadruple of quadruples 10-circle of triples
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Figure 5.13 Spring-electrical layouts of clustered graphs drawn with Walshaw2000 spring
electrical and graph coarsening enabled. The natural spring dimension is set to 0.8cm, other

parameters are kept at their standard values.

Pair of triples Triple of triples

Quadruple of quadruples 10-circle of triples
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30% to about 80%, which supports Hu's statement that algorithms based on the multilevel ap-

proach converge towards an optimal layout more quickly than regular spring or spring-elec-

trical algorithms [31]. The Hu2006 spring algorithm based on his work appears to have bet-

ter running times than the two spring-electrical algorithms implemented. Of these two, the

Walshaw2000 spring electrical algorithm based on the work by Walshaw [51] outperforms

Hu2006 spring electrical in most situations, most notably the generation of the complete

4-ary tree and the Tantau-PV-2011-10.3.2 graph.

An unfortunate observation that can be made for all three algorithms is that the time it takes

them to generate the final layout grows quickly depending on the size of the input graph. While

a small complete graph like K4 is generated in an acceptable time of 0.04–0.37 seconds with

coarsening enabled, larger graphs like the grid with 16 nodes or the complete 4-ary tree take

4.66–27.91 seconds already. It gets even worse with the layouts generated of the large cylinder

and torus graphs for which the spring-electrical algorithms need between 652.01 and 1744.71

seconds to finish.

There are several possible reasons for the poor performance of these algorithms, which been

reported to be able to generate layouts for sparse graphs with 10,000 nodes in less than 30 sec-

onds [51]. One reason might be that, despite being considered a fast scripting language, Lua's

performance is unlikely to match that of compiled languages. The Lua compiler developed by

the LuaJIT project10 might improve the situation by making Lua code run significantly faster.

Unfortunately, the use of this compiler is not supported by LuaTEX yet. Another reason for slow

running times might be that the code was written with readability in mind rather than per-

formance. Its heavy use of iterators, elements of functional programming and specialized data

structures are most likely the cause of significant slowdowns compared to performance-opti-

mized code. The book Lua Programming Gems [13] and the website of a game called Complete Anni-

hilation11 discuss common performance issues with certain features of Lua, identifying iterators,

inline functions and non-optimized table modifications as some of the main reasons for the re-

duced performance of Lua scripts, all of which are used frequently throughout my algorithms

and the TikZ graph drawing engine in general.

Clearly, these issues will have to be addressed at some point in order to allow larger collec-

tions of graphs and graphs with many nodes to be embedded into real documents. With the

current performance of the implemented algorithms, preventing drawings from being regen-

erated whenever a document is built becomes essential. The use of externalization features and

other tricks is therefore recommended.

10
LuaJIT project website: http://luajit.org

11
Lua performance benchmarks: http://trac.caspring.org/wiki/LuaPerformance

http://luajit.org
http://trac.caspring.org/wiki/LuaPerformance
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Table 5.1 Running times of the Hu2006 spring (HuS), Hu2006 spring electrical (HuSE)

and Walshaw2000 spring electrical (WaSE) algorithms on all example graphs, with and

without coarsening. The drawings were generated on a machine powered by an Intel Core2

Duo T9300 processor running at 2.50GHz using ConTEXt version 2011.06.13 and LuaTEX version

beta-0.70.1-2011051923.

Graph HuS

coarsening

HuS HuSE

coarsening

HuSE WaSE

coarsening

WaSE

K4 0.22s 0.66s 0.37s 1.01s 0.04s 0.05s

K6 0.63s 1.33s 1.05s 2.53s 0.15s 0.67s

K10 1.70s 2.91s 3.51s 5.37s 1.85s 1.54s

C4 0.21s 0.47s 0.32s 1.00s 0.28s 0.47s

C6 0.67s 1.42s 0.93s 1.56s 1.03s 0.94s

C10 1.89s 3.74s 2.35s 9.03s 2.65s 2.36s

Grid, 6 nodes 0.72s 1.37s 0.39s 1.86s 0.74s 1.24s

Grid, 9 nodes 1.51s 2.92s 2.26s 3.31s 2.68s 1.98s

Grid, 16 nodes 4.66s 9.66s 5.92s 9.38s 7.58s 6.01s

Cylinder, 250 nodes 1212.65s12

Torus, 250 nodes 652.01s 1744.71s12

Mathematica-1 0.71s 1.53s 1.48s

Mathematica-3 0.60s 1.53s 1.09s

Mathematica-4 4.01s 7.06s 7.25s

Mathematica-5 3.17s 5.83s 3.39s

Complete-4-Ary-Tree 16.90s 27.91s 10.00s

Traffic-Lights 3.40s 6.56s 6.07s

Tantau-PV-2011-10.3.2 2.70s 6.39s 1.88s

Jakoby-Algo-2011-8.4b 1.00s 2.16s 1.56s

Reischuk-Algo-

des-2011-fig6

0.57s 1.49s 0.29s
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5.2 Evaluation of the Layered Drawing Algorithm

Like with the spring and spring-electrical algorithms, the modular layered graph drawing al-

gorithm is evaluated based on example drawings. For this, I collected a set of graphs from liter-

ature and lecture notes. The results are shown in figures 5.14 and 5.15, respectively.

In general, these drawings are on par with those generated by Graphviz and Mathematica. This

is not surprising as both tools implement the same algorithm based on [27]. Graphviz andMath-

ematica often traverse nodes in a different order, which may lead to alternative layouts.

Themain criteria for evaluating layered drawings are the number of back edges, edge crossings,

edge bends and edge lengths. The examples in figure 5.14 demonstrate that, in its standard con-

figuration, the modular layered algorithmhighlights the general flow of the graphswell and is

successful in avoiding back edges. Only the drawings of the Mathematica-4 and Mathematica-5

graphs taken from [53] contain back edges, which are, however, easy to spot and do not make

the graphs harder to understand. Applied small graphs, the algorithm appears to have no prob-

lems generating layered drawings that have only a few edge crossings and bends, even though it

does not produce optimal results in all situations—see for instance the drawing of BarthMJ-fig2

where the edge crossing could easily be avoided. Overall, most edges are as short as possible.

The distribution of edge lengths is almost uniform, with only 3–4 edges per graph deviating from

the rest.

The effect of switching between different algorithms at one of the steps of modular layered

is demonstrated in figure 5.16, which shows the same graph drawn with four different cycle

removal algorithms. The properties and problems of these algorithms are already explained in

section 4.1. In figure 5.16, the EadesLS1993 cycle removal algorithm produces the best layout

with only three layers, one edge crossing, three bent edges and the most uniform distribution

of edge lengths compared with the other drawings. What is worth noting is that none of them

is able to produce optimal results for all possible input graphs. It is thus recommended to try

different combinations of sub-algorithms whenever the default configuration does not yield

satisfying results.

Unsurprisingly, the drawings in figure 5.16 are less evenly distributed and feature more cross-

ing than the smaller graphs in figures 5.14 and 5.15. This is a natural consequence of using cycle

removal and crossing minimization heuristics that only work between neighbored ranks rather

than globally. Figure 5.17 is an example of a large graph that is arranged relatively well consid-

ering its size. However, a significant increase in the number of crossings, bends and long edges

is to be expected in general whenever layouts for large graphs need to be generated.

12
This result is not reliable as other computations were performed in parallel.
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Figure 5.14 Layered drawings produced by the modular layered algorithm for graphs found

in graph drawing literature. All graphs are processed using the standard heuristic at each step

of the algorithm except for Mathematica-4, which is generated with the BergerS1990b cycle

removal heuristic. The distance between layers and siblings is set to 0.8cm in all drawings.

EadesS1990-fig3 EadesS1990-fig9 BarthMJ-fig2

Mathematica-1 Mathematica-2 Mathematica-3

Mathematica-4 Mathematica-5
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Figure 5.15 Layered drawings produced by the modular layered algorithm for graphs col-

lected from lecture notes. All graphs are processed using the standard heuristic at each step

of the algorithm. The distance between layers is set to 1.25cm, the distance between siblings is

1.5cm in all drawings.
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Figure 5.16 A layered drawing of an example graph produced by the modular layred algo-

rithm using four different cycle removal heuristics. All other steps are preformed using the

standard techniques. The random seed was set to 3 for the BergerS1990b example.

BastertM2001-1

BergerS1990a cycle removal

BastertM2001-1

BergerS1990b cycle removal

BastertM2001-1

EadesLS1993 cycle removal

BastertM2001-1

GansnerKNV1993 cycle removal
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Figure 5.17 A layered drawing of the history of UNIX created with the modular layered al-

gorithm using the standard method at each step. A level and sibling distance of 1.25cm is used

to separate the nodes.
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Performance

Compared to the spring and spring-electrical algorithms, the modular layered algorithm is

significantly faster. As opposed to Hu2006 spring electrical, which requires between 5.92

and 9.38 seconds for a grid with 16 nodes, the layered drawing algorithm is capable of drawing

the UNIX-History graph with 41 nodes in 3.98 seconds. The layered drawings of all other ex-

ample graphs are generated in a second or less, as is shown in table 5.2. The Lua optimizations

as described as necessary in section 5.1 are also applicable to the modular layered algorithm,

which would further improve its performance.

Table 5.2 Running times of the modular layred algorithm on all example graphs, using the

default method at each step of the algorithm. The performance of other methods such as

BergerS1990a cycle removal or longest path layer assignment are not listed as the differ-

ences are marginal. The drawings were generated on a machine powered by an Intel Core2

Duo T9300 processor running at 2.50GHz using ConTEXt version 2011.06.13 and LuaTEX version

beta-0.70.1-2011051923.

Graph modular layered

EadesS1990-fig3 0.14s

EadesS1990-fig9 0.35s

BarthMJ-fig2 0.53s

Mathematica-1 0.23s

Mathematica-2 0.15s

Mathematica-3 0.23s

Mathematica-4 0.81s

Mathematica-5 0.57s

Jakoby-Algo-2011-8.4b 0.13s

Tantau-PV-2011-11.2.1 0.17s

Tantau-PV-2011-3.1.1 0.23s

Tantau-Theoretical-CS-2009-28-13 0.16s

BastertM2001-1 1.14s

UNIX-History 3.98s
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Conclusion and Outlook

This is the first thesis to cover the new graph drawing features of TikZ, including its compact

graph syntax and the graph drawing engine. It is also the first to illustrate how its Lua-based

algorithm framework can be used to develop new graph drawing algorithms to support users in

creating graph drawings with TikZ. In that sense, the successful implementation of the spring,

spring-electrical and layered drawing algorithms is not the only achievement made, but it is

also the work on completing the graph drawing engine itself that is to be considered one of the

major accomplishments of this thesis. Hopefully, the resultswill provide a sound basis for future

research and development.

The spring and spring-electrical layouts as well as the layered drawings produced by the algo-

rithms developed in this thesis are comparable in terms of quality to those produced by other

tools such as Graphviz and Mathematica. The extensibility of the algorithm framework for lay-

ered drawings is a clear advantage over other solutions as it opens an attractive opportunity

to foster experimentation with new ideas and algorithms. Given the common structure of the

spring and spring-electrical algorithms, a similar framework could have been developed for

force-based algorithms as well. This conclusion, however, only came up as an afterthought. A

notable drawback of the implemented algorithms is their slow performance. Possible solutions

and workarounds for this problem were discussed in chapter 5 and will have to be addressed in

future work.

Open Problems

Despite satisfying a number of use cases, the algorithms developed in this thesis do not cover

all related issues yet. Supporting arbitrary node sizes and avoiding overlaps in graph drawings
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is a difficult problem whose resolution would clearly make all implemented graph drawing al-

gorithms more valuable. Various articles have been written about this topic [23, 24, 29 and 41]

and might provide useful information for researchers and developers interested in implement-

ing possible solutions.

In TikZ, nodes and edges may have multiple labels attached to them. These labels may again be

arbitrarily complex nodes. Processing such label nodes with Lua algorithms is something that

is not supported yet. Future research efforts could go into extending the Lua framework by an

interface to access and modify labels in Lua algorithms. Computing an optimal label placement

is then another challenge that could be worked on, based on ideas presented in [37 and 39].

Another open problem is routing edges so that they are visually appealing and donot cross other

edges or nodes. The framework for layered drawing algorithms already provides an interface

for implementing dedicated algorithms for edge routing as one of the steps of the Sugiyama

method. Whether this interface is powerful enough remains yet to be seen. Possible edge rout-

ing algorithms that could be integrated into TikZ are presented in [3 and 27]. The spring and

spring-electrical algorithms, on the other hand, include no such interface and assume all edges

are to be drawn straight. An interesting approach that could perhaps be applied here is a tech-

nique called confluent drawings presented by Dickerson et al. [11].

Possible Areas of Improvement and Future Development

Aside from the big open problems described above, a number of straight-forward improvements

and extensions of both, the algorithms and the graph drawing engine are conceivable. They

range from changes in algorithms and underlying data structures to additional features that

are directly beneficial to users. The following list is not extensive but nevertheless gives an idea

of possible areas of future work.

Many of the implemented techniques either work with auxiliary graphs or temporary modify

the input graph itself. Creating copies of a graph, associating nodes and edges of the copy with

those of the original graph, as well as keeping track of temporarily removed, merged, and added

edges has proven to be complicated and error-prone with the graph class provided by TikZ.

This could be improved significantly by offering a high-level interface for managing different

versions of the same graphwithout the need to keep track of changesmanually. The conception

of such an interface is a major challenge on its own and its introduction would affect all areas

of the graph drawing engine, which is why it is left open as a future development task.

Something that definitely needs to be solved are the scaling issues ofWalshaw's spring-electrical

algorithm mentioned in chapter 5. These issues are most likely due to the absence of electric
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forces between adjacent nodes. A solution for this might be to always include electric forces but

scale them depending on the density of the input graph.

At the time of writing, only a few basic constraints are implemented such as fixed coordinates

for nodes in spring and spring-electrical layouts or horizontal clusters in layered drawings. In

order to make the developed algorithmsmore flexible, additional constraints are worth adding.

A number of constraints supported by both drawing methods are presented in [12] along with

canonical solutions to implementing them. The clustering feature of layered drawings could be

made more powerful in particular, for instance by introducing special clusters for the first and

last layer as well as vertical clusters to align nodes at the same x-coordinate.

Two elegant features supported by Mathematica [53] are special drawing techniques for loops

and multiple edges as well as routines for drawing the connected components of a graph inde-

pendently and arranging them in a grid afterwards. Clearly, having the same features in TikZ

would be useful.

Another plausible addition would be a TikZ macro to query the list of algorithms available for

the different steps of the modular layered drawing framework. Without such a macro, the only

way for users to find out about the alternatives they have is to browse the TEXMF directory tree.

The work presented in this thesis introduces graph drawing features valuable for users and

graph drawing researchers. It can be seen as an effort to not only provide effective graph draw-

ing algorithms that are applicable to a wide range of practical scenarios, but also as an attempt

to lay the groundwork for future research and algorithm development using TikZ. In addition

to the open problems and possible improvements discussed here, many alternative drawing

methods are yet to cover in order to exploit the full potential of graph drawing. This thesis

demonstrates how this can be done for two such methods—force based layouts and layered

drawings—and hopefully manages to spark interest in using TikZ as a tool for drawing graphs

and performing future graph drawing research based on the facilities it provides.
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