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Abstract

Evolutionary stable strategies (ESSs) are often used to explain the behaviors of individuals and species. The analysis
of ESSs determines which, if any, combinations of behaviors cannot be invaded by alternative strategies. Two
assumptions required to generate an ESS (i.e. an infinite population and payoffs described only on the average) do
not hold under natural conditions. Previous experiments have indicated that under more realistic conditions of finite
populations and stochastic payoffs, populations may evolve in trajectories that are unrelated to an ESS, even in very
simple evolutionary games. The simulations are extended here to small populations with varying levels of selection
pressure and mixing levels. The results suggest that ESSs may not provide a good explanation of the behavior of small
populations even at relatively low levels of selection pressure and even under persistent mixing. The implications of
these results are discussed briefly in light of previous literature which claimed that ESSs generated suitable
explanations of real-world data. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The concept of evolutionary stable strategies
(ESSs) has become increasingly common in expla-
nations of the long-term dynamics of complex
adaptive systems. The behavior of such systems is

anticipated by examining an evolutionary game
with various possible strategies for each player
and prescribed payoffs that depend on the simul-
taneous play of all participants. The equilibrium
conditions of the game are determined, and it is
assumed that once the players’ strategies arrive at
such an equilibrium they will tend to remain in
that condition, barring external influences. Thus
the equilibrium states are the likely resulting be-
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haviors of the complex coevolutionary system
with the caveat that such states are accessible
(Nowak, 1990; Takada and Kigami, 1991) and
that the game provides an adequate description of
the real-world conditions.

The most basic game is a mathematical con-
struction involving pairwise contests among an
infinite collection of players over resources of
specified values. Each competing player can adopt
one of two alternative behaviors, A or B. A
payoff is defined for each alternative combination
of behaviors. The respective worth for a player
adopting a certain behavior is determined by the
expected payoff for the behavior, given the distri-
bution of behaviors in the population. The payoff
for a single pairwise encounter is denoted as

E(A, B),

where the payoff is to the individual adopting
strategy A against an opponent adopting strategy
B, with a similar notation for other possible pairs
of strategies.

For a strategy I to be an ESS, it must satisfy
either of the following conditions:

E(I, I)\E(I, J)

E(I, I)=E(J, I) and E(I, J)\E(J, J)

where J is any other strategy, J"I (Maynard
Smith and Price, 1973; Maynard Smith, 1982).
Essentially, an ESS is a strategy, or set of strate-
gies, which cannot be invaded by any other strat-
egy. When members of a population adopt an
ESS, their expected payoffs are always greater
than the payoff awarded by any new member
adopting an alternative policy. Analysis by ESSs
has been used to predict the behavior and charac-
teristics of naturally evolved organisms (e.g. ex-
pected sex ratio (Dawkins, 1989, pp. 144–145),
courtship strategies (Dawkins, 1989, pp. 150–
151), searching for suitable feeding areas (Motro,
1991), superparasitism (Visser et al., 1992), mating
tactics (Wolf and Waltz, 1993), and many others).

The principal assumption for analyzing systems
in terms of their ESSs is an infinite population
(Maynard Smith, 1982, p. 20). Under this as-
sumption, if individual payoffs reflect random
effects (e.g. when two equivalent strategies meet,

one wins and the other loses with equal probabil-
ity), these effects can be collapsed to their expec-
tation (i.e. the variability of the distribution of the
sample mean goes to zero in the limit); however,
under a finite population, regardless of population
size, these random effects are instead described by
a probability mass function. Sampling from such
a probability distribution can have a marked ef-
fect on the trajectory of a population over the
course of many iterations. In an adaptation of the
simple hawk–dove game (Dawkins, 1989), simu-
lations that incorporated a finite population and
random payoffs demonstrated limit cycle behavior
(Fig. 1) and population trajectories that were not
associated with the ESS found in the infinite game
(Fogel and Fogel, 1995). Fogel et al. (1997) ex-
tended these results to include various levels of
selection pressure (i.e. the fraction of the popula-
tion culled by selection at each generation) for
populations of size 600 (Fig. 2). The results indi-
cated that the mean fraction of hawks was quali-
tatively different from the ESS for selection
pressures of 16% and above, and was statistically
significantly different from the ESS for pressures
]7%. The current experiments quantify the rele-
vance of ESSs in the finite population hawk–dove
game under smaller populations (size 60) at vari-
ous levels of selection pressure and random mix-
ing of individuals.

2. Background

The hawk–dove game involves two players who
may choose between strategies of hawk or dove.
A hawk is always aggressive and only retreats
when injured. A dove, in contrast, merely adopts
a threatening posture but never causes physical
harm to an opponent. If a hawk fights a dove, the
dove flees. If a hawk fights another hawk, they
continue to fight until one of them is injured. If a
dove meets a dove, neither is harmed; both adopt
threatening positions for a long time until one
retires. It is assumed that there are no recognition
mechanisms that would enable either player to
discern the opponent’s strategy before an
encounter.
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Fig. 1. The results of a typical simulation (Fogel and Fogel, 1995) of the hawk–dove game with a finite population and random
payoffs. A population of 600 individuals was initialized at the ESS (350 hawks). At each generation, all individuals met in a
round-robin competition (all possible pairs) and the 300 individuals with the lowest scores were replaced by copies of the 300
individuals with the highest scores (50% selection). The population did not remain at the ESS, but instead diverged away from it
and fell into an apparent limit cycle for an indeterminate length of time. The particular cycle of (560, 520, 440, 280) shown above,
describing the number of hawks in the population over successive generations, occurred in each of ten trials. The mean of this cycle
is 450 hawks, which does not correspond well with the ESS. Another frequently generated cycle was (400, 200), and again the mean
of this cycle does not correspond well with the ESS. A variety of other results were generated for populations of 60 and 6000
individuals, but in no case did the ESS provide a useful description of the population’s trajectory.

Points are awarded for encounters as follows. A
win is worth 50 points, a loss is worth 0 points,
being injured is worth −100 points, and wasting
time in a long contest is worth −10 points. These
values are taken from Dawkins (1989)(p. 70), and
are somewhat arbitrary but are meant to reflect
the reproductive potential in light of the above
descriptions. Encounters between a hawk and

dove always yield 50 points for the hawk and 0
for the dove. Encounters between doves yield 40
points to one dove (50 points for the win and
−10 for wasting time) and −10 to the other,
with the winner chosen with equal probability.
Encounters between hawks yield 50 points to the
victor and −100 to the vanquished, again with
the winner chosen with equal probability (Table 1
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Fig. 2. A scatterplot of the mean fraction of hawks after replication for each of 100 trials at each level of selection pressure (i.e. the
fraction of the population that is eliminated at each generation) using a population of 600 players (from Fogel et al., 1997 with
greater detail displayed here). Coincident points are represented by larger star symbols. As the selection pressure was increased, the
mean behavior of the population after replication tended to diverge away from the ESS (which is depicted by a horizontal line). For
selection pressure up to :15%, hawks comprised the majority of individuals both eliminated and replicated (i.e. they possessed
scores in both tails of the distribution). After 15% selection, the distribution of individuals selected against diversified, and the mean
behavior of the population tended to drift sharply away from the ESS until it was ultimately dominated by limit cycles. At very high
selection pressure, the data suggest that the probability distribution of the mean fraction of hawks may be bimodal.

provides a summary). Thus the expected payoffs
for encounters are:

E(H, H)= −25

E(H, D)=50

E(D, H)=0

E(D, D)=15

where H and D are the respective hawk and dove
strategies, and the payoff is the mean payoff for
the strategy listed first in parentheses. Operating
on these expected values, the ESS for the game is
a population consisting of 5/12 doves and 7/12
hawks. In the infinite population game, if the
fraction of hawks started to increase above 7/12,
doves would begin to gain an extra advantage,
and the stable 7:5 ratio of hawks to doves would
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Table 1
A summary of the payoffs for the various encounters in the hawk–dove game

Player B
Hawk Dove

Hawk 50/−100 or −100/50 50/0
Player A

0/50Dove 40/−10 or −10/40

The payoff for each encounter in the table is described by A/B, where A is the payoff to player A and B is the payoff to player B.
If two hawks meet, they fight. One wins and receives 50 points, while the other is injured and receives −100 points. Both hawks
have equal probabilities for winning. If a hawk meets a dove, the dove flees and receives no points, while the hawk receives 50
points. If two doves meet, they both posture and waste time, both earning −10 points, but then one dove outlasts the other and
is compensated with 50 points, for a total of 40 points. Both doves have equal probabilities for winning. The payoffs in the classic
hawk–dove game are taken as the mean payoffs (or expectations) of these circumstances.

reappear. But under more realistic conditions of a
finite population, with high selection pressure (i.e.
the fraction of the population that is eliminated),
where the payoffs for individual encounters are
not taken as the expected payoffs but rather are
sampled as random variables, the ratio of hawks
to doves can diverge from the ESS and may
exhibit limit cycles (Fig. 1).

3. Method

Two experimental designs were employed. In
the first, 100 trials were conducted for each of a
variety of selection pressures (see Fig. 2) within a
finite population of 60 individuals playing a
hawk–dove game. In each trial, the population
was initialized at the ESS: 35 hawks and 25 doves.
All individuals in the population competed in a
round-robin tournament (i.e. each individual pairs
with each other individual one time), and payoffs
were awarded in each encounter by sampling from
the appropriate random variable, rather than us-
ing its expected value. For example, if two hawks
met, one would receive a payoff of 50 for the win
while the other would receive −100 for fighting
and losing, instead of assigning both hawks the
statistical expectation of −25. The results of any
encounter did not affect the probabilities of win-
ning or losing in subsequent encounters (i.e. en-
counters between like individuals were always
decided with equal chances for each to win). After
all pairwise contests were completed and point
totals accumulated, a selected percentage of the

population with the lowest scores was removed
from the population and replaced by copies of the
corresponding percentage of highest scoring indi-
viduals. For example, if the selection pressure
were 10% then the six lowest scoring individuals
would be replaced by replicas of the six highest
scoring individuals. Selection levels (percentage to
be culled) covered the range [1–50] by single
percentage points. Each trial was executed for 200
iterations of replication and selection, this being
chosen so as to minimize any initial transient
effects on the mean population trajectory.

The second experiment broadly followed the
design of the first except that the round-robin
pairing was replaced by a randomized mixing
procedure. Rather than compute all pairwise en-
counters, a random mixing level was described as
a percentage of the population size. The expected
number of encounters for each individual per
iteration was determined by multiplying the mix-
ing percentage by the population size. For exam-
ple, if the mixing level were 5% and the chosen
population size consisted of 60 individuals then
this would indicate that each individual should be
expected to engage in three encounters. The ex-
pected number of encounters per individual was
multiplied by the total population size to deter-
mine a total number of encounters for each itera-
tion. Individuals were then selected completely at
random for each encounter up to the prescribed
maximum number. Thus it was possible for an
individual to have more than the expected number
of engagements, or even no engagements. Each
individual was initialized with zero points at the
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Fig. 3. A scatterplot of the mean fraction of hawks after replication for each of 100 trials at each level of selection pressure (i.e. the
fraction of the population that is eliminated at each generation) using a population of 60 players. Coincident points are represented
by larger star symbols. As the selection pressure was increased, the mean behavior of the population after replication tended to
diverge away from the ESS (the horizontal line). At and above 5% selection, the mean behavior of the population tended to drift
sharply away from the ESS.

start of each round of competition, and selec-
tion was imposed based on the number of
points per individual after all pairwise competi-
tions had been completed. The mixing level was
stepped over the range [5, 100] by five percent-
age points and the selection percentage was
simultaneously stepped over [5, 50] percent (i.e.
100 trials for 200 iterations for each pair of
settings for mixing level and selection pressure).
In addition, a selection pressure of 1% (which
was set equal to one individual) was also exe-
cuted.

4. Results

Conceptually, the simulation operated in dis-
crete phases of selection and replication, thus
consideration should be given to the mean frac-
tion or number of hawks in the population at the
completion of both phases. Previous experiments
with 600 individuals indicated that the ESS was
not qualitatively relevant to the fraction of hawks
after selection (Fogel et al., 1997), and attention
was therefore focused on the fraction or number
of hawks in the population after replication. For
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the first experiment, this is displayed in Fig. 3
(Table 2 summarizes these statistics across all
trials). The mean fraction of hawks after replica-
tion was statistically significantly different from
the ESS (PB0.01) at all selection levels ]5%.
The mean fraction of hawks after replication
moved increasingly away from the ESS at succes-
sively higher levels of selection pressure. None of
the sets of 100 trials for any selection pressure
above 10% generated a distribution of the mean
fraction of hawks that bounded the ESS, nor did
the ESS appear to be a useful point estimate of
the distribution of trials for selection pressure at
]5%.

For the second experiment, Fig. 4 shows the
combined effects of varying the selection percent-
age and the mixing level (noted as encounter
percentage). When the mixing level is held con-
stant and selection percentage is varied, system-
atic deviations away from the ESS are observed.
These deviations are exaggerated for a mixing
level of only 5%, where the mean number of
hawks after replication in 100 trials of 200 itera-
tions appears to take on a decidedly non-linear
pattern as selection percentage is varied from
1–30 individuals (i.e. 1–50%). For any particular
mixing level, the ESS did not serve as a useful
point estimate of the population’s mean behavior
at any selection percentage greater than 5%. There
was often considerable variability even at only 5%
selection. For constant selection pressure of 5, 25
and 50% (as shown in Fig. 4), as the encounter
percentage is increased, the distribution of the
mean number of hawks after replication (across
all iterations) appears to stabilize. But the ESS
served as a potentially useful point estimate of the
mean population behavior only for the relatively
slight selection pressure of 5%. Note that as the
mixing level was reduced the results typically be-
came more variable (as might be expected). More-
over, the directionality of the variability was not
consistent (i.e. low mixing at low selection pres-
sure generated a low mean number of hawks,
while low mixing and medium and high selection
pressures generated a high mean numbers of
hawks).

5. Discussion and conclusions

The results provide further evidence that the
equilibrium conditions associated with ESSs may
not be stable in simple evolutionary games involv-
ing a finite population and random payoffs based
on individual encounters. The simulations demon-
strate the potential for generating qualitatively
different results than would be expected under the
assumption of an infinite population simply by
varying fundamental characteristics such as the
selection pressure and mixing rate. Cavalieri and
Kocak (1995) have shown that in a model simula-
tion study with parameter values based on field
data, a population undergoing regular periodic
cycles can become chaotic in the absence of
changes in environmental factors. Analysis by
Dieckmann et al. (1995) also indicates that evolu-
tionary limit cycles may be a natural outcome to
coevolutionary dynamics and they suggest
‘‘Clearly, there is no general rule in nature to say
that phenotypic evolution would lead to an equi-
librium point in the absence of external changes in
the environment’’. It may be more useful to view
populations in terms of chaotic behavior, limit
cycles, and stochastic disturbances than in terms
of fixed point equilibria.

The payoffs in the classic hawk–dove game
describe changes in fitness, where fitness is defined
in terms of the expected number of offspring (or
surviving offspring, or offspring that survive to
reproduce). The simulations conducted here do
not explicitly assign payoffs as changes in fitness
under this definition. Instead, accumulated pay-
offs are used to determine which individuals to
remove from a population under selection. Al-
though the specifics differ, each pairwise payoff is
‘‘taken as a measure of the contribution the con-
test has made to reproductive success of the indi-
vidual’’ (Maynard Smith and Price, 1973). The
reproductive success of an individual under the
current simulations can only be as great as one
offspring. Objection might therefore be raised that
the above study is truly analyzing the stability of
an ESS.

If attention is given to the long-term behavior
in equilibrium of the game under the framework
of the simulations above, however, there is an
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Fig. 4. A series of scatterplots of the mean number of hawks after replication for each of 100 trials with either the mixing level or
selection pressure held constant while the other parameter is allowed to vary. Each data point is the mean of 200 iterations in
independent trials. Plots (a)–(e) are for mixing levels (encounter percentage) of 100, 75, 50, 25 and 5% respectively, with selection
percentage ranging from [1, 50] in increments of five units. Plots (f)–(h) are for selection percentages of 5, 25 and 50% respectively,
with encounter percentage varying over [5, 100] percent in increments of five units. At mixing levels of 75% (b) and 100% (a), for
selection pressure greater than 5%, the distribution of results drifts away from the ESS. At mixing levels of 25% (d) and 50% (c),
the ESS is not a useful point estimate of the distribution of results even at selection pressures of only 5%. When the mixing level
is lowered to 5% (e), the distribution of results takes on a non-monotonic characteristic as selection pressure is increased. Note that
in plots (a)–(d), a vast majority of trials at the 1% selection level never deviated from the ESS (e.g. for the case of a mixing level
of 100% (a), 99 of 100 trials remained at the ESS). For the cases where selection pressure is held constant (f)–(h), as the mixing level
is increased the distribution of trials appears to stabilize, but the ESS is only useful as a point estimate in the case of 5% selection
pressure (f). For low mixing levels, none of the results show reasonable agreement with the ESS.
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Fig. 4. (Continued)

obvious congruence between the equilibrium con-
ditions and the ESS for the classic game. Indeed,
the definition of an ESS follows the concept of
putting strategies into equilibrium conditions
(Maynard Smith and Parker, 1976, p. 162). The
ergodic equilibrium conditions for the simulations
conducted here can be determined in a manner
similar to Maynard Smith and Parker (1976).

Given H hawks in a population of size N, and
therefore N−H doves, the expected payoff to
each hawk and dove under panmictic conditions
is:

E(H)= −25(H−1)+50(N−H)

E(D)=0(H)+15(N−H−1)

Note that each individual cannot play against
itself. At equilibrium:

−25H+25+50N−50H=15N−15H−15

−60H= −35N−40

H/N=7/12+2/(3N).

H/N defines the proportion of hawks in the popu-
lation, and as N tends to infinity, this ratio tends
to 7/12, which is the ESS for the infinite popula-
tion case.

The question at hand is, under conditions of
the framework of the simulations, is the equi-
librium condition for an infinite population rele-
vant in describing the long-term dynamics of the
population? The consistent answer is no, except at
extremely low levels of selection pressure. The

populations did not exhibit stability ever under
modest levels of selection pressure (where stability
is defined in the conventional mathematical fash-
ion of returning to a point after a perturbation of
less than a specified magnitude). Instead the pop-
ulations wandered above and below the ESS in an
apparently chaotic manner (this remains to be
determined precisely), and their mean behavior
did not coincide well with the ESS. Thus the ESS
was not useful as a predictor of the ultimate state
of the population in our simulations.

The simulations incorporated a number of
somewhat arbitrarily determined parameters and
procedures, including: (1) only the highest-scoring
individuals were allowed to reproduce, (2) each
contest was independent of previous contests, (3)
no spatial influences were imposed on the individ-
uals (i.e. any individual could potentially meet
any other), and (4) none of the individuals varied
their strategy based on previous encounters. The
choice of only reproducing the observed best indi-
viduals deserves further consideration, but it is
difficult to imagine the introduction of randomly
selected parents generating a sudden transforma-
tion to greater stability. Factors (2)–(4) were cho-
sen so as to be close to the original formulation of
an infinite population with random mixing and
fixed strategies. It might be appropriate to modify
any or all of these procedures if the model were
intended to abstract a particular real-world cir-
cumstance, or if the relevance of equilibrium the-
ory were to be tested in a model such as the
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Table 2
The mean fraction of hawks after replication averaged over 100 trials at each level of selection pressure (percentage of population
eliminated by selection) using a population of 60 individuals

P-valueSample S.D.Selection pressure t-statisticMean fraction of hawks after replication

0 – –1 0.58333
\0.10.980392 0.58338 0.00051

−0.026320.58333 \0.50.001143
0.969700.58349 \0.10.001654

B0.013.422820.584865 0.00447
8.412160.58831 B0.0010.005926

0.00609 9.75369 B0.0017 0.58927
17.811970.59375 B0.0010.005858

B0.00119.353549 0.59291 0.00495
27.132530.59459 B0.0010.0041510
42.129280.59441 B0.0010.0026311

B0.00138.666670.003000.5949312
40.671640.59423 B0.0010.0026813
42.440940.59411 B0.0010.0025414

B0.00152.884620.0020815 0.59433
0.00181 66.07735 B0.00116 0.59529

B0.00160.8556117 0.59471 0.00187
79.750000.59609 B0.0010.0016018

0.00152 82.17105 B0.00119 0.59582
B0.001102.598430.5963620 0.00127

110.330580.59668 B0.0010.0012121
0.00110 122.63636 B0.00122 0.59682
0.00121 112.31405 B0.00123 0.59692

B0.001115.593220.0011824 0.59697
0.59691 103.66412 B0.00125 0.00131

B0.001122.9059826 0.59771 0.00117
126.086960.59783 B0.0010.0011527
134.033610.59928 B0.0010.0011928

B0.001117.238810.0013429 0.59904
0.00132 130.22727 B0.00130 0.60052

B0.001127.9605331 0.60278 0.00152
122.911390.60275 B0.0010.0015832

0.00169 124.43787 B0.00133 0.60436
B0.001135.031850.6045334 0.00157

124.022350.60553 B0.0010.0017935
0.00184 129.02174 B0.00136 0.60707
0.00186 127.41935 B0.00137 0.60703

B0.001142.542370.0017738 0.60856
39 B0.0010.60840 0.00214 117.14953

B0.001146.353590.60982 0.0018140
134.350000.61020 B0.0010.0020041

0.00197 138.52792 B0.00142 0.61062
114.197530.61108 B0.0010.0024343

B0.001130.1408544 0.61105 0.00213
128.904110.61156 B0.0010.0021945

46 B0.0010.61142 0.00253 111.02767
B0.001141.700000.6116747 0.00200

119.662450.61169 B0.0010.0023748
0.00264 107.00758 B0.00149 0.61158
0.00255 110.19608 B0.0010.6114350

Each trial consisted of 200 generations of selection and replication. At 1% selection, the population never deviated from the ESS. But for
all levels of selection pressure ]5%, the hypothesis that the mean fraction of hawks after replication correspond with the ESS can be
rejected at PB0.01 using an approximate t-test. At selection pressures of 6% or greater, the P-values are consistently B0.001.
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iterated prisoner’s dilemma (Axelrod, 1984; Fogel,
1993) where previous encounters can shape future
behaviors.

The relative failure of equilibrium theory to
describe the behavior of the simulated hawk–
dove game calls into question the robustness of
the theory to describe behavior in naturally
evolved settings. Certainly, such settings are or-
ders of magnitude more complex and subject to
many potential influences that might be expected
to lead to chaotic oscillations. In fact, such condi-
tions have been observed even in the light of
expected frequency-dependent selection but under
a time delay (Hori, 1993). The true applicability
of ESSs as explanations of real-world conditions
may be less than commonly believed. Much of the
work in ESSs relates only to the mathematical
problems posed under a variety of factors, such as
mate desertion (Grafen and Sibly, 1978), individ-
ual condition and tactic frequency (Repka and
Gross, 1995), renewing resources (Houston et al.,
1995), learning rules (Tracy and Seaman, 1995),
and others. Many of these efforts make analogies
to real organisms, but no real data is offered in
support of the derived models.

Two examples where data have been offered
and tested are Davies and Halliday (1979) and
Sinervo and Lively (1996). Davies and Halliday
(1979) studied competitive mate searching in male
toads (Bufo bufo). During migration to a spawn-
ing pond, 363 males and 77 females were ob-
served. Males obtained females by (1)
encountering an available female and pairing up
(riding her back), or (2) dislodging a paired male.
Consideration was given to modeling the likeli-
hoods for successful pairing by searching at a
spawn site or away from the spawn site, with the
belief that the individuals act to equalize these
probabilities. Predictions from the equilibrium
model suggest the percentage of males to utilize
either location on a daily basis over 12 days.
Davies and Halliday (1979) recognized the ability
of the model to predict the seasonal trend for an
increase in the percentage of males searching at
the spawn site, yet also described the overall fit to
the observed data as ‘reasonably good,’ despite
three or four of the 12 observations undershoot-
ing and overshooting the actual percentages in the
range of 10–25%.

Sinervo and Lively (1996) studied male side-
blotched lizards (Uta stansburiana) in the inner
Coast Range of California. Territorial defense by
males is dependent on throat color: orange
throated males are aggressive and defend large
territories, blue throated males are less aggressive
and defend smaller territories, and yellow-stripe
throated males are ‘sneakers’ that do not defend
territories. It was shown that each morph could
invade another morph when rare, but was itself
invadable by another morph when common. An
ESS model predicted cyclic behavior and indeed
an apparent 6-year cycle in morph frequency was
observed (apparent because only 6 years of data
were obtained and twice this data must be ob-
tained to confirm a 6-year cycle). But the ESS
model is described as predicting a 12-year cycle
(yet the plotted data from their model shows in
fact a 16-year cycle), which does not agree with
the observed data (i.e. the model suggests a differ-
ent cycle). The observed data may in fact be the
first example of a population cycle caused by
frequency-dependent selection (Maynard Smith,
1996), but it is not clear that an ESS model
predicted the data with sufficient fidelity to justify
the statement: ‘‘There is a special pleasure when a
curious piece of natural history fits a theoretical
prediction’’ (Maynard Smith, 1996).

Although mathematical models may be useful
tools to explore the potential behavioral strategies
of individuals in populations, their results must be
interpreted with care. There is significant disso-
nance between the observed results in the simple
hawk–dove simulation offered here and the re-
sults that would be expected under equilibrium
theory based on infinite populations. This result
provides evidence extending preliminary efforts in
(Fogel and Fogel, 1995). The greater recognition
of the potential for coevolutionary dynamics to
lead to chaotic behavior (see also Cavalieri and
Kocak, 1995; Dieckmann et al., 1995) and the
appearance that ESSs may have been accepted
too easily as explanations of observed data in the
past, suggests a careful reevaluation of the rele-
vance of ESS theory in general, and of its assump-
tions in particular.
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