Não foi possível enviar o arquivo. Será algum problema com as permissões?
Simulation study
Algorithm
################################################################################################# # # PAPER COMPANION: SIMULATION STUDY # Authors: Ernesto Jardim <ernesto@ipimar.pt> # Paulo Ribeiro Jr. <paulojus@ufpr.br> # Date: 20081013 # Objective: Test paper methodology against design-based estimators regarding # association between age compositions and the age aggregated abundance. # Tree options are simulated: (i) no association, (ii) week association, # (iii) strong association. # Note: The association is induced by considering correlated multivariate gaussian # processes as the basis for building the age aggregated abundance and age # compositions. # ################################################################################################# # R libraries library(geoR) library(lattice) library(MASS) library(RandomFields) library(compositions) #============================================================================================== # SIMULATING THE PROCESSES #============================================================================================== # grid gs <- expand.grid((0:40)/40, (0:40)/40) # size of processes n <- nrow(gs) # number of replicates nsim <- 250 #---------------------------------------------------------------------------------------------- # STEP 1 : gaussian processes to build abundance and compositions #---------------------------------------------------------------------------------------------- # object arr0 <- array(NA, dim=c(n,7,nsim), dimnames=list(loc=1:n, age=c("all","1i","2i","1w","2w","1s","2s"), nsim=1:nsim)) # variance-covariance matrix s2 <- 0.5 Sig <- diag(c(1,1,1,1,1,1,1)) Sig[1,4] <- 0.45; Sig[4,1] <- 0.45; Sig[1,6] <- 0.9; Sig[6,1] <- 0.9; Sig[6,4] <- 0.5; Sig[4,6] <- 0.5 Sig <- Sig*s2 # simulation set.seed(111) for(i in 1:nsim){ arr0[,,i] <- mvrnorm(nrow(gs), c(1,0,0,0,0,0,0), Sig) } #---------------------------------------------------------------------------------------------- # STEP 2: generate 250 replicates of a log-gaussian spatial process (Diggle and Ribeiro Jr, 2007) # with mu=1, phi=0.2, sigma2=0.5, tau2=0.5 #---------------------------------------------------------------------------------------------- # Generate a spatial Gaussian process Z phi <- 0.2 sigmasq <- 0.5 set.seed(222) Z <- grf(grid=gs, cov.pars=c(sigmasq, phi), nsim=nsim) # build a log gausian process Y Ysim <- Z Ysim$data <- exp(Z$data+arr0[,1,]) # Y characteristics Ysim.lmean <- apply(log(Ysim$data), 2, mean) Ysim.lvar <- apply(log(Ysim$data), 2, var) Ysim.lnhat <- exp(Ysim.lmean+Ysim.lvar/2) #---------------------------------------------------------------------------------------------- # STEP 3: build compositions #---------------------------------------------------------------------------------------------- # objects arr00 <- array(1, dim=c(n,3,nsim), dimnames=list(loc=1:n, age=1:3, nsim=1:nsim)) Psim <- array(NA, dim=c(n,3,nsim,3), dimnames=list(loc=1:n, age=1:3, nsim=1:nsim, mucor=c("indep", "dep045","dep090"))) # option 1: no association between compositions and age aggregated abundance arr00[,1:2,] <- exp(arr0[,2:3,]) Psim[,,,1] <- aperm(apply(arr00,c(1,3),function(x) x/sum(x)),c(2,1,3)) # option 2: week association between compositions and age aggregated abundance arr00[,1:2,] <- exp(arr0[,4:5,]) Psim[,,,2] <- aperm(apply(arr00,c(1,3),function(x) x/sum(x)),c(2,1,3)) # option 3: strong association between compositions and age aggregated abundance arr00[,1:2,] <- exp(arr0[,6:7,]) Psim[,,,3] <- aperm(apply(arr00,c(1,3),function(x) x/sum(x)),c(2,1,3)) # P characteristics #---------------------------------------------------------------------------------------------- # STEP 4: build abundance at age #---------------------------------------------------------------------------------------------- # objects Isim.ln <- array(NA, dim=c(n,3,nsim,3), dimnames=list(loc=1:n, age=1:3, nsim=1:nsim, mucor=c("indep", "dep045","dep090"))) # sim for(i in 1:3){ for(j in 1:3){ Isim.ln[,i,,j] <- Psim[,i,,j]*Ysim$data } } # I characteristics Isim.lnmean <- apply(log(Isim.ln), c(2,3,4), mean) Isim.lnvar <- apply(log(Isim.ln), c(2,3,4), var) Isim.lnhat <- exp(Isim.lnmean+Isim.lnvar/2) #============================================================================================== # ESTIMATION #============================================================================================== # number of samples to be drawn from each of the 250 replicate ns <- 2 #---------------------------------------------------------------------------------------------- # STEP 5: estimation with methodology proposed by the paper #---------------------------------------------------------------------------------------------- # objects Yres <- array(NA, dim=c(ns,4,nsim), dimnames=list(samp=1:ns, stat=c("Ybar", "Ybarvar", "Yhat", "Yhatvar"), nsim=1:nsim)) Ihat <- array(NA, dim=c(ns,3,nsim,3), dimnames=list(samp=1:ns, age=1:3, nsim=1:nsim, mucor=c("indep", "dep045","dep090"))) xd <- expand.grid(dimnames(Ihat)[-c(1,2)]) # estimation set.seed(222) for(j in 1:ns){ cat("\n",j ,":", date(),"-", sep="") samp <- sample(1:n, 100) for(i in 1:nrow(xd)){ x <- xd[i,] cat(".", sep="") # building the sample Isamp <- Isim.ln[samp,,x[[1]],x[[2]]] locsamp <- gs[samp,] Ysamp <- apply(Isamp,1,sum) # estimation of age aggregated abundance lf <- likfit(as.geodata(cbind(locsamp, Ysamp)), lambda=0, ini.cov.pars=c(1,0.2), messages=FALSE) Yhat <- exp(lf$beta+lf$tausq/2+lf$sigmasq/2) Yhatvar <- exp(2*lf$beta+lf$tausq+lf$sigmasq)*(exp(lf$tausq+lf$sigmasq)-1) Yres[j,c("Yhat", "Yhatvar"),x[[1]]] <- c(Yhat, Yhatvar) # estimation of abundance-at-age prop <- acomp(Isamp) Ihat[j,,x[[1]],x[[2]]] <- Yhat*c(mean(prop)) } } #---------------------------------------------------------------------------------------------- # STEP 6: estimation with design-based estimators #---------------------------------------------------------------------------------------------- # objects Ibar <- array(NA, dim=c(ns,3,nsim,3), dimnames=list(samp=1:ns, page=1:3, nsim=1:nsim, mucor=c("indep", "dep045","dep090"))) # estimation set.seed(222) for(j in 1:ns){ cat("\n",j ,":", date(),"-", sep="") samp <- sample(1:n, 100) for(i in 1:nrow(xd)){ x <- xd[i,] cat(".", sep="") # building the sample Isamp <- Isim.ln[samp,,x[[1]],x[[2]]] Ysamp <- apply(Isamp,1,sum) # store means Yres[j,c("Ybar", "Ybarvar"),x[[1]]] <- c(mean(Ysamp), var(Ysamp)) # estimation of abundance-at-age Ibar[j,,x[[1]],x[[2]]] <- apply(Isamp,2,mean) } } #============================================================================================== # RESULTS #============================================================================================== #---------------------------------------------------------------------------------------------- # STEP 7: summary statistics #---------------------------------------------------------------------------------------------- # objects sim.res <- array(NA, dim=c(nsim,3,3,2,3), dimnames=list(iter=1:nsim, age=1:3, mucor=c("indep", "dep045","dep090"), meth=c("geo","samp"), stats=c("bias", "mse", "ICcov"))) # computation for(i in 1:nsim){ lmusim <- Isim.lnhat[,i,] # geo m <- Ihat[,,i,] q025 <- apply(m,c(2,3), quantile, probs=0.025, na.rm=T) q975 <- apply(m,c(2,3), quantile, probs=0.975, na.rm=T) sim.res[i,,,"geo","ICcov"] <- q025<=lmusim & q975>=lmusim for(j in 1:ns){ m[j,,] <- m[j,,]-lmusim } sim.res[i,,,"geo","bias"] <- apply(m, c(2,3), mean) sim.res[i,,,"geo","mse"] <- apply(m, c(2,3), var) # samp m <- Ibar[,,i,] q025 <- apply(m,c(2,3), quantile, probs=0.025, na.rm=T) q975 <- apply(m,c(2,3), quantile, probs=0.975, na.rm=T) sim.res[i,,,"samp","ICcov"] <- q025<=lmusim & q975>=lmusim for(j in 1:ns){ m[j,,] <- m[j,,]-lmusim } sim.res[i,,,"samp","bias"] <- apply(m, c(2,3), mean) sim.res[i,,,"samp","mse"] <- apply(m, c(2,3), var) } # table tab.res <- apply(sim.res, c(2,3,4,5), mean) ################################################################################################# # THE END (or the beginning ...) #################################################################################################