Não foi possível enviar o arquivo. Será algum problema com as permissões?

Essa é uma revisão anterior do documento!


Éder David Borges da Silva

Éder David Borges da Silva

  • e-mail: ederdbs@gmail.com / eder@leg.ufpr.br

Área de Interesse

  • Estatística Experimental
  • Estatística Espacial
  • GEM² Grupo de estudos em modelos mistos

Disciplinas 2011/1

Minicursos

Códigos

###-----------------------------------------------------------------###
###buf
buf <- function(n){
  ttt <- NULL
  ttt[1] <- 0
  x <- runif(n)
  th <- runif(n,0,pi)
  st <- sin(th)
  for ( i in 1:n){
    if(st[i]>x[i]){
      ttt[i+1]  <- ttt[i]+1
    }
    else {
      ttt[i+1] <- ttt[i]
    }}
    if (ttt[n+1]>0){
      plot((0:n)[ttt>0],2*(0:n)[ttt>0]/ttt[ttt>0],type='l',xlab='numero simulação',ylab='pi')
    }
    else{print('no sucesso')}
    abline(pi,0)
    }
 
  buf(100000)
###-----------------------------------------------------------------###
### MOnte carlo
## Calcula a área via simulação de monte carlo
## args: r= raio, s vetor com numero de simulação, plotS plotar a simulação
MCcirculo<-function(r,s,plotS=TRUE){
ns<-area<-s
r<-r
con <- 1
for (j in ns) {
#pontos aleatorios
	x<-runif(j, min=-r, max=r)
	y<-runif(j, min=-r, max=r)
	ponto<-cbind(x,y)
  cont <- sum(apply(ponto,1,function(x){sqrt(sum(x^2))})<r)
#plotando Simulação
  if(plotS==TRUE){
	plot(x,y,col="red",type="p",asp=1,lwd=1,xlim=c(-r,r),ylim=c(-r,r), main="Simulação Monte Carlo",sub=j)
	ang <- seq(0, 2*pi, length = 100)
	xx <- r * cos(ang);yy <- r * sin(ang)
	polygon(xx, yy,border = "dark blue",lwd=2)
  }  
#Calculo de Area
	area[con]<-(cont/j)*(r^2)*4
  cat(paste(round(area[con],6),j,'\n'))
  con <- con+1
}
	plot(ns,area,main="Simulação Monte Carlo",xlab='Número da amostra',ylab='Area')
  abline(h=pi*r^2,col='red',lwd=2)
 
}
MCcirculo(1,seq(5,5000,by=1000),plotS=FALSE)
###-----------------------------------------------------------------###
### inversão de p
### Inversão de Probabilidade
NS <- 10000
U <- runif(NS)
X <- - log(U)
Y <- rexp(NS)
par(mfrow=c(1,3))
hist(U,freq=FALSE,main='Uniforme',col='lightblue')
lines(density(U),col='red',lwd=2)
hist(X,freq=FALSE,main='Expoencial via uniforme',col='lightblue')
lines(density(X),col='red',lwd=2)
lines(curve(dexp(x,1),min(X),max(X),add=TRUE),col='blue',lwd=2)
hist(Y,freq=FALSE,main='Expoencial do R',col='lightblue')
lines(density(Y),col='red',lwd=2)
lines(curve(dexp(x,1),min(Y),max(Y),add=TRUE),col='blue',lwd=2)
###-----------------------------------------------------------------###
### Regressão Beta
### pacote oficial
require(betareg)
data("FoodExpenditure", package = "betareg")
fe_beta <- betareg(I(food/income) ~ income + persons , data = FoodExpenditure)
summary(fe_beta)
###-----------------------------------------------------------------###
### log vero da regressão beta com duas covariaveis, 
log.vero <- function(par,y,x1,x2){
        mu <- exp((par[1] + par[2] * x1 + par[3] * x2))/(1+exp((par[1] + par[2] * x1 + par[3] * x2)))##logit^-1
        ll  <- sum(dbeta(y, mu* par[4], (1-mu)*par[4],log = TRUE))
        return(ll)
}
 
###-----------------------------------------------------------------###          
opt <- optim(c(B0=-0.5,B1=-0.51,B2=0.11,phi=35),log.vero,y=FoodExpenditure$food/FoodExpenditure$income,
                                                        x1=FoodExpenditure$income,
                                                        x2=FoodExpenditure$persons,
                                                        hessian = TRUE, control=(list(fnscale=-1)))
opt
opt$par
sqrt(-diag(solve(opt$hessian)))
summary(fe_beta)
###-----------------------------------------------------------------###

Regressão beta


QR Code
QR Code pessoais:eder (generated for current page)