

Object-Based Environment for

Urban Simulation

OBEUS

User’s Guide

by

Itzhak Benenson and Vlad Harbash

bennya@post.tau.ac.il, vlad@eslab.tau.ac.il

©Environmental Simulation Laboratory

Tel Aviv University

2004

mailto:bennya@post.tau.ac.il
mailto:vlad@eslab.tau.ac.il

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 1

Content

 Page

0. From the developers 4

1. OBEUS installation and setup 5

1.1. Downloading OBEUS 5

1.2. Uninstall 5

1.3. Third-party components setup 6

1.4. The OBEUS core setup 6

1.5. Try it — It works 8

2. Before modeling with OBEUS 9

2.1. The concept of Object-Oriented Programming 9

2.2. Geographic Information System and Database Management Systems 10

2.3. Why we choose .NET and not Java 11

3. Nearest future of OBEUS development 11

4. Quick start with the Game of Life 12

4.1. Game of Life – A short introduction 12

4.2. Defining new OBEUS projects for the Game of Life 13

4.3. Model Tree 14

4.4. Cells – Entities of the Game of Life 14

4.5. Relationships 16

4.6. View Map and View Table options 19

4.7. Defining entity properties 20

4.8. Encoding behavioral rules 21

4.9. Behavior = Assessment rules + Automation rules 22

4.10. Setting up a Borland C# compiler environment 23

4.11. Formulating assessment rules 24

4.12. Methods generated by OBEUS 25

4.13. Formulating automation rule 26

4.14. Debugging behavioral rules 28

4.15. Time flow of events in the Game of Life 29

4.16. Synchronization mode 30

4.17. Before running the model – Change initial conditions 31

4.18. Run the simulation 33

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 2

4.19. From the asynchronous to synchronous mode of updating 34

4.20. Substitute layer of cell by another layer 35

4.21. What we have learned with the Game of Life 39

5. Quick start with the Schelling model of residential segregation 40

5.1. The Schelling model – An introduction 40

5.2. Using existing GIS layers to define new classes of entities 41

5.3. Defining and locating mobile entities 42

5.4. Indirect geo-referencing 43

5.5. General view of relationships between entities of the Schelling model 45

5.6. General view of population properties and population methods 47

5.7. Population properties of the classes of entities of the Schelling model 48

5.8. Updating population properties 49

5.9. Initialization routines 51

5.10. Immigration routines 52

5.11. Running the Schelling model 53

5.12. Patterns - OBEUS component we have yet to employ 53

5.13. What did we learn with the Schelling model? 58

6. OBEUS built-in methods and programming examples 59

6.1. The idea of automatic construction of methods 59

6.2. Conventions 59

6.3. Population methods 60

6.3.1. Create an entity of a given type XXX 60

6.3.2. Delete an entity of a given type XXX 60

6.4. Entity methods 61

6.4.1. Retrieve entities related to a given entity 61

6.4.2. Create new relationship for a given entity 63

6.4.3. Remove relationship of a given entity 64

6.4.4. Retrieve all relationships of a given entity 65

6.5. Transitive retrieve methods 65

6.5.1. Transitive retrieve via neighbors of the zero order 66

6.5.2. Transitive retrieve via neighbors of the first order 66

6.6. Note on programming style 67

6.7. Note on “How to begin” 69

7. OBEUS versus another model styles and systems 70

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 3

7.1. Why is working with OBEUS better than starting from scratch? 70

7.2. OBEUS versus Repast 70

8. Publications directly related to OBEUS 70

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 4

0. From the developers

We don’t like to write code. We do like to explore the world — with models that

simulate the world as a society of living as well as lifeless objects of different types,

objects that act and interact. After devoting 90% of our time to writing and

debugging the code used in our models – once in C and Pascal, then in Delphi and

C++, now in Java, and after staying awake the night before a conference with the

clear understanding that last month’s results were all caused by an improper coding,

we have decided to develop a system that reduces coding to just the things we think

are inventive: objects’ actions and interactions. This system that forces us to make

everything perfectly clear to others just as to ourselves, but without imposing any

limitations on our creativity.

We have based OBEUS on the achievements of computer science and state-of-the-

art software technology. Yet, you will not feel the presence of all these influences

when developing your model because OBEUS is intended for modelers’ convenience,

not to teach you computer science. The goal of object-based simulation is to make a

science out of a commonsensical view of the world as a collective of behaving and

interacting objects. For that purpose, we need commonsensical software – and here

it is. We will be happy to share the principles of OBEUS’s development with you, but

only if you are interested.

OBEUS© was designed by Itzhak Benenson and developed by Vlad Kharbash. It is a

product of work done at the Environmental Simulation Laboratory, the Porter School

of Environmental Studies, Tel Aviv University. Slava Birfur, also from ESLab, took

part in developing the current version.

OBEUS is based on the novel theory of Geographic Automata Systems, developed by

Itzhak Benenson and Paul Torrens (Utah State University) in their book

“Geosimulation – Automata-Based Modeling of Urban Phenomena” (Wiley, 2004).

The book presents the wide view of the modern urban modeling and simulation and

can serve an up-to-date guide for those who want to enter this exciting field.

We wish to express our gratitude to Shai Aronovich and Saar Noam, both from

ESLab, who conducted the initial experiments in OBEUS implementation during 2002.

Itzhak Benenson, Vlad Harbash

Tel-Aviv, December 2004

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 5

1. OBEUS installation and setup

1.1. Download

Download OBEUS_Istall.exe from www.geosimulationbook.com. It is a large 250Mb

file that contains the components necessary for OBEUS installation, most of which

are third-party shareware software programs (Table 1). You can download them

yourself, one by one, form Microsoft and Borland – we have simply combined them

into one file and built an interface that installs them one after the other.

Software component What is it? (Download file size) Provider

Windows Installer 2.0 Installation engine (1Mb) Microsoft

http://www.microsoft.com/downloads/details.aspx?FamilyID=4b6140f9-2d36-

4977-8fa1-6f8a0f5dca8f&displaylang=en

Internet Explorer 6.0 Microsoft Internet Explorer (15Mb) Microsoft

http://www.microsoft.com/downloads/details.aspx?FamilyID=1e1550cb-5e5d-

48f5-b02b-20b602228de6&DisplayLang=en

.NET Framework 1.1 .NET Environment (30Mb) Microsoft

http://www.microsoft.com/downloads/details.aspx?FamilyID=262d25e3-f589-

4842-8157-034d1e7cf3a3&displaylang=en

.NET SDK 1.1 .NET Developer Kit (100Mb) Microsoft

http://www.microsoft.com/downloads/details.aspx?familyid=9B3A2CA6-3647-

4070-9F41-A333C6B9181D&displaylang=en

MSDE MS SQL Server desktop edition (70Mb) Microsoft

http://www.microsoft.com/sql/downloads/2000/sp3.asp

MDAC 2.7 SQL Server driver for the .NET (10Mb) Microsoft

http://www.microsoft.com/downloads/details.aspx?FamilyID=9ad000f2-cae7-

493d-b0f3-ae36c570ade8&displaylang=en

Borland C# Builder Borland C# shareware compiler (25Mb) Borland

http://www.borland.com/products/downloads/download_csharpbuilder.html#

With standard ADSL connection, download takes about 15 minutes - enough time to

have a glance at this manual.

1.2. Uninstall

http://www.geosimulationbook.com/
http://www.microsoft.com/downloads/details.aspx?FamilyID=4b6140f9-2d36-4977-8fa1-6f8a0f5dca8f&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=4b6140f9-2d36-4977-8fa1-6f8a0f5dca8f&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=1e1550cb-5e5d-48f5-b02b-20b602228de6&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=1e1550cb-5e5d-48f5-b02b-20b602228de6&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=262d25e3-f589-4842-8157-034d1e7cf3a3&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=262d25e3-f589-4842-8157-034d1e7cf3a3&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=9B3A2CA6-3647-4070-9F41-A333C6B9181D&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=9B3A2CA6-3647-4070-9F41-A333C6B9181D&displaylang=en
http://www.microsoft.com/sql/downloads/2000/sp3.asp
http://www.microsoft.com/downloads/details.aspx?FamilyID=9ad000f2-cae7-493d-b0f3-ae36c570ade8&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=9ad000f2-cae7-493d-b0f3-ae36c570ade8&displaylang=en

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 6

The instruction is very short: after the installation, each third-party component of

OBEUS, as well as OBEUS itself will appear in the list of the programs in

Add/Remove programs control panel. You uninstall OBEUS components in a

standard way, then.

1.3. Third-party components setup

OBEUS_Istall.exe is a self-extractable file; you have to click it twice and extract to

some temporary directory. Execute the setup.exe file. The file scans the computer

for third-party applications listed in the above table. It might happen that some of

those applications, Internet Explorer 6.0, for example, are already installed in your

PC. The OBEUS setup presents the results of the scan in the dialog box (Figure 1),

where the necessary installation components are enabled and checked.

Warning: To execute .NET programs you need to install Internet Explorer 6.0 or

above. This is not that bad even for those who hate Microsoft. Simply don’t set MS

Explore default browser after the installation, if you’re in favor of Mozilla&C0.

Click the “install” button (Figure1.1), and Setup installs the applications selected,

one by one. You will have to click the Next button several times during the

installation and answer No to the question “Would you like to reboot the computer

right now?” Clicking “Yes” does not endanger the install process – should you do so,

activate execute

setup.exe after

rebooting and it will

install the remaining

components.

Figure 1.1: Initial

installation screen

It takes about 20 minutes to install all third-party components.

1.4. The OBEUS core setup

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 7

After the third-party components are installed, you have to set up the location of

OBEUS itself (Figure

1.2). Select the

installation folder. To

make it accessible to

all users of your PC,

choose Everyone and

then click Next.

Figure 1.2: Select

Installation folder

It takes about a minute and 32Mb of disk space to install OBEUS (Figure 1.3).

Figure 1.3: Installation

Complete dialog

Click the “Close” button to exit the installation. Click Restart when OBEUS asks you

to at the end of installation.

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 8

Shortcuts to OBEUS can be placed automatically on the desktop and in the

Start>Programs menu.

1.5. Try it — It works

Click the OBEUS icon and run the OBEUS. Then, click Project Import project in

the OBEUS menu. Go to the OBEUS /Hello/ directory and when importing call the

project as Hello. Select

Project Open and choose

Hello – the only entry in the

list. You now see the Model

Tree window of the Hello

project (Figure 1.4).

Figure 1.4: Model tree for the

Hello project

Push Go button and OBEUS will prepare environment for the Hello project. Then

push Run button on the new tool bar that appears. The result should be as shown in

Figure 1.5. Contact us if something seems you wrong.

Figure 1.5: If you have reached

this stage – OBEUS is properly

installed and works

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 9

2. Before modeling with OBEUS

2.1. The concept of Object-Oriented Programming

Object-Oriented Programming (OOP) is a computer programming paradigm that

emphasizes the following aspects:

• Objects - The basis of modularity and structure in an object-oriented computer

program.

• Abstraction - Each object in the system serves as an abstract "actor" that can

perform work, report on and change its state, and "communicate" with other

objects in the system, all without revealing how these features are implemented.

A variety of techniques are required to extend an abstraction. The most important

for OBEUS users is

• Encapsulation – Only the objects’ own internal methods are allowed to access its

state. Each class of object exposes an interface to other objects that specifies

how the other objects may interact with them.

• Polymorphism - Invoking an operation that refers an object will produce behavior

depending on the actual type of the referent, that is different behavior for

referents of different types

• Inheritance – New classes can be defined as extensions of existing classes

OOP is often called a paradigm to stress that it changes the way in which

programmers and software engineers think about software and develop it.

To implement the OOP approach, one needs an OOP language. C# is a modern OOP

language that provides all the expected features: classes, interfaces, inheritance,

polymorphism, encapsulation, etc. In addition, the C# language offers some new and

powerful innovations.

For more information about OOP see:

http://www.samspublishing.com/articles/article.asp?p=101373

http://www.brpreiss.com/books/opus6/html/page588.html

http://www.intel.com/cd/ids/developer/asmo-
na/eng/technologies/dotnet/using/dotnetapps/20012.htm

http://www.samspublishing.com/articles/article.asp?p=101373
http://www.brpreiss.com/books/opus6/html/page588.html
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/dotnet/using/dotnetapps/20012.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/dotnet/using/dotnetapps/20012.htm

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 10

2.2. Geographic Information Systems (GIS) and Database

Management Systems (DBMS)

OBEUS is based on GIS/DBMS view of the reality, which can be illustrated by the

urban GIS, with layers (tables) of houses, public spaces, streets, regions and

citizens, all related spatially via location and non-spatially via common keys (Figure

2.1, taken from Benenson, Omer, 2003). OBEUS can be considered as a dynamic

GIS/DBMS – in addition to standard functionality, the objects of the OBEUS models

can change their properties and location it time. New layers/tables of data, as well as

aggregate views of the results are constructed, modified and stored by the model.

Figure 2.1: Typical view of the high-resolution
urban GIS.

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 11

2.3. Why we choose .NET and not Java

This is an extension of Java idea, but better

3. Nearest future of OBEUS development

You have downloaded the alpha-version of the system. While we are applying it for

our own modeling work for several month already, its functionality is yet ‘almost

completed’, say nothing regarding bugs we ‘still have’, poor output, etc., etc. The

main issues we plan to develop during nearest months (in order of our preferences)

are as follows:

• Improvement of the map and graph output, including Replay option

• Enabling work with point and line entities;

• Development of additional general methods, such as a distance between two

entities

• Development of built-in methods for the specific components of OBEUS, such as

establishing initial conditions.

• Finalizing OBEUS components that deal with spatial self-organization;

• Development of built-in methods for specific types of models, such as the models

of vehicle and pedestrian traffic.

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 12

4. Quick start with the Game of Life and Schelling model

Usually, we decide if the system is worth using after one or two attempts to do

something simple but meaningful. If it goes smoothly, we continue to study the

system; the chance that we won’t use it drops to zero after less than an hour of

experimentation. So, let’s try doing something simple in OBEUS now, right after its

installation. Our plan is to present the system in an hour, and then you could decide

yourself whether to proceed or to uninstall (see 1.2 for instructions).

We have chosen two well-known models for this quick start. We begin with the Game

of Life just because it takes one page to remind you of this simple but intriguing

model. The second OBEUS test is done with Schelling’s model of residential

segregation (Chapter 5).

Note the numerous screen images inserted in the text below. These images are often

only part of the full display – don’t worry about something important beyond the

image presented - we present all the relevant information.

4.1. Game of Life – short introduction

The Game of Life was invented by John Conway. His original intention was to design

a simple set of rules that would produce a population’s non-trivial spatial dynamics

on the microscopic level (Berlekamp, Conway et al. 1982). Although aware of the

computational universality of Cellular Automata (CA) and its ability to generate

complex spatial structures, Conway looked for rules that while simple, could

generate population dynamics that were not easily predicted or anticipated.

After a great deal of experimentation, Conway settled on a set of rules for a 2D

‘population’ of cells in a CA model; these cells could be in one of two states—dead

(0) or alive (1). There are three rules to the Game of Life: A cell remains alive, dies,

or is reincarnated depending on the number of live neighbors within its 3x3 Moore

neighborhood (Figure 4.1).

Rule 1: Survival—a live cell with exactly two or three live neighbors stays alive.

Rule 2: Birth—a dead cell with exactly three live neighbors becomes a live cell.

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 13

Rule 3: Death owing to overcrowding or loneliness—in all other cases, a cell dies, or

if already dead, stays dead.

These rules should be applied to all cells simultaneously.

a b c d

Figure 4.1: Illustration of Game of Life rules: A living cell in the center of a 3x3

Moore neighborhood (a) survives if it has two or three neighbors; (b) dies from

overcrowding if it has four or more neighbors or from loneliness if it has only one

neighbor. A dead cell in the center of a 3 x 3 Moore neighborhood (c) is born anew if

it has exactly three neighbors; (d) remains dead otherwise

Surprisingly, the simple rules of the Game of Life support fantastic variation in

simulations of growth patterns. Because the rules are so simple, the model can be

reproduced quite easily and an amateur can get a taste of the complexity of the

model from countless Internet sites devoted to ‘Life’ (Summers, 2000; Silver, 2003).

I recommend www.math.com/students/wonders/life/life.html for a general

introduction, while a good stand-alone version of the model can be obtained online at

www.psoup.math.wisc.edu/Life32.html

4.2. Define new OBEUS project for the Game of Life

We will now formulate the Game of Life in OBEUS. As in any system, beginning a

new model means first defining a new project and giving it a name - ‘Game of Life’ in

our case. To do that in OBEUS, you click New button and then type the project’s

name in a dialog box (Figure 4.2).

http://www.math.com/students/wonders/life/life.html
http://www.psoup.math.wisc.edu/Life32.html

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 14

Figure 4.2: Open new

project - sequence of

action

The default synchronization mode of OBEUS models is Sequential. We will talk

about this later; at this stage simply don’t change the choice. If you follow this text

with OBEUS turned on, you probably noticed that it took OBEUS quite a time (several

seconds with standard configuration of your computer) to define a new model. What

happens during these seconds of computer time? All this time is spent on

construction of the database where all the future model’s elements will be stored. We

will discuss the advantages of this form of model storage in the next chapter. OBEUS

is based on the Microsoft SQL Server database management system, and all its

tables are created in SQL format.

4.3. Model Tree

After the database tables are

defined, we can begin formulating

the Game of Life model. It is

done via Model Tree that opens

automatically when you define a

new model (Figure 4.3).

Figure 4.3: Initial state of the

Model Tree of the Game of Life

4.4. Cells – entities of the Game of Life

In OBEUS, modeled systems are described as consisting of automated objects –

entities - of different types that behave and interact. Note, that OBEUS is an

inherently Object-Oriented system; consequently, in what follows you will always

define classes of entities. The automated objects of the Game of Life are cells; you

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 15

thus have to define the entities of a type Cell.

To define class of Cells, you click the Entities entry in the right branch of the model

tree and then push the Add button at the bottom. A new dialog box pops up; you

have to type in it the name of the new class of entities. Let us follow programming

tradition and call new entity just ‘Cell’.

In the same dialog box you have to set up the entity type, which is the basic

property of OBEUS objects. Entities in OBEUS can be of one of two types – Mobile,

which are generally labeled Non-fixed, and immobile, which are labeled Fixed.

OBEUS is an environment for spatial modeling, and you work in it with entities

located in space. This is the reason why we have to distinguish between fixed

entities, whose location does not change in time (say, houses) and non-fixed

entities, which can relocate (say, householders). We will return to the reason why we

prefer the abstract labels “fixed/non-fixed” to labels such as, say, “mobile/immobile”

in the next chapters.

‘Game of Life’ cells are fixed. OBEUS allows two ways of getting information about

fixed entities. The first is to base on an already existing GIS layer, the features of

which can be considered as separate entities of a class you defined. The second is to

build and spatially arrange fixed entities on the spot, when defining them. In the

latter case, you will be limited to a rectangular grid in the spatial arrangement of the

entities. In OBEUS,

these two ways are

labeled as Fixed

(New) and Fixed

(Open) (Figure 4.4).

Figure 4.4: Dialog

box of Entity

definition

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 16

If an entity is defined as Fixed (New), this means that we will spatially arrange the

new type’s entities as a rectangular grid; if defined as Fixed (Open), it means we

will work with the existing GIS layer.

In this starting example we will use Fixed (New) option and thus define new grid

(Figure 4.5). When using square grids, we have to define two properties: first its

dimensions, second the meaning of neighborhood relationships, necessary to

implement the rules of the Game of Life as presented in Figure 1. Note that

according to the definitions of

the Game of Life rules (Figure

4.1), cell’s neighborhood is

defined as a Moore 3x3 one.

Thorus option is explained in

the next section.

Figure 4.5: Fixed entities of the

Cell class are arranged as the

10x10 grid using the Fixed

(New) option.

4.5. Relationships

The definition of a cell neighborhood above is not a marginal activity related to the

Game of Life, but is directly related to the very basic property of OBEUS – the way

the system understands and works with relationships between the entities. Definition

of the cell’s neighborhood in the Game of Life is an example of defining these

relationships.

The notion of the neighborhood is probably well known to you; there is also nothing

impressive in the ability of OBEUS to construct a cell grid and to define the

neighborhood relationships holding between the cells on the initial stage of Game of

Life construction. Each system aimed at simulating Cellular Automata dynamics

enables these options and, as a rule, displays the grid once constructed.

The difference between OBEUS and other systems lies in how these relationships are

viewed and how your work with them. Standard CA models apply definition of

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 17

neighborhood each time it is necessary to retrieve data on a given cell’s neighbors;

they do that according to the grid coordinates of the cell. For example, if a Moore

3x3 neighborhood (as in Figure 1 of the Game of Life) is defined and the neighbors

of the cell located in the left upper corner of the grid are considered, the system

takes the cell’s coordinates – (1, 1), calculates its neighbors’ coordinates – (1, 2), (2,

1), and (2, 2) and, in the case of the Game of

Life, retrieves the information as to whether

these three neighbors are dead or alive. If we

consider cell (i, j) located inside the grid, that is

i and j satisfy 1 < i, j < N, the coordinates of its

neighbors are (i ± 1, j ± 1) and the number of

neighbors is eight (Figure 4.6).

Figure 4.6: Illustration of the neighborhood and

neighbors’ retrieving in the cellular automata

OBEUS works with neighbors differently. When you define the Cell entity, not only is

the layer of cells constructed and stored, but, in addition, a table of neighborhood

relationships is also created and stored. In this table, each pair <cell, neighbor>

defines a row. For example, in the case of a Moore 3x3 neighborhood, for left upper

corner cell (1, 1) four rows are created: <(1, 1), (1, 1)> (it is convenient to consider

each entity as a neighbor of itself), <(1, 1), (1, 2)>, <(1, 1), (2, 1)>, and <(1, 1),

(2, 2)>. In case of internal position of a cell, the

number of rows created is always nine. The first

pair is <(i, j), (i, j)>, and then, if we begin from

the left bottom neighbor and go counterclockwise,

the pairs are: <(i, j), (i – 1, j - 1)>, <(i, j), (i, j -

1)>, <(i, j), (i + 1, j - 1)>, and so on until the last

<(i, j), (i – 1, j)> is built (Figure 4.7).

Figure 4.7 – example of the relationship table rows

constructed for the corner cell and a cell in an

internal position

We will explain the advantages of the tables for representing neighborhood

relationships in the next chapter. Just to note– the form of the relationship table

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 18

does not change when we substitute the regular grid of the Game of Life by the

irregular coverage of land parcels, where the number of neighbors varies from parcel

to parcel!

When the Thorus option is marked, a grid is built on a thorus, and the cells on the

boundary of the grid become neighbors of the

cells on the opposite boundary (and the

number of the neighboring cells becomes

eight for each cell). For example, the cell with

coordinates (1, 1) becomes the (Moore)

neighbor of a cell (1, n), (1, n-1), (n, 1), (n-1,

1) and (n, n) (Figure 4.8).

Figure 4.8: Two steps of building Thorus from

a planar 7x14 grid

By applying the Thorus option, we eliminate the problems resulting from different

structure of the neighborhood of the cells on the boundary of a grid and inside it; the

Thorus view of the cell grid is often implemented in the CA research to avoid possible

‘boundary effects’.

In OBEUS, once the dimensions of the cell grid and its neighborhood are defined, two

tables of the information are constructed. The first is the cell layer, which is stored in

the GIS format, and the second is the relationships table. Creation of the table of

relationships is indicated in the

“Relationships” part of the

right branch of the tree, just

below the “Entities” (Figure

4.9). We will discuss the

meaning of the “FollowerID”

and “LeaderID” later in this

chapter.

Figure 4.9: Model Tree after

the grid is defined.

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 19

Now it is the time to push the Save option of the OBEUS menu. Some actions of

OBEUS, including construction of the model database, are fulfilled completely only

after Save is done. Save your work from time to time to be on the safe side, this

step never causes any damage to the project.

4.6. View Map and View Table options

When the GIS layer of cells has

been defined, we can view it by

choosing the Map view option,

activated by right clicking on

the ‘cell’ entity in the model tree

(Figure 4.10).

Figure 4.10: View options of the

entity data

The View map option presents the cell grid constructed during the previous steps

(Figure 4.11).

Figure 4.11: The map of a 10x10

cell grid constructed with the

OBEUS

The Table View option opens the table of cell properties. The cells have no

properties at this stage, and their only attribute, as you see in Figure 4.12 is cell

identifier. The value of the identifier is unique and it is used for internal OBEUS

operations (to remind - OBEUS is a database management system). You can use this

identifier for your own purposes, but OBEUS will not allow you to change it.

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 20

Figure 4.12: attributes of the cell

entities.

As we talked above, one of the consequences of the OBEUS way of working with

neighborhood relationships is that these data are stored as a table. This table can

also be viewed with the right-click option when we place the mouse on the CellCell

relationship, which, as we discussed above, was created automatically (Figure 4.13).

Figure 4.13: The ‘Table view’ of

the relationships table.

4.7. Defining entity properties

Up to here, we have been occupied in establishing the structure of the Game of Life

space. Now let us define the cell properties. The cell we are going to work with

actually has only one property with two values – it can be either ‘Dead’, or ‘Alive’.

You surely know that a property having two possible states is a Boolean property. To

define the property, which in programming tradition, we will call ‘Alive,’ and which

will keep information on whether the cell is Dead or Alive, you have to focus on the

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 21

Cell entity at the right-hand part of the model tree and then push the Add button

below it. The dialog box in

Figure 4.14 will pop up. We

then define the new property

Alive of type Boolean and

think of that property as being

TRUE when the cell is ‘Alive’

and FALSE when the cell is

‘Dead’.

Figure 4.14: Definition of the

‘Alive’ Boolean property

Let us note another important part of the property dialog box. As you can see in

Figure 4.14, the bottom line of the box indicates whether the property will be

displayed on the map during the model run. As it is seen in the figure, we mark

‘Alive’ property for display checking “Map” checkbox.

4.8. Encoding behavioral rules

We don’t need any more definitions for the cell objects of the Game of Life – the

cells, their spatial arrangement and relations are ready to use. The only thing we still

lack is the set of three rules presented in Figure 4.1, that actually define the specific

Cellular Automata model we’re going to investigate - the Game of Life. How do we

formulate these rules with OBEUS? Here we come to the other basic feature

characterizing use of OBEUS – you, the modeler, have to encode these rules. To

do so, you have to use one of the .NET languages - C#, C++, or Visual Basic. As

we will show later, OBEUS helps you do that by providing several basic methods that

are automatically generated after you have defined your entities and relationships.

By now, you have probably enjoyed working in the interactive mode by using GUI.

Putting it generally, you were able to define the structure of a model, its entities,

relationships between them and the properties of the entities and relationships. The

three (very algorithmically simple) rules of the Game of Life have to be formulated

freely, by writing them explicitly.

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 22

The free style of rule formulation is chosen in OBEUS on purpose – the essence of

the modeling style we follow lies in the rules of the entities’ behavior; the modeler’s

achievement rests in formulating the rules in a way that no one else has done

before. By aiming at universality, i.e., the ability to formulate any object-based

model, OBEUS assumes that the modeler wants complete freedom when formulating

the rules of objects’ behavior. Therefore, OBEUS does not have ‘predefined’ sets of

rules; you, yourself, create the set of rules that reflects behavior of the objects in

your specific model.

OBEUS is a .NET system; that is why the user can use any .NET language for

formulating rules of objects behavior – C++, VB.NET or C# currently being the most

popular. We also prefer C#, which means that all our examples are programmed

with this language. OBEUS itself is written in C#. Another advantage of using C# is

the Borland C# compiler, which can be downloaded at no cost (see Installation

section); we also utilize the Borland C# compiler in this text. If you have Microsoft

.NET studio installed (see Installation section) and plan to use VB.NET of C++.NET,

consider the code given below as the algorithm’s description.

4.9. Behavior = Assessment rules + Automation rules

We are now ready to begin coding the (very simple) Game of Life rules in C#. But

before doing so we should consider these rules with respect to one aspect that is

important for more than OBEUS: which of the three rules we presented in section 4.1

aim at defining actual acts of automation and which are tools for assessment of

‘what’s going on’ in order to apply the automation rule. This distinction is not

completely formal, while important for establishing clear model structure.

In the Game of Life, this separation of automation rules into ‘assessment’ and

‘automation’ is evident: the automation - change of cell state - is determined by the

number of ‘Alive’ neighbors, and calculation of this number is definitely an

assessment rule. A cell’s automation act involves either continuing with its previous

Dead/Alive state or changing it. That is, in a Game of Life you have one assessment

rule: calculation the number of ‘Alive’ neighbors. Game of Life automation rule

describes the change of cell state after the assessment has been completed.

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 23

To define the rules you have to

focus on the Behavior entry of

the Cell entity, and press the

Add button at the bottom-right

(Figure 4.15). When you press

this button, the Borland C#

compiler is opened.

Figure 4.15: Initial situation for

coding behavioral rules

We must repeat that the use of OBEUS does demand programming skills; if you have

never programmed, you have to spend some time (two weeks on average) obtaining

a minimal level. So, if you haven’t reached this preliminary programming level by the

time you read these lines, I advise put OBEUS aside and spend a couple of weeks

combining the Borland C# tutorial with one of the books on C# programming listed

in the Introduction section of this Help. Whatever, these two weeks will not be worn

out, even if you would not be back to OBEUS any more.

4.10. Setting up a Borland C# compiler environment

Borland C#, like any other compiler, is a complicated software system containing

numerous options aimed to cover the needs of very different users, ranging from

novices to experts. Luckily, nowadays all programming environments are very

similar. Whatever is the one you used to before, you will immediately recognize quite

a lot of features you have already become used to, in the Borland C#.

To continue with this quick start, let us set up some of the C# compiler’s features,

just so we can proceed with the shared start situation. It will be preferable for you to

have a computer with a C# environment open when reviewing the next few pages.

There are many ways you can customize the C# compiler. Below we use the ‘default’

desktop. To organize your desktop in this way, follow the menu options as shown in

Figure 4.16.

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 24

Figure 4.16: Customization of

the Borland C# environment.

After you customize Borland C# compiler, click Behavior.cs in the bottom line of the

rightmost window in Figure 4.16. Remember, ‘.cs’ is an extension of the C#

modules, and the two other .cs modules in the list of the rightmost window are

internal OBEUS modules. You can see them, but don’t change there anything!

4.11. Formulating assessment rules

Let us now concentrate on the main compiler window - the one in which you write

the code of the Game of Life rules. As you can see in Figure 4.17, this window’s

content is divided into two regions: ASSESSMENT RULES and AUTOMATION RULES;

you open either of them by clicking ‘+’ at the right of their titles. These regions are

for your convenience only, if you write assessment rule in AUTOMATION RULE

region, they will work all the same. I do recommend using the regions; it makes your

program more ‘structured’, just as OOP paradigm demands. Push Save in OBEUS

menu before you continue, to be sure all automatically generated components are

ready for use

Figure 4.17: The initial state of

the Behavior.cs module

Let us now formulate assessment and automation rules of the Game of Life.

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 25

In the case of the Game of Life, there is one assessment rule only, and this is its

(very short and very simple) code, which you have to type in C# window of the

Behavior.cs module:

private int NumberOfAliveNeighbours(Cell cell)
{

int numberOfAliveCells = 0;
Cell[] cells = cell.GetRelatedCells();
if(cells != null)

 {
 foreach(Cell currentCell in cells)
 {
 if(currentCell.Alive)
 {
 numberOfAliveCells++;
 }
 }
 }
 return numberOfAliveCells;
 }

This is how this code looks in the Behavior.cs C# module (Figure 4.18). As easily

seen, this code does nothing

but calculate the number of

cells in the ‘Alive’ state. Note

cell.GetRelatedCells() method,

which we will discuss

immediately below

Figure 4.18: The Game of Life

assessment rule shown in an

ASSESSMENT RULES region of

the Behavior.cs C# module

4.12. Methods generated by OBEUS

It is very important to note here the fundamental property of OBEUS – its ability to

generate for you several basic methods depending on the classes of entities defined.

One of these methods - GetRelatedCells() - is employed in the above piece of

code. Let us explain this ability in more details.

As in any object-oriented programming environment, when you type ‘cell.’ (cell and

a point after it) in a Behavior.cs window, after the dot is typed the parameters and

methods of the Cell class can be seen and selected from the pop-up window that

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 26

appears on the right click. If you’ve already done that for the Game of Life we’re

developing in this section, you will see, for example, the ‘Alive’ property as one of

the properties of the Cell entity.

As you know, each entity and relationship defined in OBEUS with GUI turns into

software class. Some of these classes, as Cell are defined by the modeler, while

some, as CellCell class of relationships, which is necessary to complete the

definitions made by the modeler, are defined automatically. In Object-Oriented

modeling environment the properties and methods of a class are automatically

available when you employ its object. Specifically, for the Game of Life, entities of

the Cell class have property Alive we have defined via GUI, and, thus, Alive

becomes available after dot is typed.

But this is not all! Now comes the crucial feature of OBEUS – in the box that pops up

when you type ‘cell.’, you will see a method we did not define before –

GetRelatedCells(). It is used in the third line of an assessment rule code above,

and its meaning is intuitively evident – to obtain all the cells related to a given cell

for further analysis, calculation of the fraction of the ‘Alive’ cells among them, for

example. This is what OBEUS gives to you – the set of built-in methods which are

‘self-evident’ and which you usually code yourself in every model you develop! As

you will see when working with OBEUS, automatically constructed methods of this

kind enormously reduce the amount of code you have to write when formulating

your model. In addition, the methods generated by OBEUS are optimized, and so the

time cell.GetRelatedCells() takes for execution is much less compared to the

double loop you might use for retrieving the Moore neighbors of a given cell. The list

of the automatically generated methods is given in Chapter 9.

To catch the bugs of the code immediately after you do them, I recommend

compiling the assessment rule just after it is formulated in C#. Push F5 (Build) of

the Borland C# environment for that, and fix errors if found. After successful

compilation the assessment method NumberOfAliveNeighbors() becomes

available for use for further development, as one more method of the Cell class.

4.13. Formulating automation rule

After we have coded (the only one) assessment rule of the Game of Life, we have to

code its automation rule, which simply reflects the three substitution options

between the cell’s Alive and Dead states. Now pay attention as to how the

assessment rule we formulated above - NumberOfAliveNeighbors() - is employed

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 27

when formulating the automation rule:

public void A_MainStrategy(Entity entity)
{

Cell cell = (Cell)entity;
 int numberOfAliveCells = NumberOfAliveNeighbours(cell);
 if (numberOfAliveCells <= 1)
 {
 cell.Alive = false;
 }
 else if (numberOfAliveCells == 2)
 {
 }
 else if (numberOfAliveCells == 3)
 {
 cell.Alive = true;
 }
 else
 {
 cell.Alive = false;
 }
}

Figure 4.19 presents this piece of code written in the Behavior.cs module, within

the AUTOMATION RULE

region:

Figure 4.19: The Game of Life

automation rule shown in an

AUTOMATION RULES region

of the Behavior.cs C# module

Notice that unlike the arbitrarily number of assessment rules you can formulated in

OBEUS model, the automation rule in OBEUS is unique. It also always has a unique

name - A_MainStrategy(). If you want to employ another automation rule, you

have to rename it into A_MainStrategy().

Don’t forget Build (push F5) the Behavior.cs after you type the behavioral rule.

Figure 4.20 presents the final state of the model tree of the Game of Life, with

contains all the elements defined above.

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 28

Figure 4.20: The model tree of

the Game of Life, after model

entities, relationships, and

assessment and automation

rules are defined

Let us note that the way we coded assessment and automation rules of the Game of

Life above is only one of several possible; the same rules can be formulated

according to your programming style, while for the Game of Life it’s hard to

imagine essential variations. But note that in order to compare your formalization of

the Game of Life with someone else’s formalization, you have to compare only

these two pieces of code – assessment rule and automation rule. Every modeler

knows that externally identical models might apply similar but not identical rules, to

say nothing about the situation when the model works, but does something different

from what you, the creator, wanted of it! One of the goals of OBEUS is to remedy

just that – to make the models comparable and transferable at the level of objects

and behavioral rules only.

4.14. Debugging behavioral rules

‘There is no software without bugs’ – if you’ve written code even once, you will

readily subscribe to this claim. As we already mentioned twice, at any stage of

writing the code of the assessment or behavioral rules of the Game of Life or any

other model in OBEUS, you may try to ‘build’ this module by clicking the Build – F5 -

option in the Borland C# environment and fix the bugs according to the error

information. OBEUS accepts all syntax and runtime debugging possibilities – break

points, variables watch, etc. As we’ve repeatedly said, to use all them you have to

have some programming experience. If you feel uncomfortable writing code, I

remind my suggestion to leave OBEUS for a while, spend a couple of days with the

Borland C# tutorial and help, and build some programs that are not related to the

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 29

model you’re going to develop with OBEUS, just to get used to C#.NET

programming.

After the assessment and automation rules are coded and the compilation bugs

fixed, make a final save of your Game of Life code (Borland C# will remind if you

forgot) and close the Borland C# windows. I also suggest pushing the Save option

of the OBEUS environment just to confirm that the final version of the project is

indeed saved.

4.15. Time flow of events in Game of Life

Can we run the Game of Life now? Not yet, although you’ve done almost everything

you need to build a model of the game. What OBEUS still lacks is a definition of how

the events in your model are carried out in time. In other words, you have to

establish how time will be treated in the model. To initiate this component, click the

‘Flow’ option on the OBEUS menu (Figure 4.21).

Figure 4.21: Time flow tool of the

OBEUS

The Flow Design dialog box is then opened as shown in Figure 4.22.

Figure 4.22: Flow Design dialog in the

Game of Life case

Putting it briefly, the time flow defines two aspects of a model, both related to the

modeler’s understanding of how time is processed in the model. The first aspect –

the order of updating entities of different classes is irrelevant for the Game of Life,

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 30

because there is only one class of entities. Only the second aspect is thus relevant,

namely, the synchronous or asynchronous view of updating of entities.

The two components of time management are established in different parts of the

dialog, and the order between entities of different kinds must be always defined first.

To set the (only one in case of Game of Life) levels of updating and to mark for

OBEUS that these are Cells that should be updated you click

the New Level option, and get the result as shown in Figure

4.23:

Figure 4.23: Definition of a new level in the time flow design

Then you have to focus on the only element of the left box in the Figure 4.22 –

CellPopulation and push the button with ‘>>’ on it, to get the result shown in

Figure 4.24. To note, we have not defined what Population means yet, but the

intuitive understanding is

sufficient at this stage. We will

talk about population later,

when discussing the Schelling

model of residential dynamics.

Figure 4.24: The time flow of the

Game of Life

We are ready now to establish the synchronization mode of the Game of Life.

4.16. Synchronization mode

Generally, there are two basic modes of updating in discrete models – parallel and

sequential. In the parallel mode, the system is ‘frozen’ at the beginning of the time

step, and when certain behavior rule accounts for the entities’ states, these states

are taken from the frozen situation. The changes that occur during the current time

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 31

step are stored until its end, when all the cells are simultaneously updated.

In the sequential mode, everything that happens with the certain entity immediately

becomes available to the other entities in the system. The modeler thus has to define

the order in which the entities are updated. Usually, the order is random or

determined by some characteristic of the entities.

As you can see in Figure 24, the sequential mode with random order of updating is

now selected for the Game of Life. That means that at the beginning of the iteration,

the cells will be randomly ordered, and once started, the first cell in this order will be

taken, the rules of the game will be applied to it, then the second, and so forth.

Beginning with the second cell, the information this cell retrieves from the system

will be different from that existing at the beginning of the iteration because in the

sequential mode all the changes will be immediately available. As we will see soon,

the mode of cell updating is very important for the Game of Life.

Close the flow dialog; the only action left is to run the model, while you can still

change initial conditions before that.

4.17. Before running the model – Change initial conditions

You have defined the cell entities, relationships between neighbors and the rules of

the Game of Life. The next stage is to run the simulation. Before running Game of

Life model you still might change model’s initial conditions.

Establishing initial conditions is an important and necessary step of every simulation.

The basic way to do that in OBEUS is to enter section called Initialization in the left

branch of the model tree and to write in C# the rules that initialize model entities

and relationships in the beginning of every run. For example, we might want to begin

with the chessboard assignment of ‘Alive’ and ‘Dead’ states to the cells. We will

return to the Initialization section in full in the next chapter, when talking about

Schelling model. Right now we only want to make a few cells ‘Alive’ and then watch

the system’s dynamics. Therefore, we begin with a grid where all the cells are in a

default - “Dead” - state set up by the OBEUS when the 10x10 grid of cells was

defined, just because default value of the Boolean property is FALSE. Yet, we cannot

begin with all ‘Dead’ cells – according to the rules of the Game of Life they will

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 32

remain so forever.

To change the state of some cells from ‘Dead’ to ‘Alive’ open the map of cells via the

model tree (Figure 4.11) and push an arrow tool on the top of the map. Click cells

which you want to change with the Control key pressed and choose Change

selected data option from the Right-Click mouse menu (Figure 27a). The table of

the attributes of the selected cells is shown up, and you can change the ‘Alive’

attribute from False to True (Figure 4.25b).

Figure 4.25: Attributes of the selected cells (a) can be changed (b) and by that new

initial conditions are established. The result is shown in Figure 4.26.

Figure 4.28: The result of changing Alive attribute

of ten selected cells from FALSE to TRUE

To finalize the project we have to define model’s output – how frequently we want to

store the wealth of information the model produces. At this stage we simply use

OBEUS defaults for we have already worked a great deal in the quick start with so

simple a model.

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 33

4.18. Run the simulation

Glick GO icon (Figure 4.26) the windows of the map and graph windows that you

demanded when defining the model (Figure 4.27)

Figure 4.25: GO option

Initial state of OBEUS before the model is run includes two new elements: Runtime

dow)

Figure 4.26: Initialization of the Game

We will not talk about the latter in this chapter. Regarding the former, Run option

e)

t = 0 t = 1 t = 2 t = 3 t = 4

Figure 4.29: The Game of Life model with asynchronous time flow. Screenshots of

toolbar and the message window

(Black window below the map win

(Figure 28)

of Life

(first from the left) runs the model, Pause (second from left) makes possible to

pause execution, Step (third from left, looks as an arrow), and Stop (the last on

cancels the run and closes all model window. To run the model again after pressing

Stop you have to begin with GO. Figure 4.29 presents several first map screenshots

of the Game of Life model:

the Initial conditions (t = 0) and at t = 1, 2, 3, and 4

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 34

Hmm… where are the gliders and the other nice emerging patterns we’re familiar

with? Did we choose the wrong initial conditions or wrongly formulate the model

he

g

Ou e

delayed discussion of the essential differences between the Game of Life with

 this

ons of the model – with

the parallel and sequential time flow, and compare their outputs. To do that,

 with

time flow mode. The order of cell updating in the model was also default - random.

s

The change of the time flow demands minor changes in the C# text of the model and

then you have to recompile it. In the case of the Game of Life there is one line one to

lls = cell.GetRelatedCellsRO();

e method GetRelatedCells)

rules? Not at all! The lack of the patterns is not an error. It is the consequence of t

sequential mode of updating we chose when setting up the model flow.

4.19. From asynchronous to synchronous mode of updatin

r goal at this stage is to demonstrate the use of OBEUS. We have therefor

synchronous as opposed to asynchronous application of the behavioral rules. At

stage we will simply compare the outcomes.

Important note: you might want to keep both versi

store the current (sequential) version of the Game of Life under different

name in the model database before you change the time-flow mode (Figure

30). See more information on

versioning in the next chapter.

Figure 30: Save as button

Until now, we dealt with the model the default - sequential (asynchronous) –

To change this order to a parallel (synchronous) one, we have to call on the model’

time-flow dialog again. To do that, we have to stop the model, press Flow button,

and change the Sequential option to Parallel (Figure 4.31). Note – there are ways

of establishing the order of cell updating in sequential mode (Figure 31), but will

delay this discussion to the next chapter.

change – go to Cell Assessment Rules, where you have the C# implementation of

the only assessment rule of the Game of Life (Figure 4.18) press Edit and change

the line

Cell[] cells = cell.GetRelatedCells(); into

Cell[] ce

(Simply add “RO” at the end of the name of th

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 35

Figure 4.32: Time flow dialog

box of OBEUS with Parallel

ption chosen

ure 4.31)!

 t = 0 t = 1 t = 2 t = 3 t = 4

Figure 4.32: The Game of Life model with synchronous time flow. Screenshots of

the Initial conditions (t = 0) and at t = 1, 2, 3, and 4

t of

the parallel updating. Difference in results of the same model when parallel and

e you should think about.

OBEUS makes it possible to compare the outcomes for these two time-flow modes.

Let’s exploit the Game of Life to demonstrate one more basic and useful feature of

OBEUS. As you will remember, when constructing the Game of Life we built a 10x10

fiel d automatically

obtained the table of relationships, where each row represented a pair – <ID of a

o

Repeat Go and Run actions, and the well-known pattern does appear (Fig

You will not forget now that the famous patterns of the Game of Life are the resul

sequential updating is employed is always a serious issu

4.20. Substitute layer of cells by another layer

d of cells, chosen the Moore forms of the neighborhood, an

cell, ID of a neighboring cell>. But why should we use a 10x10 grid of cells? What

would happen if we wanted to work with a larger grid of, say 50x50 cells?

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 36

One of the basic features of OBEUS is its ability to make this transfer easily. Just

recall that the 10x10 grid of cell objects we worked with up to now was stored as a

GIS layer immediately after we defined it. As you know very well from your

 work

with GIS, layers can substitute for each other! This is exactly the way OBEUS

tore

t version of the Game of Life under different name in the model

database before you substitute the layers, as it is shown in (Figure 30).

s option:

 the class objects by another, all the entities should

have the same attributes. In the case of the Game of Life, the only attribute of cells

 Boolean Alive; the new layer should have the same attribute then. Click the Cell

entity and check the attributes of the Cell class. You can Add, Edit and Delete each

e Alive attribute exists. While don’t think

OBEUS relies on you at this stage, if necessary attributes do not exist in a new layer,

eed to delete the unnecessary at

layer. The only negative consequence will be t

proceeds.

Important note: you might want to keep both versions of the model – with

the initial and new GIS layers, and compare their outputs. To do that, s

the curren

If you have a 50x50 grid of cells stored as a layer you can substitute the 10x10 gird

by this stored one. The substitute option is located

in the right-click menu of the model tree (Figure

4.33). Focus on the entity you want to substitute

before activating thi

Figure 4.33: Substitute option of OBEUS

To substitute one presentation of

is

of them; use these option to guarantee th

OBEUS will give a message that lists lacking attributes and cancel the process

(Figure 34).

Figure 34: OBEUS message in case of

difference in the attributes between the

current and the new one GIS layers

There is no n tributes if existing in a substituted

he storage of the garbage data these

attributes contain.

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 37

Less evident, but not less important condition that should be also tested before

substitution – does the relationships table, expressing neighborhood relationships

lationships table was automatically created when we chosen the

3x3 Moore neighborhood in a Fixed (New) dialog. The substitution action demands

r

t

ent attributes in Figure 34.

will

accept that action. However, in this case you will inevitably get a runtime error and

e

low the steps of the Game of

Life definition until you reach the dialog presented in Figure 5; then type 50 instead

bstitution and then, if you don’t want to

proceed with it, just open it again and delete. Now you can use Substitute option

between cells of the 50x50 layer, already exists?

Remember that a re

that we provide a new table of neighborhood relationships together with the laye

itself (Figure 4.34). If it is missing, the substitute action is cancelled by OBEUS, jus

as when you don’t want to proceed in case of differ

It is worth noting that OBEUS does not take responsibility for the correspondence

between the layer of cells and the table of neighborhood relationships, just because

the relationships between cells can be defined in numerous ways. If, for example,

you click the relationships table that was built on the base of Moore definition of the

neighborhood, for the initial 10x10 grid and not for the new 50x50 layer, OBEUS

an error message later, at the GO and Run stages.

The simplest way to ensure proper substitution is to create the 50x50 layer with th

Alive attribute within OBEUS itself. Remind that in this case, the relationships table

will be created automatically by OBEUS.

To do that, open a new project, say, GOL50, and fol

of 10 as the numbers of rows and columns. The layers and tables will be stored in

the directory /Settlements/GOL50/. Save the new project the project and close it.

Use the layers of the GOL50 project for su

with the layers in which correctness you are sure.

Use GIS viewer option to confirm the substitution, the map should look as it is

shown in Figure 4.35

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 38

Figure 4.35: Game of Life map

in case of 50x50 grid.

The advantage of the substitute option is evident – if you continue with the GOL50

roject you will have to code all the rules again; in case of the substitution you use

the old ones.

p

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 39

4.21. What we have learned with the Game of Life

We can now list the main OBEUS actions we studied with the help of the Game of

Life:

1. How to open a new project

2. How to define a new class of fixed entities

3. How to define entity’s properties

4. How to build a presentation of entities as a rectangular grid

5. What is neighborhood relationship table and how it is created automatically

6. How to view the map and the attribute table of the class of entities

7. What are assessment and automation rules and how to formulate and debug

them with the Borland C# compiler

8. How to define the synchronization mode – parallel or sequential

9. How to Run/Pause/Stop the model

10. How to update initial conditions before running the model

11. How to substitute the current presentation of the class objects by another one

There are several more basic actions in OBEUS, but the Game of Life is too simple a

model to demonstrate them. We now turn to another, more complex but also simple

example – Schelling’s model of residential dynamics in the city — to complete our

demonstration.

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 40

5. Quick start with Schelling model of residential segregation

Despite the variety of the patterns produced, the rules of Game of Life are very

simple, and its entities are all of one and the same type – immobile cells. The Game

of Life does not employ migrating objects, which, potentially, might have more

complex behavior than fixed cells. Our second example of the OBEUS modeling does

include migrating entities; it implements for this purpose the model of residential

dynamics proposed by Thomas Schelling at the end of 1960s.

5.1. The Schelling model – an introduction

Schelling model deals with (very abstract) householders, who can migrate in

reaction to their neighbors. Neighbors can be of two types, and householders prefer

to settle within the friendly neighborhood; they migrate when the neighborhood is

not friendly enough. Formally, Schelling model works with two types of entities.

Entities of the first type represent houses, which host entities of the second type –

tenant agents, and the only reason for tenant’s migration is dissatisfaction from the

neighbors – other tenants of the same house or tenants of the neighboring houses.

Schelling model has many versions, while we focus on the basic one, proposed in

1971 (Schelling 1971). In basic version of the model, each house can host one

tenant only. Tenants in the basic Schelling model are of two kinds: Black (B) and

White (W). An agent reacts (by migration) to neighbors of their own type – “friends”.

Namely, if the fraction of friends in the neighborhood is below the predefined

threshold Fth, then the tenant tries to migrate to a house, where the fraction of

friends in the neighborhood is above Fth. Conceptually similar model, in which

tenants react not only to friends, but also to strangers within the neighborhood, was

considered by Sakoda (Sakoda 1971). Different from the Game of Life, we do not

need such graphic presentation of the Schelling model, just because instead of

four-fold rule in the Game of Life, the dynamics of the Schelling model is defined

by one parameter only - fraction of friends Fth

Schelling model has been investigated in many papers and its typical outcome is a

segregated residential pattern, where B- and W- tenants aggregate into Black and

White areas [REFS].

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 41

Below, demonstrating development of the Schelling model within OBEUS, we

reduce the sections that we’ve already passed with the Game of Life, while figure

out the details that are important for the models where entities of several classes are

considered and some of them are able to relocate.

Let us begin just as in the Game of Life – to open new project and define 10x10-

grid with Moore neighborhood for spatial arrangement of the house. In the Schelling

model we will call them houses, and not cells, and we don’t need any property of

the house to be defined, for the houses are neutral containers of the tenants.

5.2. Using existing GIS layers to define new classes of entities

Building new grid and the corresponding table of the neighborhood relationships

anew it not necessarily – we could choose Fixed (Open) option when defining the

‘cell’ entity, and then use the layer of cells and the corresponding table of

relationships we’ve built for the Game of Life (Figure 5.1).

Figure 5.1: Stages of the opening existing grid as a layer of houses of the Schelling

model

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 42

The cell entities of the grid were defined for the Game of Life and they have Alive

property, which we don’t need for the houses. Nothing will happen if we keep this

property, but it is better to remove it, just to get rid of the garbage. To do that,

focus cursor on Alive property

and push Remove - the

rightmost button at the bottom

of the Model Tree dialog. You

will be warned before remove

will be executed (Figure 5.2).

Figure 5.2: Warning when

executing Remove operation

We reach real differences between Game of Life and Schelling model when

defining mobile tenants.

5.3. Defining and locating mobile entities

We begin definition of Tenant class of entities in the same way as we did with

Houses - focus on Entities,

and push Add at the bottom of

the model tree dialog. To

define Tenants of the

Schelling model we have to

choose the Non-Fixed option

(Figure 5.3).

Figure 5.3: Choice of Non-

Fixed option for defining

Tenants of the Schelling

model

Different for the fixed objects, OBEUS does not build GIS layer for the objects of the

non-fixed class. Indeed, tenants do not have ‘their own’ location at some (x, y)

point of geographic space. The essence of being tenant is to be located in a house

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 43

and that is why tenant’s location cannot be absolute – it should be defined via

houses. The layer of houses already exists, and, thus, for each tenant we have to

mark the house it lives in – in other words, to locate tenants we have to define

relationship between them and the houses.

We already used relationships in the Game of Life - neighborhood relationships

between cells, which were automatically built by the OBEUS. In Schelling model

we have two classes of objects, and besides neighborhood relationships between

houses we have to define the relationship which determines the house the tenant

lives in. Let us call these relationships House-House and Tenant-House.

5.4. Indirect geo-referencing

Tenant-House relationship presents basic feature of OBEUS – indirect geo-

referencing. As we mentioned above, the tenant in Schelling model does not exist in

an ‘open space’. We will define the rules of the tenants ‘migration behavior’ later on,

but whatever they will be, tenants in Schelling model always either move to the

other house or remains in one they occupy now. That is why a tenant can be

unambiguously located by pointing to the house, that is, by means of the occurrence

of the Tenant-House relationship.

Let us note that the study of different formulations of migration behavior is the main

aspect of the Schelling model investigation. For example, assuming several free

locations with a fraction of friendly neighbors above FTh are available, which one is

occupied by a tenant? There are several ways to formulate the choice rule – one can

investigate what will be the residential pattern if tenant chooses the house with

maximal fraction of friends, or when the house is randomly selected from the

available ones, or when the house which is closest to the current location is selected,

and so on. Whatever option is chosen, the result of the migration will be occupation

of the house and, thus, the old occurrence of the Tenant-House relationship should

be destroyed and the new one constructed.

Different from House-House relationship, which was built automatically, the

Tenant-House one should be explicitly defined in OBEUS. To do that we have to

focus on Relationship entry in the left side of the Model tree and click Add button

in the bottom row. The dialog-box that pops up allows defining the entities to relate,

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 44

and which of them will be a leader and the

follower (Figure 5.4).

Figure 5.4: Definition of the Tenant-House

relationship via OBEUS GUI, with Tenants

selected as a leader

The Leader entity is an active participant of the relationship. Leader can destroy its

relationship with the Follower and create relationship with the other entity of the

follower class. In case of Tenants and Houses, Tenants are evident leaders – they

decide weather to leave the house when the fraction of friends in the neighborhood

is insufficient, and which of the free houses will be chosen for next occupation.

Entities of the House class are evidently followers.

The case of Tenants and Houses is typical – non-fixed (mobile, migrating) entities

are usually leaders, while fixed entities are usually followers in relationships. OBEUS

imposes this view as a general limitation, and, as you may see in Figure 5.4, Tenant

entity does not appear in the ‘follower’ control at all. We will talk more about the

Leader-Follower pattern of relationship in the next chapter, which presents general

scheme of OBEUS.

The Tenant-House relationship has the same presentation as the House-House

one (Figure 5.5), but you cannot see it in a current version of OBEUS.

Figure 5.5: House-House relationship table for

non-zero number of tenants in the Schelling model

When defined, the Tenant-House relationship table is empty; new occurrences of

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 45

the relationship are constructed when Tenants enter the city (say, immigrate during

the model run).

5.5. General view of relationships between entities of the Schelling

model

If you tend to formal completeness, you will immediately ask about two more

relationships that can be considered in the Schelling model: House-Tenant and

Tenant-Tenant. You are right - this is more than a formal question. House-Tenant

relationship might help in determining tenants living in a given house, while Tenant-

Tenant relationship is important in determining tenant’s neighbors. Schelling model

is, actually, based on the Tenant-Tenant relationships: a tenant agent reacts to the

fraction of friends, i.e. tenants, of the same type. Let us consider all four possible

relationships between Tenants and Houses - two we defined above and two

remaining ones in order to understand the general logics of the OBEUS regarding

relationships.

House-House is a neighboring relationship. It is built by OBEUS when a grid of the

house is built and then stored, just as in a Game of Life. Let us note that in case of

relationship between the houses, just as in the general case of two fixed entities, the

relationship does not change it time. Thus, the leader and the follower of the

relationship between the fixed entities can be set arbitrarily.

Tenant-House is used for tenants’ location and Schelling model cannot be

implemented in OBEUS until is this relationship is defined. As we discussed above,

Tenants are leaders and Houses are followers in this relationship.

Let us turn now to two relationships that we didn’t define yet - House-Tenant and

Tenant-Tenant.

House-Tenant relationship is evidently convenient for retrieving tenants who live in

a certain house; it is clear however that there is no need to define it as a separate

component of a model. Indeed, the occurrences <TenantID, HouseID> are stored in

a Tenant-House relationship table, and the tenants living in a certain house,

identified by the HouseID, can be retrieved from this table by the ‘backward’ query,

which finds all Tenants related to a given HouseID. This is just the general approach

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 46

of OBEUS– when the relationship A-B is defined, the occurrences of the B-A

relationship are retrieved on the base of the former. Let us note, however, that

following the Leader-Follower view of the relationship we can retrieve the

occurrences of the House-Tenant relationship based on the Tenant-House one,

but not change it. Tenant is non-fixed entity and House is fixed one; Tenant only

can alter the relationship with the House.

To continue with the Leader-Follower view, we must prohibit Tenant-Tenant

relationship in OBEUS at all, just because it is a relationship between non-fixed

entities and it is impossible to define leader and follower. Yes, it is, and if you have

OBEUS GUI in front of you, you could note that non-fixed entities simply do not

appear in the Follower control of the ‘Define Relationship’ dialog.

Isn’t it a serious limitation? We do need Tenant-Tenant relationship for retrieving

the fraction of friendly agents! – Right, and resolve this problem OBEUS applies the

same solution as in House-Tenant case above. Namely, the pairs of neighbors are

retrieved in OBEUS on the base of two properly defined relationships - House-

House and Tenant-House.

Pairs of neighbors that is, occurrences of the Tenant-Tenants relationship, are

retrieved in OBEUS in a transitive way:

Given tenant T1 retrieve the house H1 the tenant T1 lives in based on Tenant-

House relationship retrieve all houses Hi neighboring to the house H1 based on

House-House relationship retrieve all tenants Ti living in all Hi retrieved.

How this transitive chain can be implemented? One of the options is to leave it to the

user who will code it in C#; the OBEUS’ goal, however, is to help to the modeler

whenever possible; that is why the transitive chain above is constructed in OBEUS

automatically. This construction has the same limitation as the House-Tenant

relationship above – the Tenant-Tenant relationship is also Read-Only, and none

of two related tenants can destroy it, create, or change its characteristics. It is easy

to accept this limitation, however. Indeed, if it is discarded, you will have to define,

for instance, which of two neighboring tenants should leave the house first in case

when each of them has insufficient number of friends in their (partially intersecting)

neighborhood. Usually, the modeler simply does not have any definite assumption

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 47

about this fine mechanism of the dynamics of relationships between non-fixed

entities. For myself, I prove this statement empirically – in all the publications I’m

aware of, the relationships between non-fixed entities are expressed in a transitive

way, explicitly or implicitly. Yes, this limitation OBEUS might be inconvenient if you

develop psychological model, but, luckily, we model not love affairs, but the

collective urban spatial phenomena.

Important is that the Tenant-Tenant relationship can be transitively defined in

several ways, depending on the fixed objects (houses in case of Schelling model)

taken as the middle link of the chain. This variety is an additional reason to make

this relationship Read Only. To illustrate the ambiguousness let us assume for a

moment that the capacity of a house can be more than one Tenant. In this case we

can define two tenants as neighbors in two ways: first, when they live in the same

house, second, when they occupy neighboring houses. If houses have floors, than we

can introduce one more definition – tenants are neighbors if they occupy apartments

on the same floor. OBEUS recognizes this ambiguity, and makes possible retrieving

relationship between the non-fixed objects in any of logically possible way. The

necessary variety of methods is constructed automatically, when entities and

relationships of the <fixed, fixed> and <non-fixed, fixed> types are just defined by

the modeler. For the basic Schelling model, where a house’s capacity is always one

tenant, one way only to define Tenant-Tenant relationship exists. The automatically

constructed method is of the Tenant class of entities, and it’s name is automatically

generated by the system as Tenant.GetRelatedTenantsViaHouses. We will apply

this method below, coding Tenant’s behavioral rules for the Schelling model.

5.6. General view of population properties and population methods

There are several other components of OBEUS, we ignored in the Game of Life. All

of them are important for the Schelling model. These components are all located

on the left, Population branch of the model tree (Figure 5.6).

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 48

Figure 5.6: General view of

the Population branch of the

Schelling model tree

Population of the objects of a given class is created and named automatically when

you define the class of entities. In Schelling model these are HousePopulation and

TenantPopulation. Let us note that yet not all possible components of the

Population branch are necessary in the Schelling model, and in this chapter we

present only those of its compartments that are relevant for Schelling model.

Left branch of the model tree serves in OBEUS for defining Population properties

and rules – all them are applied to all entities of a given class. These properties are

updated once during iteration, after all entities of a given type have been considered.

Population properties are divided between several sections of the left branch of the

model tree.

5.7. Population properties of classes of entities of the Schelling

model

Shelling model has at least one intuitive global parameter, which is common for all of

the tenants – this is the threshold fraction of the friendly neighbors FTh (FTh remains

population property until we decide that tenants can have different thresholds).

To define properties common for all the entities of a given class we have to focus on

the Global properties and Add the new one using the left-hand side of the buttons

at the bottom of the Model tree. Just as in case of the entity’s properties, you have

to name the property, define its type and check whether you want to see it displayed

on the chart (Figure 42). The threshold fraction of the friendly neighbors FTh, which

is the global property of the TenantPopulation, doesn’t need to be displayed of the

graph, for it doesn’t change in time. OBEUS GUI makes possible to define the initial

value of the global parameter (Figure 5.7)

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 49

Figure 5.7: Dialog box for

defining global properties

and the definition of the

threshold fraction of

friendly neighbors FTh.

Initial value of FTh is set

equal to 0.6

Threshold fraction of friends FTh belongs to the group of population parameters which

are necessary for running a model. Another, and not less important, group of global

parameters consists of the aggregate population characteristics you, the modeler,

want to store and display in order to follow and understand the model results. For

example, in the Schelling model, I would define numberOfMigrants parameter of

the TenantPopulation, which represents the number of tenants who changed their

location - internal migrants - during the iteration. Just to link to the previous chapter

- in Game of Life a number of cells in ‘Alive’ state can be the global parameter of

the CellPopulation. There is evidently no need to define initial value of the global

output characteristics of the model, they will be calculated on the base of the state of

the model entities anyway.

5.8. Updating global properties

As mentioned above, the global parameters are re-estimated once per iteration, after

the behavioral procedure has been executed for all entities of all classes. The rules of

updating global parameters are also defined in the left-hand part of the model tree,

in the GlobalEvaluationMethods section (Figure 5.8).

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 50

Figure 5.8: OBEUS GUI,

GlobalEvaluationMethods section

The rules of global parameters updating are formulated in the same manner as

entities’ behavioral rules. Just as in the right branch of the Model tree, OBEUS

distinguishes between Assessment Methods aimed at preparing information for

evaluation and Update Methods, which aim at changing the global parameters and

correspond to Automation Method of the entities.

As above, you formulate global parameters Assessment Methods and Update

Methods with C#. The C# code below presents an example of updating of the

FractionOfBlack global parameters – the population fraction of B-Tenants, which

is important for the Schelling model when in- and out-migration from the city are

included:

public void PerformUpdateMethod1()
{
 House[] houses = HousePopulat on.GetHouses(); i
 foreach(House house in houses)
 {
 int blackCount = 0;
 Tenant[] tenants = house.GetTenantsForTenantHouse();
 if(tenants != null)
 {
 foreach(Tenant man in tenants)
 {
 if(man.Color)
 {
 blackCount++;
 }
 }

h
 }

ouse.PercentOfBlack = (double)blackCount / (double)house.NumberOfOccupied;
 else
 {
 house.PercentOfBlack = 0;
 }
 house.PercentOfBlack1 = house.PercentOfBlack;
 }
}

Figure 5.9 presents the same code in C# window

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 51

Figure 5.9: The Update

Method for the

FractionOfBlack global

parameter of the

TenantPopulation

5.9. Initialization Routines

The Initialization routines (Figure 5.10) aim at setting the values of objects’

properties at the beginning of the simulation. They are also C# routines that should

be coded by the modeler, and

the component is organized

just as the other C#-based

components of OBEUS.

Figure 5.10: OBEUS GUI,

Initialization routines

We have not employed Initialization routines in the Game of Life. In Schelling

model we will employ them in a simplest way, which, nonetheless fits to the idea of

the Schelling himself – we fill the houses randomly with B and W tenants. Let us

assume that the probability that the cell is populated is Pinitial_populated_fraction (one

more global parameter of the model) and that the chance that a tenant of the

population house is B equals PB (one more global parameter), and, thus the chance

to be W equals 1- PB. The idea of Schelling model is that whatever is the initial

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 52

residential distribution, if the value of FTh is sufficiently high (tenants agree to stay in

sufficiently friendly neighborhood only), then the residential pattern in the city

eventually evolves to the segregated one. That is why random initial distribution is

typical first stage of the Schelling model investigation. The C#-code of the random

initialization of Pinitial_populated_fraction houses with 100*PB percent of B-Tenants and

100*(1 - PB) of the W-ones is as follows

public void ImmigrateTenants()
 {
 Random rnd = n w Random(); e
 //Get Free Cells
 ArrayList freeHouses = new ArrayList();
 House[] houses = HousePopulat on.GetHouses(); i
 foreach(House house in houses)
 {
 if(house.Capacity > house.NumberOfOccupied)
 {
 freeHouses.Add(house);
 }
 }
 bool IsBlack = false;
 for(int i=0;i<TenantPopulation.NumberOfImmigrants;i++)
 {
 if freeHouses.Count > 0) (
 {
 int seededNumber = rnd.Next(0, freeHouses.Count - 1);
 House freeHouse = (House)freeHouses[seededNumber] ;
 if freeHouse.NumberOfOccupied < freeHouse.Capacity) (
 {
 Tenant man = new Tenant();
 TenantPopulation.AddTenant(man);
 man.SetRelationship(freeHouse);
 freeHouse.NumberOfOccupied = freeHouse.NumberOfOccupied + 1;
 if(IsBlack)
 {
 man.Color = true;
 }
 e se l
 {
 man.Color = false;
 }
 IsBlack = !IsBlack;
 }
 }
 }
 }
And Figure 5.11 presents this code in a C# window

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 53

Figure 5.11: The

Initialization Method for

the random allocation of

the B- and W-Tenants in

the houses of the

Schelling model

5.10. Immigration routines

Immigration routines are close to the Initialization routines by their meaning.

They define the numbers and characteristics of the new (non-fixed) entities entering

the system from outside, and initialize necessary objects and relationships when this

happens. The difference between Initialization routines and Immigration

routines is evident – Initialization routines are applied once, at the beginning of

the first iteration, while Immigration routines are applied at each iteration.

Immigration routines should be, as usual, coded by the modeler in C#, and Figure

5.12 presents some version of the Immigration routine as implemented in example

of the Schelling model with immigration we supply

foreach(House house in houses)
 {
 if(house.Capacity > house.NumberOfOccupied)
 {
 freeHouses.Add(house);
 }
 }
 bool IsBlack = false;
 for(int i=0;i<TenantPopulation.NumberOfImmigrants;i++)
 {
 if(freeHouses.Count > 0)
 {
 int seededNumber = rnd.Next(0, freeHouses.Count - 1);
 House freeHouse = (House)freeHouses[seededNumber];
 if(freeHouse.NumberOfOccupied < freeHouse.Capacity)

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 54

 {
 Tenant man = new Tenant();
 TenantPopulation.AddTenant(man);
 man.SetRelationship(freeHouse);
 freeHouse.NumberOfOccupied = freeHouse.NumberOfOccupied + 1;
 if(IsBlack)
 {
 man.Color = true;
 }
 e se l
 {
 man.Color = false;
 }
 IsBlack = !IsBlack;
 }
 }
 }

Figure 5.12: Possible code

of the immigration routine

Figure 5.13 presents the complete Model Tree of the Schelling model with all non-

empty branches expanded

Figure 5.13: Full Model Tree for the

generalized Schelling model

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 55

5.11. Running the Schelling model

To run Schelling model you have to do the same step as in the Game of Life. It is

quite possible you might need more debugging, just because there is more lines of

code, even if you used the examples above and typed the lines carefully. When you

will be able to run the model, its outcome should look as presented in Figure 5.14.

Figure 5.14: Typical time evolution of the Schelling model with immigration for

FTh = 0.6

5.12. Patterns - OBEUS component we have yet to employ

Before we proceed to the next chapter 6, which presents general concept of the

Geographic Automata System (GAS) and OBEUS as an environment that implements

GAS, let us introduce one more component of OBEUS, which aims at capturing

emergence and self-organization in the models you develop. In OBEUS we call these

emerging objects as Patterns.

The notion of patterns is beyond the level of the initial experience we want you to

get from Game of Life and Schelling models, but can be employed in studying these

models as well. You can skip this section until you will feel yourself familiar with

OBEUS, or you proceed to the next chapter, where patterns are presented together

with the general concept of the GAS and OBEUS. This section is for those who, just

like me, like “working by example” when studying new software. We discuss patterns

just after the Schelling model, because the latter is convenient for the initial

presentation of the idea.

To illustrate self-organization of patterns with the Schelling model let us begin

with the initial random distribution of the B- and W-Tenants (Figure 5.14).

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 56

Figure 5.15: Randomly initialized Schelling

model

As you remember, Tenants in Schelling model behave locally, each tries to

resettle to a friendly neighborhood. Despite the local behavior of each tenant, the

collective outcome of the Schelling tenants behavior is global. In a course of time B-

and W-Tenants concentrate in big areas, one consisting of only B- and one of only

W- Tenants, as you see you can see in Figure 5.13 (and most probably read the

same in many papers). The emergence of this segregated pattern depends on the

parameters of the model and the analysis shows that basically, this happens when

FTh is above 1/3 Patterns help the modeler to formalize the recognition of the

segregation pattern of B- and W-Tenants. Comparing to the other components of

OBEUS, Patterns section (Figure 5.15) is similar to Behavior and

GlobalEvaluation sections, which aim at description of the essence of any model –

the rules of entities’ behavior and global parameters update.

Figure 5.16: OBEUS GUI Patterns

component

Just as in Behavior and GlobalEvaluation sections, there is no, and cannot be,

general rules that recognize patterns and estimates their characteristics. As usual,

OBEUS presents instead the possibility to formulate these rules, which we call

Membership Criteria and Detection Method. The Membership Criteria

recognize entities that belong to the self-organizing pattern, for it can easily happen

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 57

that not all entities belong to it. Say, B-Tenants of the Schelling model may be

segregated in the northern part of the city, but not in the southern. Detection

method aims at recognizing the pattern. Different from all the other compartments

of the OBEUS, we do not insist that this organization is sufficient or even convenient

for recognizing emerging spatial patterns. In what follows, we describe the approach

we employ in our model studies, which does utilize the above separation between

Membership Criteria and Detection Method.

You will not be surprised when we say that the approach we use for detecting

patterns follows employs relationships. Shortly, it repeats human view of the spatial

aggregation – a pattern is ‘sufficiently large’ domain, ‘sufficiently densely’ filled with

the elements sharing common properties. There is no problem to recognize entities

sharing common properties in OBEUS, and the problem reduces to recognition of the

areas, where the density of these similar entities is high. Here we employ OBEUS’

complete knowledge of relationships - density of the entities sharing set of properties

C is ‘sufficiently high’ when each entity has ‘sufficiently high number of neighbors’

that share C-properties.

Let us define a measure of similarity S(E1, E2) between two arbitrary entities E1 and

E2 of the same entity class. The method that calculates this measure will be the first

membership rule. The second membership rule will estimate the fraction of the

entities X related to a given entity E that differ from E according to the similarity

measure S(E, X) on less than ∆.

In case of Schelling model, for example, we can define S(T1, T2) = 0 if tenants T1 and

T2 have the same color and S(T1, T2) = 1 if colors of T1 and T2 are different (first

membership rule), and to consider entity T as the member of a pattern if the faction

of the neighbors of its color is 0.6 or higher (that is ∆ = 0.6).

The existence of the B-Tenants “surrounded” by sufficiently high number of the B-

neighbors is not enough for being a “pattern.” We detect the pattern when we see

‘sufficiently continuous’ area filled with B-tenants, each having sufficient number of

B-neighbors. To recognize these continuous areas, we apply recursive Detection rule

– to begin with arbitrarily B-tenant, to apply Membership Rule 2 and to determine if

the B-tenant has sufficient number of B-neighbors, then proceed with the neighbors,

apply Membership Rule 2 to each of them, etc. The Detection rule we apply demands

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 58

has a parameter - the number of entities included into the set. If they are few, the

result is not a pattern.

It can be proved that the result of this test does not depend on the selection of the

B-tenant to begin with. The result of the recursive algorithm above will be the

number of sets of B-tenants, not necessarily contiguous (there will be many holes if

∆ is not close to 1) in each of which each B-tenat has sufficiently high number of B-

neighbors

Another version of the Membership Rule can be the test of sufficient fraction of B-

neighbors irrespective of the type of tenant itself. The outcome of this rule will be the

set of continuous areas. Figure 5.17 illustrates the latter idea and constructs for ∆ =

0.5:

Figure 5.17: (a) Actual

distribution of the B-tenants

and (b) the resulting Pattern

of the B-Tenants

Formally the method can be presented as follows:

Let some predicate - criteria C - is defined on the entities of class E.

Let us mark the entities satisfying C as C-TRUE and the rest as C-FALSE. The

method that constructs pattern RC containing sufficient number of C-True

entities is as follows:

buildPattern(float FCThreshold, int NEThreshold)

{

 Construct empty temporary pattern R;

 Insert Ent into R;

 While there are new entities in R {

 Loop by entities currEnt recently included into R

 Get list NBRHR of neighbors of currEnt

 Calculate fraction FC of C-TRUE Entities in NBRHR

If FC > FCThreshold then {Include ALL entities from NBRHR in E}

Else remove currEnt from R}

 Calculate NR - number of buildings in R

 If NR > NRThreshold then {Mark all buildings in R as belonging to DC}

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 59

 Else {drop R}

}

Based on buildPattern(), we can easily construct all regions RC satisfying

criterion C:

buildAllPatterns (float FCThreshold, int NEThreshold):

 Loop by all entities Ent in a settlement {

If Ent is marked as C-TRUE then {

If Not (Ent∈ DC) then {buildPattern(FCThreshold, NEThreshold)}

}}

Remarks:

• Pattern may contain holes.

• Entities can belong to domain DC despite being C-FALSE.

• Threshold value FCThreshold should be sufficiently high to reflect intuitive

understanding of a domain as an area where most entities satisfy criteria C.

• The value of NRThreshold determines the minimal size of domain

OBEUS examples contain SchellingP project, which includes pattern detection in a

way described above. We still didn’t decide finally how to manage patterns in OBEUS

and will appreciate your suggestions.

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 60

5.13. What did we learn with Schelling model?

We can now list the main OBEUS actions we studied with the Schelling model in

addition to those we investigated with the Game of Life:

1. How to define non-fixed objects

2. How to locate non-fixed objects on the base of their relationships with the

fixed ones

3. How OBEUS works with the relationships that are not defined directly be the

user, as the relationship between non-fixed objects of the same or two

different classes

4. How global parameters of the population of the objects of the given class are

introduced and their initial values are defined and visualized

5. How global parameters that describe aggregate characteristics of the

population of a given class are introduced and visualized

6. How the rules of assessment and evaluation of the global parameters can be

coded in C# and debugged with the Borland C# compiler

7. How initial conditions of the model are coded in C# and debugged with the

Borland C# compiler

8. How immigration processes are coded in C# and debugged with the Borland

C# compiler

9. How self-organization processes can be interpreted with the help of OBEUS

patterns

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 61

6. Build-in methods of OBEUS

The internal methods of OBEUS are few. Yes, the definition of entities, and

relationships, their properties, settings of the output demand tens of classes and

hundreds of methods, but all that is done by the environment and the user employs

them via GUI. All of us like modeling, and not at all programming, and one of our

main goals with OBEUS was to deliberate you and ourselves of the dirty part of

coding and to leave us with the essence of the model, which cannot be unified –

entities behavior.

6.1. An idea of automatic construction of methods

The methods that OBEUS presents to developers aim at more of the same - to

reduce the code the user has to write when programming the behavioral rules.

Basically, each model is unique and not so much generic methods could be

formalized. Those that could are constructed by OBEUS on the base of the

entities and relationships names as defined by the user, just after the new

entities and relationships are defined. In this way we can hold these methods

encapsulated in the necessary classes. To enable these methods the user must save

the model; that is why we repeat the reminder to push Save from time to time when

working with OBEUS.

6.2. Conventions

In what follows we assume that some entities, as XXX or YYY, relationships between

them, as XXX_XXX or YYY_XXX, and populations, as XXXPopulation or YYYPopulation

are defined. As we said above, the names of the methods are built from the names

of the entities and relationships.

Generally, OBEUS builds internal methods with each new class of entities and

relationships defined (actually, when you push Save). When constructed, the built-in

methods appear in the prompt, after the ‘dot’ is typed in the Borland C# window. We

tried our best to make the names of the build methods self-explainable, and the rule

of their construction is as follows:

OBEUS Built-in method name := BasePart1 + [VarPart1] + BasePart2 + [VarPart2]

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 62

+ … + {Optional “RO” part} + (ClassOfObject ObjectVariable)

BasePart of the name reflects the methods itself, as “Add”, or “Get”;

VarPart is used to specify the names of the OBEUS entities defined via GUI

OptionalPart “RO” (ReadOnly) part is used in case of parallel synchronization mode

For example, in the name of the method AddXXX (XXX e): BasePart1 ~ Add;

VarPart1 ~ XXX; Optional part ~ “”, ClassOfObject ~ XXX; ObjectVariable ~ e.

Presenting the examples of the methods, we employ the default style of the Borland

C# and mark red the lines with the method employed. The text of the comment is

always given before the commented line of code.

6.3. Remark on referential integrity

As we repeat several times in this manual, in OBEUS we manage entities and

relationship according to the database fashion. An important feature of this approach

is preserving referential integrity. Shortly, it means that if you have an entity A,

which is related to the entity B, and you want to delete an entity A, the database

should recognize A’s participation in relationship and do not permit deleting of A until

relationship between A and B is not destroyed.

We do not check referential integrity in this version of OBEUS (while we will

incorporate it into the next one). That is why you have to take care of destructing

relationship between A and B before deleting A by yourself. Basically, nothing terrible

happens if you forget to delete the relationship – the model can yet function, while

you can get an entity A when you retrive all the entities related to B, and this can

cause runtime errors.

Don’t forget about your responsibility for referential integrity of your

entities!

6.4. Population methods

There are two population methods, aimed at including entities of the given class into

population of the entities of this class or remove (delete) them from the population.

OBEUS uses populations in order to distinguish between the entities that are

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 63

supposed to really ‘exist’ and temporarily objects of the classes of entities used in

the model code. For example, if we want to know the number of Alive cells in the

Game of Life, we have to loop over all cells of the grid, and not over all objects of the

Cell class that are currently introduced. By the same reason, for the Game of Life

model we cannot add Cell entities to the CellPopulation, or delet them form there,

but we can easily extend Schelling model and include into it the processes of

immigration and emigration. In the latter case we have explicitly say to OBEUS

which ones of the objects of the Tenant type are immigrants and which are created

just for storing some temporarily information. In the same way we have to remove a

Tenant entity from TenantPopulation, when a tenant emigrates from the model city.

6.4.1. GetXXXs – Retrieves all entities of the XXXPopulation class

Syntax: GetXXXs ()

Purpose: Retrieves all objects of the XXX-class

Returns: Array of XXX-class objects

Exceptions: None

Example:

XXX := House (Class House, fixed entities, defined via OBEUS GUI)

XXXPopulation := HousePopulation (Class HousePopulation, created

automatically when the class House is defined)

Method := GetHouses() (Method GetHouses, created automatically when

HousePopulation class is created)

Use: Typically is used to retrieve all objects of a given class for further loop

processing, for example to find out those satisfying some condition. The code below

estimates the overall capacity of the houses of HousePopulation:

Code:

//Retrieve all object of the HousePopulation
House[] cityHousesList = GetHouses();
//cityCapacity will store the overall capacity of a city
int cityCapacity = 0;
foreach (House currentHouse in cityHouses)
{

//Update overall number of occupied apartments
cityCapacity += currentHouse.Capacity;

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 64

}

6.4.2. AddXXX - Include an object of the XXX-class into a population of XXX-

entities

Syntax: AddXXX (XXX e)

Purpose: Includes object e of the XXX-class into population of the XXX-entities

Returns: None

Exceptions: None

Example:

XXX := Tenant (Class Tenant, non-fixed entities, defined via OBEUS GUI)

XXXPopulation := TenantPopulation (Class TenantPopulation, created

automatically when the class Tenant is defined)

Method := AddTenant(Tenant e) (Method AddTenant, created automatically

when TenantPopulation class is created)

Use: Typically is used to simulate the processes of immigration and birth. The code

below creates new immigrant tenant and includes it into Tenant population:

Code:

//create new object of the class Tenant
Tenant foreigner = new Tenant();
//Set object’s properties
foreigner.Age = 20;
// Include new object into population of entities
TenantPopulation.AddTenant(foreigner);

6.4.3. RemoveXXX (XXX e) - Remove an XXX-entity from population of

XXX-entities

Syntax: RemoveXXX (XXX e)

Purpose: To delete an entity e of class XXX from the population of XXX-entities

Returns: None

Exceptions: None

Example:

XXX := Tenant - Class Tenant of non-fixed entities is defined via OBEUS GUI

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 65

XXXPopulation := TenantPopulation - Class TenantPopulation is created

automatically when the class of entities Tenants is defined

Method := RemoveTenant(Tenant e) (Method RemoveTenant is created

automatically when TenantPopulation class is created)

Use: Typically used to simulate the processes of emigration and death. The piece of

code below aims at removing Tenant resident from the population of tenants:

Code:

//Retrieve the houses the resident occupies (see description of GetRelatedHouses()
//below) – it is actually one house only, but we should account for the possibility of
//Many:Many relationship between non-fixed and fixed entities
House[] myHouses = resident.GetRelatedHouses();
//To preserve referential integrity, destroy relationship with the house before
deleting the entity (see description of RemoveRelationship() below)
foreach (House currentHouse in myHouses)
{

//destroy relationship with the house
resident.RemoveRelationship(currentHouse);
//One tenant less in each of myHouse
currentHouse.NumberOfOccupied = currentHouse.NumberOfOccupied - 1;

}
//Remove a tenant from TenantPopulation
TenantPopulation.RemoveTenant(resident);

This example employs two built-in functions: GetRelatedHouses(), see section 5.4

below and RemoveRelationship(), see sections 5.5.3 below

6.5. Entity methods

The goal of the entity methods is not entities, but those related to them

6.5.1. GetRelatedXXXs - Retrieve XXX-entities related to a given entity

Syntax: GetRelatedXXXs

Purpose: The method allows systematically apply from the entity of YYY class to

those related to it of the XXX class. The relationship between entities of YYY and XXX

classes should be defined via OBEUS interface. Generally, the number of entities

related to the given one is more than one; that is why the method return array of

the entities. The method can be applied to both directly defined and implied

relationships. The existence of relationship between the entities does not presumes

that every entity form one class must be related to some entity of the other. Some

entities of one class can be yet unrelated to any entity of the other (in database

theory it is called as non-obligatory membership). For the entity of, say, class YYY,

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 66

which is not related to any entities of the class XXX, despite the relationship

YYY_XXX being defined, the method returns NULL.

Returns: An array of entities of the related class related to a given entity

Exceptions: None

Note: This function is defined for both directly defined and implied relationships.

That is in typical case of two classes XXX of the fixed entities and YYY of the non-

fixed entities and two classes of relationships XXX-XXX YYY_XXX defined, three

methods are constructed:

GetRelatedXXXs() in class XXX (this method is based on the direct relationship)

GetRelatedXXXs() in class YYY (this method is based on the direct relationship)

GetRelatedYYYs() in class XXX (this method is based on the implied relationship)

Use: This is the most frequently used method of OBEUS

Example 1:

XXX := House (Class House of fixed entities is defined via OBEUS GUI)

XXX_XXX := HouseHouse (Class HouseHouse of neighborhood relationships is

created automatically when the class of entities House is defined)

Method := GetRelatedHouses() (Method GetRelatedHouses() is created

automatically in a class House when HouseHouse class is created)

Code:

//Build the list of houses neighboring to the given house
private ArrayList GetVacancies()
//Create empty list of houses with vacancies
ArrayList vacancies = new ArrayList();
//Retrieve neighbors of an entity myhouse
House[] houseNeighbors = myhouse.GetRelatedHouses();
//If there exist neighboring houses analyze them
if (houseNeighbors != null)
{

//Loop by neighboring houses
foreach (House currentHouse in houseNeighbors)

 {
 //if there are vacancies in currentHouse
 if (currentHouse.Capacity > currentHouse.NumberOfOccupied)
 {
 //include the house into a list of houses with vacancies
 vacancies.Add(currentHouse);

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 67

 }
}

 //return list of vacancies
 return vacancies;
}

Example 2:

XXX := House (Class House of fixed entities is defined via OBEUS GUI)

YYY := Tenant (Class Tenant of non-fixed entities is defined via OBEUS GUI)

XXX_XXX := HouseHouse (Class HouseHouse of neighborhood relationships is

created automatically when the class of entities House is defined)

YYY_XXX := TenantHouse (Class TenantHouse of relationships is defined via

OBEUS GUI)

Method := GetRelatedHouses() (Method GetRelatedHouses is created

automatically in a class Tenant when TenantHouse relationship class is

created)

Code:

//Retrieve the house resident occupies
House[] myHouses = resident.GetRelatedHouses();
House myHouse = myHouses[0]
//Create the list of houses neighboring to the given tenant
ArrayList vacancies = new ArrayList();
//Retrieve neighbors of an entity myhouse
House[] houseNeighbors = myhouse.GetRelatedHouses();
//If there exist neighboring houses analyze them
if (houseNeighbors != null)
{

//Loop by neighboring houses
foreach (House currentHouse in houseNeighbors)

 {
 //if there are vacancies in currentHouse
 if (currentHouse.Capacity > currentHouse.NumberOfOccupied)
 {
 //include the house into a list of houses with vacancies
 vacancies.Add(currentHouse);
 }

}
}

Example 3:

XXX := House (Class House of fixed entities is defined via OBEUS GUI)

YYY := Tenant (Class Tenant of non-fixed entities is defined via OBEUS GUI)

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 68

XXX_XXX := HouseHouse (Class HouseHouse of neighborhood relationships is

created automatically when the class of entities House is defined)

YYY_XXX := TenantHouse (Class TenantHouse of relationships is defined via

OBEUS GUI)

Method := GetRelatedTenants() (Method GetRelatedTenants is created

automatically in a class Tenant when TenantHouse relationship class is

created)

Code:

//Retrieve the house resident occupies
House[] myHouses = resident.GetRelatedHouses();
House myHouse = myHouses[0];
//Create the empty list of houses neighboring to the given tenant
ArrayList myneighbors = new ArrayList();
//Retrieve houses neighboring to myhouse
House[] houseNeighbors = myhouse.GetRelatedHouses();
//If there exist neighboring houses analyze them
if (houseNeighbors != null)
{

//Loop by neighboring houses
foreach (House currentHouse in houseNeighbors)

 {
 //retrieve neighbors if there are vacancies in currentHouse
 Tenant[] houseTenants = currentHouse.GetRelatedHouses()
 //if there are tenents in the house
 if (houseTenants != null)
 {
 //loop by tenants in the house
 foreach (Tenant currentTenant in houseTenants)

{
//include the tenant into a list of neighbors

 myneighbors.Add(currentTenant);
 }
 }

}
}

6.5.2. SetRelationship(XXX e) - Creates new relationship for a given entity

with an entity e

Syntax: SetRelationship(XXX e)

Purpose: This method creates and returns relationship between given entity and

XXX-class entity e. If a given entity is of YYY-class, then relationship YYY_XXX should

be defined via OBEUS GUI prior to employing this method

Returns: Relationship

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 69

Note: function is constructed for each relationship between not-fixed – fixed entities

defined via OBEUS dialog box

Exceptions: None

Example:

XXX := House (Class House of fixed entities is defined via OBEUS GUI)

YYY := Tenant (Class Tenant of non-fixed entities is defined via OBEUS GUI)

YYY_XXX := TenantHouse (Class TenantHouse of relationships is defined via

OBEUS GUI)

Method := SetRelationship(House house) (Method SetRelationship() is

created automatically in a class Tenant when TenantHouse relationship class

is created)

Methods:

Use: Typically is used to indirectly locate non-fixed entity

Code:

//It is supposed that we have already calculated the fraction of the friendly
//individuals within the neighborhood of a given location House vacancy and
// stored this value in the double fractionOfMyColor variable

//check if fractionOfMyColor is sufficient to accupy the vacancy

if (fractionOfMyColor >= TenantPopulation.ThresholdFractionOfNeighbours)

{

 //occupy the vacancy

 householder.SetRelationship(vacancy);

 //update the vacancy state

 vacancy.NumberOfOccupied = vacancy.NumberOfOccupied + 1;

}

6.5.3. RemoveRelationship(XXX e) - Remove relationship of a given entity

with an XXX-class entity e

Syntax: RemoveRelationship(XXX e)

Purpose: Removes relationship of a given entity with an XXX-class entity e

Returns: None

Exceptions: None

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 70

Note: Is constructed for each relationship between not-fixed – fixed entities defined

via OBEUS GUI.

Example:

XXX := House (Class House of fixed entities is defined via OBEUS GUI)

YYY := Tenant (Class Tenant of non-fixed entities is defined via OBEUS GUI)

YYY_XXX := TenantHouse (Class TenantHouse of relationships is defined via

OBEUS GUI)

Method:= RemoveRelationship(House house)

Use: Typically is used to code the process of leaving

Code:

//retrieve the houses resident occupies. It is always one house, while we
consider more complex situation of 1:Many TenantHouse relationships
House[] myHouses = resident.GetRelatedHouses();
//loop by myHouses
foreach (House currentHouse in myHouses)
{

//destroy relationship with the house
resident.RemoveRelationship(currentHouse);
//update currentHouse parameters
currentHouse.NumberOfOccupied = currentHouse.NumberOfOccupied - 1;

}

6.5.4. GetRelationShipsYYYXXX() - Retrieves all relationships of a given

entity

Syntax: GetRelationShipsYYYXXX()

Purpose: Retrieves all relationships of a given entity

Returns: Array of YYYXXX relationships

Exceptions: None

Note: Is constructed for each relationship defined via OBEUS GUI.

Example:

XXX := House (Class House of fixed entities is defined via OBEUS GUI)

YYY := Tenant (Class Tenant of non-fixed entities is defined via OBEUS GUI)

YYY_XXX := TenantHouse (Class TenantHouse of relationships is defined via

OBEUS GUI)

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 71

Method := GetRelationShipsTenantHouse()

Use: Typically is used for investigating the properties of relationship

Code:

// apartmentsForSale is anumber of houses a resident possesses more than 5 years
int apartmentsForSale = 0;
//retrieve all the houses a resident possesses
TenantHouse[] myHouseAffairs = resident.GetRelationshipTenantHouse();
//loop by houses
foreach (TenantHouse currentHouseAffair in myHouseAffairs)
{
 //if the property is in possession more than 5 years
 if currentHouseAffair.year > 5
 {
 //count this apartment
 apartmentsForSale++;
 }
}

6.6. Transitive retrieve methods

Transitive retrieve methods are all “Read-Only”. They are built in order to simplify

retrieving of indirect relationships between non-fixed entities; direct definition of the

latter is prohibited (and impossible) in OBEUS, which follows leader-follower pattern

of relationships. As you know, to keep the system universal, OBEUS interprets non-

fixed—non-fixed relationships through the chain of relationships between non-fixed

and fixed entities.

The standard example is a definition of two tenants as neighbors if they live in the

neighboring houses. If we want to retrieve the neighbors of a given tenant we have

to apply three-step procedure:

Three-step transitive relationship

- Retrieve tenant’s house H, via TenantHouse relationship

- Retrieve houses neighboring to H, via HouseHouse relationship

- Retrieve the tenants of the neighboring house via TenantHouse relationship.

As can be easily noted, these procedures depend on class chosen as an intermediate

link in the chain. If, for example, Tenants are related to Pubs via TenantPub

relationship, then tenants who might meet in the Pub are retrieved along the chain,

which intermediate link is Pub-class instead of the House-class in the example above.

OBEUS takes responsibility of the chain process above and provides two series of the

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 72

read-only methods for that

6.6.1. GetRelatedYYYsThruZZZs_Order0() - Retrieve related entities via

neighbors of the zero order

Syntax: "GetRelated" + [CurrentEntity] + "sThru" + [RelatedEntity] + "s_Order0"

Purpose: To simplify retrieving indirectly related non-fixed entities

Returns: Array of non-fixed entities

Exceptions: None

Note: None

Example:

YYY := Tenant

XXX := House

YYY_XXX := TenantHouse

Method := Tenant[] GetRelatedTenantsThruHouses_Order0()

Use: Just according to the its main goal, to retrieve non-fixed entities to a

given non-fixed entity via the nearest neighbors

Code:

//calculate the number of black neighbors among the nearest neighbors of the
resident
int numberOfBlacks = 0;
//retrieve the neighbors
Tenant[] myNeighbors = resident.GetRelatedTenantsThruHouses_Order0();
//if there are neighbors
if (myNeighbors != null)
{
 //loop by neighbors

Foreach (Tenant currentNeighbor in myNeighbors)
 {
 //if a neighbors is black
 if (currentNeighbor.Color = Black)
 {
 //count black neighbor
 numberOfBlacks++
 }
 }
}

6.6.2. GetRelatedYYYsThruZZZs_Order1() - Retrieve related entities via

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 73

neighbors of the first order

Syntax: "GetRelated" + [CurrentEntity] + "sThru" + [RelatedEntity] + "s_Order1"

Purpose: To simplify retrieving indirectly related non-fixed entities

Returns: Array of non-fixed entities

Exceptions: None

Note: None

Example:

YYY := Tenant

XXX := House

YYY_XXX := TenantHouse

Method := Tenant[] GetRelatedTenantsThruHouses_Order1()

Use: Just according to the its main goal, to retrieve non-fixed entities to a

given non-fixed entity via the nearest neighbors

Code:

//calculate the number of black neighbors among the nearest neighbors of the
resident
int numberOfBlacks = 0;
//retrieve the neighbors
Tenant[] myNeighbors = resident.GetRelatedTenantsThruHouses_Order1();
//if there are neighbors
if (myNeighbors != null)
{
 //loop by neighbors

Foreach (Tenant currentNeighbor in myNeighbors)
 {
 //if a neighbors is black
 if (currentNeighbor.Color = Black)
 {
 //count black neighbor
 numberOfBlacks++
 }
 }
}

6.7. Relationships’ methods

Currently, there are no relationships’ methods in OBEUS

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 74

6.8. Note on programming style

To keep the proper programming style, implement your own method – Assessment

and Behavior rules, Initialization routines, etc., - according to the following template:

try

{

…Your code…

}

catch(Exception ex)

{

 Trace.Write(ex.Message)

}

The content of the trace window is visible during the runtime.

For example, the following block of code wrongly ignores the possibility of a

house which ahs no neighboring houses at all. When calculating the fraction

of neighbors of the same color as house’s resident, it sends the exception

message of “dividing on zero”.

try
{
 int numberOfMyColor = 0;
 ArrayList myNeighbours = GetMyNeighbours(resident);
 foreach (Tenant currentNeighbour in myNeighbours)
 {

if (currentNeighbour.Color == resident.Color)
{
 numberOfMyColor++;
}

 }
 double fractionOfMyColor = (double) numberOfMyColor/myNeighbours.Count;
}
catch(Exception ex)
{
 Trace.Write(ex.Message)
}

If resident is located in a house which has no neighboring houses at all, then

myNeighbours.Count equals zero and the following message will be obtained in a

message window

THE BEST IS TO CAPTURE SCREEN OF THE MESSAGE HERE

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 75

6.9. Note on “How to begin”

Two examples of the Quick Start chapters and the description of the built-in methods

in the chapter above provide the basic understanding of main components of OBEUS.

Your own model, the one you have in mind spending time for getting used to OBEUS,

is, undoubtedly, more complex. Don’t run with it if it is your first experience with

OBEUS. Even if you definitely feel how to present the classes of objects, relationships

between them, the rules of objects’ behavior, etc., we strongly recommend

formulating that in semi-theoretical form before you begin to build an OBEUS shell

for it, just as if you try to write down incomplete equations, on the first steps of

formulating analytical models. Pay attention on separating between Assessment rules

and Behavioral rule, input parameters, initial conditions. Different from the

“development from scratch” coding of the model in OBEUS takes very short time;

there is no need to write most of the code you use to.

6.9.1. Time flow is important

Special attention should be put on the time flow in the model. As you already know,

in parallel mode objects are “frozen” at the end of the time step. Temporary versions

of all objects are created, which are all updating and behaving reacting to the frozen

ones, until at the end of the time step the set of the frozen objects is substituted by

the set of the temporarily ones. In sequential mode the changes in any object are

immediately available to the others.

OBEUS time-flow dialog forces you to think far beyond the difference between

parallel and sequential updating. There is another aspect – the order of updating you

establish between entities of different classes. Say, tenants populate houses which

price changes in time. What should be done first – prices update or tenant decision

to leave? In this and many similar cases modeler does not case much and does

“something reasonable”. Often it really does not matters, but sometimes all the

aspects of the model behavior become dependent on this order, as say, when the

prices can raise twice during the model time step of three months and all the tenants

are students who rent the apartments and may leave easily at the end of the term,

but not in the middle. OBEUS forces you to think about this part of every model

straightforwardly, and we consider that as a great advantage, which makes models

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 76

comparable and fully understandable.

An advice: Usually, it makes sense keep two version of the model simultaneously

with the parallel and sequential updating and compare the results obtained.

6.9.2. Be careful when changing spatial and temporal resolution of the model

Delayed

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 77

7. OBEUS versus another model styles and systems

7.1. What are the “inconvenient for OBEUS” models?

These are models where all entities are of non-fixed type, the neighbors are

determined on the base of distances, and the neighborhoods are wide. If all these

conditions hold OBEUS’ approach of locating by relationship and building

relationships between the fixed entities in advance looses its advantages. You still

can get much from OBEUS, as the following example of flocks model demonstrates.

Flock model scheme (REF): Flocks of birds (points) fly in 2D or 3D space, each

adjusting its vector of velocity towards average velocity vector of the neighboring

points within some constant view radius. Sometimes some of the birds change their

velocity vector by internal or external reason, independently of the neighbors’

behavior and if these deviations are sufficiently strong and/or frequent the flock flow

destabilizes, and its dynamics become complex and turbulent.

OBEUS approach works fine with the flock model, if at least one of the conditions

holds – either the view radius is small, or we are not interested in fine tuning of the

dependency of the neighbor’s influence on distance. In each of these cases we can

divide 2D space into cells and 3D space into cubes, roughly define the dependency

function at resolution of cell or cubes and follow the logic of Schelling model. We will

have to substitute assessment function of Schelling model by that for flocks.

The above fake discretization of space does not work if we want to investigate the

fine influence of the dependency function. In this case, if we preserve the discrete

view of space, the fine division of 2D or 3D space into cells should be hold. Tables of

relationships in this case become huge and to retrieve the related birds from the

table might take just the same time as recalculating them anew.

Our view of the situation in this case is close to earth – we don’t believe you will

begin with the fine tuning of the dependency function. So you could get quite a lot of

performance form OBEUS’ GUI and built-in functions when formulating flocks

behavior, and become tie with the standard, based on permanent recalculating of the

neighbors, approach when you will want to investigate some specific and non-rough

changes in neighbors’ influence. Whatever, don’t forget that numeric methods of the

differential equations solution always demand discretization of space to be applied.

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 78

7.2. OBEUS versus Repast and other libraries of agent-based models’ methods

To be done

Itzhak Benenson and Vlad Harbash, OBEUS Manual, ®ESLab TAU 79

8. Geosimulation, Geographic Automata Systems, and OBEUS-related

publications

Besides direct objective to teach you how to use the OBEUS software, this long

manual has a hidden goal – to convince you that OBEUS is not only the software, but

also the theory, that proposes the general view of the agent-based systems in case

we are interested in their collective behavior. OBEUS is actually an implementation of

the theory of Geographic Automata Systems (GAS). You could know more about GAS

theory and Geosimulation, as a general approach to investigating complex

geographic systems reading next chapter of this manual. Here are the main sources,

where Geosimulation, GAS, and OBEUS are discussed.

First, this is a book of Itzhak Benenson and Paul Torrens:

Benenson, I. and P. M. Torrens (2004a). Geosimulation: automata-based modeling

of urban phenomena. London, Wiley, 232pp,

where you could find the theory and, especially, a bulk of applications developed

during last decades in various fields, from pedestrian and vehicle movement to city

growth and sprawl.

Several recent papers discuss the theoretical principles of Geosimulation, GAS and

OBEUS in more details than the book. Here goes the list:

Benenson, I. and P. M. Torrens (2003). Geographic Automata Systems: a new

paradigm for integrating GIS and geographic simulation. Association Geographic

Information Laboratories Europe (AGILE), Lyons.

Benenson, I., S. Aronovich, et al. (2004). "Let's Talk Objects: Generic Methodology

for Urban High-Resolution Simulation." Computers, Environment and Urban Systems,

Forthcoming.

Torrens, P. M. and I. Benenson (2005). "Geographic Automata Systems."

International Journal of Geographic Information Science forthcoming.

You can download all these papers from the www.geosimulationbook.com site.

We are very much interested in your critics and suggestions

bennya@post.tau.ac.il, vlad@eslab.tau.ac.il

http://www.geosimulationbook.com/
mailto:bennya@post.tau.ac.il
mailto:vlad@eslab.tau.ac.il

	Note on programming style
	Note on “How to begin”
	Relationships’ methods

