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Abstract. Evolutionarily stable strategy (ESS) models are widely viewed as predicting the strategy of an individual
that when monomorphic or nearly so prevents a mutant with any other strategy from entering the population. In fact,
the prediction of some of these models is ambiguous when the predicted strategy is ‘‘mixed’’, as in the case of a sex
ratio, which may be regarded as a mixture of the subtraits ‘‘produce a daughter’’ and ‘‘produce a son.’’ Some models
predict only that such a mixture be manifested by the population as a whole, that is, as an ‘‘evolutionarily stable
state’’; consequently, strategy monomorphism or polymorphism is consistent with the prediction. The hawk-dove
game and the sex-ratio game in a panmictic population are models that make such a ‘‘degenerate’’ prediction. We
show here that the incorporation of population finiteness into degenerate models has effects for and against the evolution
of a monomorphism (an ESS) that are of equal order in the population size, so that no one effect can be said to
predominate. Therefore, we used Monte Carlo simulations to determine the probability that a finite population evolves
to an ESS as opposed to a polymorphism. We show that the probability that an ESS will evolve is generally much
less than has been reported and that this probability depends on the population size, the type of competition among
individuals, and the number of and distribution of strategies in the initial population. We also demonstrate how the
strength of natural selection on strategies can increase as population size decreases. This inverse dependency under-
scores the incorrectness of Fisher’s and Wright’s assumption that there is just one qualitative relationship between
population size and the intensity of natural selection.
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Traits for which the fitness of an individual is usually
frequency dependent, such as sex ratio, have received sub-
stantial theoretical and empirical study in recent decades,
with much of the theoretical study involving game-theoretic
models. The most famous example of such an approach is
the evolutionarily stable strategy (ESS) analysis developed
by Maynard Smith and Price (1973). Such a strategy is evo-
lutionarily stable in the sense that when almost all individuals
in a population possess it, a rare mutant individual possessing
another strategy cannot possess a selective advantage. This
concept has been extensively developed (for theoretical elab-
oration, see Maynard Smith 1982; Hines 1987, 1990; Hof-
bauer and Sigmund 1998; and for applications to natural pop-
ulations, see Dugatkin and Reeve 2000.) In what follows, the
term ‘‘ESS strategy’’ will refer to the strategy of an indi-
vidual predicted by an ESS model and the term ‘‘ESS’’ will
refer to a population in which all individuals possess an ESS
strategy.

Although the definition of an ESS involves uniformity
(save for rare mutants) there are different ways in which an
ESS can be reconciled with within-population variation. Con-
sider an ESS strategy that is a mixture of subtraits. A sex
ratio, for example, may be viewed as such a mixed strategy,
with a mother sometimes expressing one subtrait (produce a
daughter) and sometimes the other (produce a son). To this
extent, a snapshot of a population could record variation since
one mother might be seen producing a daughter while another
might be seen producing a son, even though both mothers
produce the same sex ratio over their reproductive lifetimes.

The second way in which an ESS can be reconciled with
variation relates to the fact that some ESS models that predict
a mixture of subtraits do not uniquely predict an ESS. Instead,

they predict only the equilibrium mixture expressed by the
population and do not predict the mixture produced by any
given individual. To this extent, the equilibrium mixture of
subtraits could be manifested as an ESS or as a mixture of
individuals that differ from one another in the subtrait mix-
tures they express during their lifetimes. At the extreme, this
mixture of individuals would be a mixture of pure strategists,
that is, individuals that never change the subtrait they express.
For example, in the case of a sex ratio, this configuration
would be an equal mixture of two types of mothers, one type
producing only daughters and the other only sons (for related
discussions, see Patterson 1928; Metz 1938; West et al.
1999).

The set of models that have ambiguous predictions about
the manifestation of individual strategies includes the sex-
ratio model for a panmictic population (Kolman 1960; Poeth-
ke 1988; see also Verner 1965), the hawk-dove model (May-
nard Smith 1976), and the digging-entering model of nesting
behavior (Brockmann et al. 1979). Thomas (1984) defined
such models as being ‘‘degenerate’’ and called their ambig-
uous prediction an ‘‘evolutionarily stable state’’; in contrast,
those models predicting an ESS are defined as ‘‘nondegen-
erate.’’ Well-known examples of the latter kind of model
concern the sex ratio expressed in a population with local
mate competition (e.g., Hamilton 1967; Frank 1985; Herre
1985). These models predict that the optimal sex ratio be
expressed by each individual; illustrations of the selective
disadvantage of non-ESS sex ratios are shown below and in
Orzack et al. (1991) and West and Herre (1998).

It is a truism that the classification of any given model as
degenerate or nondegenerate reflects its mathematical for-
mulation. Thomas’s (1984) classification of the hawk-dove
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model as degenerate rests upon Maynard Smith’s model for-
mulation, which omits some features whose presence is often
thought of as essential for the sake of biological reality. For
example, this formulation ignores the fact that populations
are finite in size. In this paper, we investigate whether in-
corporation of population finiteness into a degenerate stra-
tegic model changes its equilibrium from an evolutionarily
stable state to an ESS (or to another configuration).

This question has been addressed by Vickery (1987, 1988),
Maynard Smith (1988), and Bergstrom and Godfrey-Smith
(1998). Their conclusion is that an ESS is likely to evolve
in a finite population. This conclusion is based on Monte
Carlo simulations in which the ESS strategy was fixed in
approximately 70% or more of populations studied (see May-
nard Smith 1988, p. 250; Bergstrom and Godfrey Smith 1998,
p. 224).

We first describe our population model, then we outline
analytical results relating to the evolutionary consequences
of finite populations, and finally we describe our simulation
results.

THE POPULATION MODEL

We define a ‘‘dynamical’’ model as one that includes an
explicit mechanism by which traits are transmitted from one
generation or time unit to the next. A dynamical game-the-
oretic model of the evolution of strategies differs from a
standard model of frequency-dependent trait evolution as for-
mulated by population geneticists only in that the former has
explicit elaboration of the process by which individuals ex-
press their interactive traits. Analysis of either kind of model
requires an assumption as whether the population is finite or
infinite in size. We assume here that there are N haploid
individuals in a panmictic population with nonoverlapping
generations. An individual with genotype i always manifests
strategy i; hereafter, we use the latter term only. Within a
given generation, there is first a competitive period during
which individuals engage in pairwise contests where they
express their strategies and then a reproductive period during
which the strategy configuration for the next generation is
formed. We further assume that the costs and benefits of
expressing any strategy are temporally invariant. This for-
mulation is standard (e.g., Hines 1987, pp. 197–198).

To fully determine the nature of the competitive period,
one must decide how many contests each individual engages
in. We consider two extreme cases. In the infinite contest
(IC) case, each individual has an infinite number of pairwise
contests with each other member of the population; in the
single contest (SC) case, each individual has a single pairwise
contest. We assume that the payoffs stemming from a given
contest are constant. The IC case is the usual choice in the
analysis of ESS strategy dynamics; it means that identical
individuals have identical competitive experiences (since
there is no random sampling to assemble the set of opponents
faced by any individual.)

In the reproductive period, the production of offspring to
form the next generation occurs via the replicator dynamic
described by Taylor and Jonker (1978). The expected con-
tribution of offspring to the next generation by any given
individual is strictly proportional to the winnings accrued

during the competitive period, although the random choice
of individuals to form the next generation (genetic drift, as
described by the Wright-Fisher model of reproduction) al-
most certainly causes the expected and realized contributions
of offspring to differ.

ANALYTICAL RESULTS CONCERNING THE EFFECTS OF

POPULATION FINITENESS ON STRATEGY EVOLUTION

A Deterministic Consequence of Population Finiteness

Riley (1979) noted that in a finite population the frequency
of any individual’s competitors identical to it is decreased
(by 1/N, where N is population size) as compared to the
relative frequency in an infinite population, and the frequency
of opponents that are different is correspondingly enriched
(see also Vickery 1987). For a model predicting a mixed ESS
strategy, when the population mixture is at or near the evo-
lutionarily stable state it is straightforward to show that the
evolutionary consequence of this ‘‘don’t play yourself’’
(DPY) effect (Bergstrom and Godfrey-Smith 1998) can be
to favor extreme strategies (e.g., pure hawk or dove as op-
posed to a mixed hawk-dove strategy, one-sex broods as op-
posed to two-sex broods, etc.), thereby discouraging evolu-
tion toward the ESS. For example, in a hawk-dove game in
a finite population, a hawk benefits in such a circumstance
from having fewer contests with hawks than non-hawk strat-
egists do and thereby has a higher fitness than it would have
in an identical infinite population. Figure 1 shows the dif-
ferences in absolute fitness caused by the DPY effect for the
hawk-dove game. It is well known that the magnitude of this
effect is dependent in a simple way on the size of the pop-
ulation (e.g., Hines 1987, p. 217), and is O(1/N). By its nature,
the DPY effect concerns a comparison of fitnesses within a
discrete generation and does not address the additional con-
sequences of population finiteness on the transmission of
strategies from generation to generation. To this extent, this
effect alone is not definitive with respect to answering the
question as to whether the ESS tends to evolve in a finite
population.

The Stochastic Consequences of Population Finiteness

We consider two types of stochastic effects—those that
occur during competition and those that occur during repro-
duction. The two cases of competition described above, IC
and SC, differ in their degree of stochasticity as measured
by among-individual differences in competitive experiences.
In the IC case, since each individual has an infinite number
of contests with each other individual, competitive stochas-
ticity due to finiteness is absent and one can determine the
exact payoff for any individual. In contrast, in the SC case
competitive stochasticity is maximal, since each individual
has a single contest with only one individual. The payoff for
each individual will depend strongly on the random choice
of opponent and on the random choices of action by each
individual in the single contest. Because an individual always
has only one opponent, variability at the level of the contest
(payoff per individual against a given opponent) is unaffected
by changes in population size. However, the variance of the
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FIG. 1. Absolute fitnesses of the pure hawk, the pure dove, and the evolutionarily stable strategies as a function of population size.
Fitness differences are the result of the ‘‘don’t play yourself’’ effect, which stems from the absence for any given individual of its own
strategy from the pool of contest opponents. The payoffs used are 0 and 3 for hawk played against hawk and dove and 1 and 2 for dove
played against hawk and dove. For any given population size, we assume that there are 25% hawks, 25% doves, and 50% ESS strategists.

mean of such winnings is dependent on population size; it
is straightforward to show that this variance is O(1/N).

The effects of reproductive stochasticity can be substantial.
When individuals differ little (or not at all) in the selective
consequences of their strategies, the average within-popu-
lation variance of strategies is expected to decline every gen-
eration simply due to genetic drift. The change is of order
O(1/N) (e.g., Ewens 2004, pp. 92–99). It is straightforward
to show that this dynamic can result in extreme strategies
attaining transient frequencies that cause the ESS strategy to
have a selective advantage during competition.

When individuals differ more substantially in the selective
consequences of their strategies (although not markedly so),
the combined effect of stochasticity on competitive inter-
actions and on reproduction can be approximately analyzed
as follows.

Let strategy i be represented by ui, a vector of the prob-
abilities of playing each of the possible subtraits (such as
hawk and dove). Define pt(ui) as the frequency of strategy ui

at the beginning of generation t, ft(ui) as the expected growth
rate of ui at generation t (5 E[pt11(ui)]/pt(ui), where E[] de-
notes expectation), and t(ui) 5 pt11(ui)/pt(ui) as the realizedf̂
growth rate of ui at generation t. Any discrepancy between
ft(ui) and t(ui) reflects random sampling of offspring at thef̂
end of the reproductive period during the formation of the
next generation. Following Taylor and Jonker (1978), one
has

p (u ) 5 f̂ (u )f̂ (u )f̂ (u ) · · · f̂ (u )f̂ (u )p (u ), (1)t11 i t i t21 i t22 i 2 i 1 i 1 i

so that

t

log[ p (u )] 5 log[f̂ (u )] 1 log[ p (u )], (2)Ot11 i r i 1 i
r51

which depends increasingly on the first term as time passes
(assuming that p1[ui] is positive). If t(ui) is a continuous,f̂
differentiable, function in ui and if selection favors individ-
uals with a specific strategy, say u*, then Taylor’s theorem
indicates that

t t

log[ p (u )] ø a 1 (u 2 u*) bO Ot11 i r i r
r51 r51

t
21 (u 2 u*) c 1 log[ p (u )], (3)Oi r 1 i

r51

where ar, br, and cr are constants. If t is large enough that
log[p1(ut)] is small as compared to the latter two sums, then
the density function of pt11(ut) is proportional to

t t
2D exp (u 2 u*) b 1 (u 2 u*) c , (4)O Ot11 i r i r[ ]r51 r51

where Dt11 is a normalizing constant. This is the density
function of a normal distribution with mean
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t

bO r
r512 (5)t

2 cO r
r51

and variance

1
2 . (6)t

2 cO r
r51

We note that S cr is negative when selection acts against
extreme strategies, thereby ensuring that the variance is pos-
itive. Accordingly, the frequency distribution of strategies
tends to look like a normal distribution as the population
evolves; this is a mock central-limit theorem. The favored
strategy, u*, may be the ESS strategy (or a strategy close to
it) since one can show that individuals possessing it in infinite
populations that are not at equilibrium have higher than av-
erage fitness (Hines 1980, pp. 607–608; Hines 1987, p. 205);
this advantage decreases as the population gets closer to equi-
librium. What this convergence to a normal-like distribution
of strategy frequencies means is that a population starting
with, for instance, a uniform strategy distribution that in-
cludes all possible strategies (pure and mixed) is expected
to transiently develop a bell-shaped strategy distribution that
is centered roughly around the ESS strategy. (Of course, the
distribution differs from a normal distribution because it is
discrete and has persistent gaps for strategies that are lost.)
This distribution eventually decays to a monomorphism and
the ESS strategy (or a similar strategy) is fixed with high
probability unless it is lost as a result of random sampling
during the reproductive period. If it is lost (or was not initially
present), the population can evolve to a polymorphism of
strategies (e.g., a pair of strategies) whose combined ex-
pression approximates the evolutionarily stable state. None
of the constituent strategies need be close to the ESS strategy.

As in the case of the DPY effect, this heuristic argument
is not definitive with respect to whether an ESS will evolve,
as it is consistent with the possibility that some other strat-
egies have higher fitnesses than the ESS strategy and ac-
cordingly, that they could be fixed in the population. We note
that the inclusion of temporal variability in the payoffs is
expected to increase a tendency for the ESS to evolve (Hines
1982).

Overview

We have shown that each of a number of important con-
sequences of population finiteness has effects of order O(1/
N), so that it is impossible to resolve which is more important
in a finite population by the device of comparing the orders
of their effects. In addition, our analysis of the effects of
natural selection and genetic drift suggest that finite popu-
lations will tend to evolve to the ESS, but this analysis is
not compelling enough to be conclusive. Therefore, we used
Monte Carlo simulations to assess the probability that a finite
population becomes fixed for a single strategy and to deter-
mine whether this strategy is the ESS strategy.

MONTE CARLO SIMULATIONS

We simulated the hawk-dove game, with payoffs of 0 and
3 for hawk played against hawk and dove and 1 and 2 for
dove played against hawk and dove, respectively. For both
the IC case and the SC case, if one assumes that the popu-
lation size is infinite, one can show that the ESS strategy is
0.5, that is, it consists of 50% of the hawk subtrait and 50%
of the dove subtrait. We assumed that this prediction would
apply to the finite dynamical system we simulated (see below
for further discussion). The simulations were designed to
assess how the probability that an ESS will evolve is affected
by the population size, the initial numbers and frequencies
of possible strategies, and the type of competition. Strategies
were defined in terms of the probability of playing the hawk
subtrait of

0 1 2 m 2 1
, , , . . . , ,

m 2 1 m 2 1 m 2 1 m 2 1

where m 5 5, 9, 17, and 33 is the number of possible strat-
egies in the initial population. Since m was always odd, a
population could contain individuals with the ESS strategy
(0.5). All possible initial frequencies of the m strategies were
sampled from a uniform Dirichlet distribution by generating
m 2 1 uniform random variates to create random locations
on the interval [0, 1]. These locations formed the endpoints
of the intervals whose lengths matched the m probabilities
with which each of the N individuals was assigned indepen-
dently to strategy 1, 2, . . . , m. This way of creating initial
strategy distributions meant that they were sampled from all
possible initial distributions, including those far from the
evolutionarily stable state.

Each simulated population underwent a competitive period
followed by a reproductive period in each generation (see
above for details). The composition of each population was
assessed every 1000 generations. At such a time, the popu-
lation was continued if more than two strategies were present,
or if it was the first time only two strategies were present.
A population was stopped if it was monomorphic or if it was
the second time at which only two strategies were present
(the assumption being that natural selection had ceased).

Our simulations were broader in scope than the simulations
of Maynard Smith (1988) and Bergstrom and Godfrey Smith
(1998). Their simulations involved only what we call the IC
case and always started with the same fixed proportions of
three strategies whose combined strategy expression was
close to or coincident with the evolutionarily stable state for
the given payoffs (5 0.5). (Maynard Smith used populations
of size 30 having 8 hawks, 7 doves, and 15 ESS strategists.
Bergstrom and Godfrey Smith used populations with sizes
ranging from 12 to 4000, but always with 25% hawks, 25%
doves, and 50% ESS strategists.)

There is some subtlety associated with the measurement
of the probability that a population evolves to an ESS. It
stems from the fact that the predicted ESS strategy (0.5) was
derived from models (IC and SC) in which the population
size was infinite, meaning that there were no effects of fi-
niteness on reproduction in these models. Nonetheless, we
applied their predictions to a dynamical system in which
finiteness affected reproduction (via genetic drift).
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FIG. 2. The least strict (LS) probability that the population evolves
to an ESS as measured in the first simulation. The probability is
shown as a function of initial population size (40, 80, 160, 320,
640, and 1280) and number of possible strategies (5, 9, 17, and
33). (a) The infinite contest case, (b) the single contest case. Each
probability is based on 40,000 sample paths.

There is an analysis of the hawk-dove game (Schaffer
1988) in which the number of individuals is finite; each has
an infinite number of contests with each of the other indi-
viduals (as in the IC model). His analysis omitted consid-
eration of the effects of finiteness on reproduction. For a
given payoff matrix, Schaffer showed that the ESS mixed
strategy is more hawklike than the ESS mixed strategy de-
rived from the infinite population model. The difference be-
tween the two declines as population size increases. Follow-
ing Maynard Smith (1998) and Bergstrom and Godfrey
Smith, (1998) we chose not to use Schaffer’s finite prediction;
it differs little from the infinite prediction (5 0.5). For the
smallest population size we used N 5 30, the difference be-
tween the finite prediction and the infinite prediction is ap-
proximately 0.036. If Schaffer’s ESS strategy is the ESS
strategy for the IC or the SC dynamical system (with repro-
ductive dynamics that include genetic drift), our choice
means that the exact ESS strategy was not present in our
simulations. Circumstantial evidence suggests that Schaffer’s
prediction is the exact strategy in our IC simulations. S. Les-
sard (pers. comm.) showed that this prediction is the ESS
strategy when there is weak selection, and Wild and Taylor
(2004) showed that it is the ESS strategy when reproductive
dynamics are described by the Moran model (for a description
of this model see Ewens 2004). Hence, we believe that the
exact ESS strategy is very close to or identical to Schaffer’s
prediction, which in turn is very close to the value we used,
0.5. In addition, our simulation results for the SC dynamical
system are also consistent with the belief that Schaffer’s pre-
diction is very close to the exact ESS strategy (see below.)

The preceding considerations concerning the ambiguity as
to the exact ESS strategy for the dynamical systems we stud-
ied led us to use four different ways to assess the probability
that a population evolves to a monomorphism such as an
ESS.

The first way was to count the times that a population
became monomorphic for any strategy. As a result, mono-
morphisms for pure strategies are included, although they are
rare (even for small population sizes). This resulting prob-
ability was called the least strict (LS). The second way was
to count the times that a population became monomorphic
for any mixed strategy; the resulting probability was called
strict (S). The third way was to count the times that a pop-
ulation became monomorphic for the infinite-population ESS
strategy, the strategy ‘‘to its left,’’ and the strategy ‘‘to its
right’’; the motivation being the presumption that this set
brackets the true ESS strategy for the dynamical system. For
example, if there are nine strategies, these central strategies
are 0.375, 0.5, and 0.625. This way of assessing the proba-
bility was called more strict (MS). The fourth way was to
count the times that the population became monomorphic for
the infinite-population ESS strategy (0.5); this way was called
completely strict (CS).

We carried out two simulations for both the IC and SC
cases. The first contained a broad range of strategy numbers
and of population sizes to get an overview of evolutionary
dynamics. For each combination of strategy number and pop-
ulation size we used the LS way of measuring the probability
that an ESS evolves. A statistical contrast measuring qua-
dratic curvature was calculated for each initial distribution

(ignoring missing values), so that we could assess the effect
of the shape of the initial distribution on the evolutionary
outcome by comparing the average contrast value of initial
distributions leading to monomorphism and those leading to
polymorphism.

The second simulation involved only nine strategies, so as
to get a detailed picture of evolutionary dynamics; we used
a broad range of population sizes. In these simulations, we
used the three stricter ways (S, MS, and CS) of assessing the
probability that the population evolves to an ESS.

RESULTS

The First Simulation

The least strict (LS) probability that a population evolves
to an ESS for a given population size and initial number of
strategies is shown in Figure 2a for the IC case and in Figure
2b for the SC case. This probability overestimates the true
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TABLE 1. Average quadratic component of the initial strategy distribution for populations that eventually became monomorphic and
bimorphic in the first simulation.

Population
size

Number of initial
strategies

Infinite contest

Monomorphic Bimorphic

Single contest

Monomorphic Bimorphic

40 5 20.023248*** 0.151940*** 0.008283* 20.059983
9 20.027842*** 0.131920*** 0.003766 0.373060***

17 20.024453*** 0.126450*** 20.001354 0.338880***
33 20.022756*** 0.120310*** 20.009571* 0.336460***

80 5 20.034309*** 0.039100*** 20.005743* 0.093458***
9 20.034561*** 0.054179*** 20.026140*** 0.151920***

17 20.031023*** 0.056764*** 20.032922*** 0.166620***
33 20.029341*** 0.050595*** 20.030679*** 0.150940***

160 5 20.031356*** 0.020176*** 20.030737*** 0.078193***
9 20.024965*** 0.022263*** 20.034538*** 0.063143***

17 20.026443*** 0.023254*** 20.043126*** 0.056468***
33 20.025286*** 0.019420*** 20.042306*** 0.067922***

320 5 20.018236*** 0.012306*** 20.019398*** 0.015429***
9 20.019617*** 0.007790*** 20.030996*** 0.022809***

17 20.020495*** 0.007501*** 20.032033*** 0.024764***
33 20.019961*** 0.008187*** 20.031044*** 0.032127***

640 5 20.011595*** 0.006916*** 20.000890 20.003941***
9 20.011602*** 0.003952*** 20.020972*** 0.004863**

17 20.013660*** 0.003006*** 20.017417*** 0.005163*
33 20.013084*** 0.002801*** 20.014742** 0.007986**

1280 5 20.005282*** 0.003000***
9 20.005061*** 0.002143***

17 20.005883*** 0.001864***
33 20.006321*** 0.000932

* P , 0.05, ** P , 0.01, *** P , 0.001.

probability that the ESS evolves; the degree of overestimation
declines as population size increases.

For the IC and SC cases, the LS probability depended on
the population size. Smaller populations had higher proba-
bility of evolving the ESS; this probability declined sub-
stantially as population size increased, whatever the possible
number of strategies in the initial population. For example,
when there were 33 possible strategies in populations with
no competitive stochasticity (IC), the probability was ap-
proximately 0.88 when the population size is 40, whereas it
was approximately 0.09 when the population size was 1280.
This effect of population size was not observed by Bergstrom
and Godfrey Smith (1998).

The tendency to evolve an ESS depended on the number
of strategies. For the IC case, the disparity of probabilities
across different population sizes initially increased as the
number of strategies increased. In contrast, in the SC case,
there was no such initial increase as the number of strategies
increased; we do not know why populations of size 640 with
five possible strategies had a markedly lower probability of
evolving the ESS as compared to similarly sized populations
with more strategies (or as compared to smaller populations
also having five strategies).

As expected, given the benefits of the ESS strategy in the
face of uncertainty, the populations with SC generally had
higher probabilities that an ESS evolves as compared to oth-
erwise identical populations that have IC. This difference is
a consequence of the increased stochasticity in the evolu-
tionary dynamics caused by the random choice of opponents.

Table 1 shows the average quadratic component of the
initial strategy distribution for the IC and SC cases. A neg-

ative value indicates that the distribution was concave-down-
ward on average, while a positive value indicates the op-
posite. Analyses of the standard errors (as shown) indicate
that eventual-ESS populations tended to start with concave-
downward strategy distributions on average and eventual-
non-ESS populations tended to start with the opposite. In
addition, there was a tendency for the absolute magnitude of
curvature to decrease as population size increases.

The Second Simulation

The results for the IC and SC cases are shown in Table 2.
The results of the MS and CS ways of assessing the prob-
ability that the population evolves to an ESS indicate that
this probability was at most approximately 0.5 and was usu-
ally distinctly smaller, especially for larger population sizes.
This dependency on population size was also seen in Figure
2. We regard the MS and CS ways of assessing the probability
to be most meaningful, given that the S way includes strat-
egies quite distinct from the nominal ESS strategy (0.5). The
CS way was used by Maynard Smith (1988) and Bergstrom
and Godfrey Smith (1998; see above).

Table 3 shows the distribution of strategy pairs for those
populations that became bimorphic. For both the IC and SC
cases, the number of populations containing the ESS strategy
(0.5) declined as the second strategy becomes more extreme
(either less hawk or more hawk). This pattern is expected
given the advantage in a nonequilibrium population of a strat-
egy closer to the ESS strategy as compared to a strategy
farther away (see above). Accordingly, we believe that the
populations containing the ESS strategy would become
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TABLE 2. The probability that an ESS evolved in the second simulation. For each population size (N), the number of fixations for each
of the nine possible strategies is shown. S, MS, and CS denote the strict, more strict, and completely strict ways of assessing the
probability. For the infinite contest case, each probability is based on 40,000 sample paths except N 5 2560, which had 10,000. For the
single contest case, each probability is based on 4000 sample paths except N 5 640, which had 10,000, and N 5 1280 and 2560, which
each had 1000.

N

Strategy (proportion hawk)

0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

Probability

S MS CS

Infinite contest
30 3 1316 5504 7279 7437 6677 5107 2903 545 0.906 0.535 0.186
40 0 216 5135 7276 7713 6931 4982 1474 84 0.843 0.548 0.193
60 0 3 2994 7230 7993 6951 6787 184 2 0.804 0.554 0.200
80 0 0 699 7215 8129 6974 1741 16 0 0.619 0.558 0.203

120 0 0 26 6768 8332 6417 198 0 0 0.544 0.538 0.208
160 0 0 1 5403 8352 5316 17 0 0 0.477 0.477 0.209
240 0 0 0 1975 8459 2196 0 0 0 0.316 0.316 0.211
320 0 0 0 439 8185 695 0 0 0 0.233 0.233 0.205
480 0 0 0 10 7600 45 0 0 0 0.191 0.191 0.190
640 0 0 0 2 6982 3 0 0 0 0.175 0.175 0.175

1280 0 0 0 0 5904 0 0 0 0 0.148 0.148 0.148
2560 0 0 0 0 1328 0 0 0 0 0.133 0.133 0.133

Single contest
30 1 96 347 525 651 709 664 573 434 0.891 0.471 0.163
40 0 38 322 573 696 756 670 552 376 0.902 0.494 0.174
60 0 1 214 547 733 810 705 512 192 0.881 0.522 0.183
80 0 0 83 555 760 816 732 427 37 0.843 0.533 0.190

120 0 0 7 491 784 855 685 120 0 0.736 0.533 0.196
160 0 0 0 286 811 871 555 22 0 0.636 0.492 0.203
240 0 0 0 64 812 858 264 0 0 0.499 0.433 0.203
320 0 0 0 7 825 860 79 0 0 0.443 0.423 0.206
480 0 0 0 0 675 776 4 0 0 0.364 0.363 0.169
640 0 0 0 0 1327 1565 1 0 0 0.289 0.289 0.133

1280 0 0 0 0 17 69 0 0 0 0.086 0.086 0.017
2560 0 0 0 0 1 10 0 0 0 0.011 0.011 0.011

TABLE 3. The distribution of strategy pairs for bimorphic populations in the second simulation when N 5 640. For the infinite contest
case, there were 33,013 bimorphic sample paths (of 40,000.) For the single contest case, there were 7107 bimorphic sample paths (of
10,000.) Strategies 1 and 2 are expressed as proportion of the hawk subtrait.

Strategy 1

Strategy 2

0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

Infinite contest
0.000 — 0 0 0 26 1825 2012 2094 2139
0.125 — 0 0 43 1929 1965 2074 2124
0.250 — 0 152 1912 2081 1995 1997
0.375 — 521 1883 1885 1881 1839
0.500 — 436 128 57 15
0.625 — 0 0 0
0.750 — 0 0
0.875 — 0
1.000 —

Single contest
0.000 — 0 0 0 0 32 371 423 452
0.125 — 0 0 0 33 409 506 548
0.250 — 0 0 78 431 498 538
0.375 — 3 214 514 524 557
0.500 — 313 270 213 161
0.625 — 16 3 0
0.750 — 0 0
0.875 — 0
1.000 —



1190 S. H. ORZACK AND W. G. S. HINES

FIG. 3. Relative fitness of a mutant female producing a sex ratio of 0.1, 0.5, or 0.9 as a function of N, the total number of females
contributing offspring to the local mating group. The other (N 2 1)/N females contributing offspring are assumed to each produce the
ESS sex ratio. The inbreeding coefficient of the overall population (F) is equal to 0.01. A relative fitness of 1.0 is denoted by a dashed
line.

monomorphic for that strategy given more time. The distri-
bution of the number of bimorphic populations not involving
the ESS strategy differed significantly from a uniform dis-
tribution (IC: x2 5 40.14, df 5 15, P 5 0.0004; SC: x2 5
1013.15, df 5 15, P 5 0.0001). We do not understand why
such significant deviations occur or why they appear to have
no pattern.

DISCUSSION

It is important to understand how our quantitative results
are to be reconciled with those of Maynard Smith (1988) and
Bergstrom and Godfrey Smith (1998), who reported that the
probability that a population evolves to an ESS was approx-
imately 0.70. More specifically, Bergstrom and Godfrey
Smith showed that the probability decreased from approxi-
mately 0.75 for populations of size 12 to about 0.71 for larger
populations up to size 4000 (see their figure 4). (We obtained
similar results when starting populations with the special
initial configuration they used, not shown.) This approximate
constancy contrasts with the strong dependency on popula-
tion size shown in Figure 2 and Table 2. This difference is
readily explained as a consequence of our use of random
initial strategy distributions because the effects of random
initial sampling are both population-size dependent and ap-
pear to be long lasting in their effect on the eventual evo-
lutionary outcome (see Table 1). However, Poethke’s (1988,
figure 7) analysis of the panmictic sex-ratio game appears to
indicate a population-size dependent probability that an ESS
evolves even though the two populations he simulated had
the same initial distribution; to this extent, the typical effect
of the initial distribution on the evolutionary outcome may
depend on the game.

We believe that our simulations provide a more meaningful
assessment of the overall probability that an ESS evolves

than do the simulations of Maynard Smith and Bergstrom
and Godfrey-Smith. Of course, the initial strategy distribu-
tions in nature are unknown; at the least, however, we think
it reasonable to believe that initial strategy distributions that
closely anticipate the ESS in having a high frequency of the
ESS strategy and in being close to or at the evolutionarily
stable state are not typical.

Our assessment of whether an ESS is likely to evolve has
practical implications. The presence of an ESS is circum-
stantial evidence that natural selection has been the only im-
portant force affecting the evolution of the strategy (Orzack
and Sober 1994). An ESS is locally optimal, as natural se-
lection has eliminated all but one strategy that outperforms
other strategies (Sigmund 1987; Liberman 1988). In contrast,
the presence of an evolutionarily stable state is circumstantial
evidence that both natural selection and genetic drift were
important forces affecting the evolution of the population
because frequencies of individual strategies are free to drift
as long as the evolutionarily stable state is maintained. It is
for this reason that an evolutionarily stable state does not
support a claim of local optimality.

If an ESS were likely to evolve, it would imply that the
assessment of individual strategy expression is of little or no
importance because an evolutionarily stable state would like-
ly be an ensemble of individuals each having the ESS strat-
egy. Our results show that the probability that an ESS evolves
is generally low, underscoring the importance of empirical
assessment of the nature of strategy variation among indi-
viduals within natural populations. Unfortunately, such as-
sessments are rare, as Orzack and Sober (1994) could find
only two investigations containing such an assessment, de-
spite an extensive search. Such assessments of whether an
ESS or an evolutionarily stable state has evolved in a given
instance can contribute to an ensemble test of adaptationism,
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FIG. 4. Relative fitness of a mutant female producing a sex ratio of 0.1 or 0.9 as a function of N, the total number of females contributing
offspring to the local mating group. The other (N 2 1)/N females contributing offspring are assumed to each produce a sex ratio of 0.5.
The inbreeding coefficient of the overall population (F) is equal to 0.0, 0.01, or 0.05. When F 5 0.0, the relative fitness depends only
upon the magnitude of the deviation between the mutant sex ratio (0.1 or 0.9) and 0.5. A relative fitness of 1.0 is denoted by a dashed
line.

since they provide evidence for adaptationism and pluralism,
respectively (Orzack and Sober 1994). At present, one in-
vestigation (Brockmann et al. 1979) provided support for
adaptationism and the other (Orzack et al. 1991) provided
support for pluralism.

Beyond Fisher and Wright

In the degenerate strategic model analyzed here the
strength of selection on strategies can increase as population
size decreases. For example, as shown in Figure 1, the
strength of the DPY effect is increased in smaller populations.
A similar increase in the intensity of natural selection as
population size decreases can also be observed in a nonde-
generate model. For example, consider a model of local mate
competition in which a finite number (N) of haplodiploid
females produce offspring, all of which form a local mating
group in which the offspring mate randomly. Standard rea-
soning (for further details, see Frank 1985; Herre 1985) in-
dicates that the absolute fitness of a female that produces a
brood with sex ratio ra (proportion males) when, say, each of
the other N 2 1 females contributing offspring to the mating
group produce broods with sex ratio r is proportional to

1 1 1 1 3F
r (1 2 r ) 1 (1 2 r )r , (7)a d a d1 22 2 1 1 F

where rd is equal to (1/N)ra 1 [(N 2 1)/N]r and F is the
inbreeding coefficient for the entire population. The effect of
population size on the intensity of natural selection can be
illustrated in two different ways.

One is to assume that each of the N 2 1 other females
produce the ESS sex ratio for a group of size N,

N 2 1 1 1 F
r 5 . (8)1 2 1 22N 1 1 2F

As shown in Figure 3, the intensity of selection affecting the
single mutant that produces the non-ESS sex ratio decreases
as the number of females (N) contributing offspring to the
local mating group increases. For example, a sex ratio of 0.9
is more advantageous in a small population than it is in a
large population (see also Verner 1965; Orzack et al. 1991,
p. 593; and West and Herre 1998).

Another way is to assume that each of the N 2 1 other
females produce a sex ratio of 0.5 regardless of N. As shown
in Figure 4, the intensity of selection affecting a single mutant
that produces a different sex ratio changes as N increases. In
fact, as population size increases the change in relative fitness
for some mutant sex ratios (e.g., 0.1, F 5 0.05) is such that
the mutant is initially disadvantageous and then becomes
advantageous. When F ± 0.0, one can show that the intensity
of selection for or against any given mutant sex ratio ap-
proaches a constant as N increases. When F 5 0.0, the in-
tensity of selection always decreases as N increases.

The strength of natural selection on a frequency-indepen-
dent trait (as conventionally conceived) is independent of
population size and thereby always increases relative to that
of genetic drift when population size increases (Crow and
Kimura 1970). Fisher (1930) and Wright (1932) made dif-
ferent assumptions about the size and structure of most pop-
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ulations but they shared an assumption that this relationship
between population size and the relative strength of selection
applied generally. One result is the common contrast between
the Fisherian and Wrightian claims about nature. In the for-
mer, evolution typically occurs in large populations and ac-
cordingly, natural selection dominates the evolution of a trait;
in the latter, evolution typically occurs in small and/or sub-
divided populations and accordingly, natural selection does
not so dominate. The results we described involving fre-
quency-dependent traits indicate that using population size
as the basis for a generalization about the relative strength
of natural selection may be mistaken. Because the absolute
strength of natural selection on a frequency-dependent trait
can decrease as population size increases, the strength of
natural selection relative to genetic drift may be independent
of population size or even decrease as population size in-
creases. Further work is needed to elucidate this critical point
(S. H. Orzack and W. G. S. Hines, unpubl. ms.). We note
that as population size increased, the CS probability that an
ESS evolved initially increased, was then approximately con-
stant, and finally decreased (as shown in Table 2). One result
is that this probability is larger for the smallest population
as compared to the largest population. This overall pattern
suggests that the strength of natural selection relative to ge-
netic drift can be more or less constant or decrease as pop-
ulation size increases.

When pondering the fact that the relative strength of se-
lection could be greater in smaller populations, it is worth
remembering that no qualification as to the type of trait under
consideration usually accompanies working definitions of the
Fisherian and Wrightian claims. Most evolutionary biologists
appear to use these claims in a way that is consistent with a
belief that they apply to all traits. In this context, it is useful
to remember the distinction between the organization of our
study of nature and the organization of nature itself. A stan-
dard feature of population genetics textbooks (e.g., Crow and
Kimura 1970; Li 1976) is that the constant viability model
of natural selection is presented before any other model of
natural selection. There are good reasons for this presenta-
tion, but it should not be taken to imply that this model
applies generally to nature, as noted by Li (1967, p. 398),
who refers to this model ‘‘as the ‘simplest’ rather than the
‘typical’ or ‘standard’ case, because it is really unknown what
is typical or standard in Nature, or if there is such a thing at
all.’’ This point deserves emphasis in the present context,
especially given the ubiquity of the kind of interactive trait
we have analyzed.

There is much irony at finding in Fisher (1930) both his
general claim about the relationship between population size
and the power of natural selection and his presentation of
Düsing’s (1883) argument as to why an even sex ratio can
evolve; this argument is the ancestor of the strategic analyses
we present, which suggest that Fisher’s general claim is not
correct.

It is intriguing to contemplate how different the recent
history of evolutionary biology might have been if both Fish-
er and Wright had appreciated the importance of the kind of
trait being considered when making their generalizations
about evolution in natural populations.

Future Work

As noted above, we will seek to more explicitly charac-
terize how population size affects the relative roles that nat-
ural selection and genetic drift have in the evolution of stra-
tegic traits. In addition, we will attempt to assess how more
complicated genetic dynamics would affect the probability
that an ESS evolves. Hines and Turelli (1997) have shown
that the evolutionary dynamics of the haploid ESS model
match the dynamics of the mean strategy in an additive mul-
tilocus, multiallele, sexual diploid model, regardless of the
extent of linkage disequilibrium. Of course, what is at issue
in the present context is the distribution of strategies under-
lying the mean strategy. Accordingly, Hines and Turelli’s
result is not sufficient grounds to believe that our overall
conclusion about the tendency for an ESS to evolve applies
to the polygenic case. Nonetheless, their analysis serves as
a starting point for investigations of this question.

Finally, further work will also include elaboration of the
connection between our results and those of related analyses
of strategy evolution in finite dynamical systems in biology,
economics, and evolutionary programming (A. Carter, pers.
comm.; Fogel et al. 1997; Ficici and Pollack 2000; Stegeman
and Rhode 2004; Taylor et al. 2004).
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