Não foi possível enviar o arquivo. Será algum problema com as permissões?
Essa é uma revisão anterior do documento!
Éder David Borges da Silva
- Graduado em Engenharia Agronômica - Eng Agronômica - UFPR
- e-mail: ederdbs@gmail.com / eder@leg.ufpr.br
Área de Interesse
- Estatística Experimental
- Estatística Espacial
- GEM² Grupo de estudos em modelos mistos
- GWS Seleção Genômica Ampla Via ML REML INLA
- Script Modelo seleção Genótipo ambiente via REML ML INLA
- Script Regressão Linear - inferência via Mínimos quadrados, ML, REML, Gibbs, Metropolis, INLA, dclone … (Em construção)
Disciplinas 2011/1
Minicursos
- Análise de Experimentos de longa duração II Reunião Paranaense Ciência do Solo
Códigos (Em construção)
###-----------------------------------------------------------------### ### Reversible jump MCMC ### Modelo 1 y ~ N(b0+b1*x,sigma) ### Modelo 1 y ~ N(b0+b1*x+b2*x²,sigma) #browseURL('http://www.icmc.usp.br/~ehlers/bayes/cap4.pdf') # pg 76 require(MASS)#mvnorm() require(MCMCpack)#rinvgamma() dinvgamma() require(coda)#as.mcmc rm(list=ls()) ### Ajustar Prioris ### conferir jacobiano rj.modelo <- function(y,x,b0,b1,sigma,b01,b11,b21,sigma1,model,mu=mu,sd=sd,mu0=mu0, mu02=mu02,V0=V0,V02=V02,v0=v0,tau0=tau0,v02=v02,tau02=tau02){ if (model == 1){ u <- rnorm(1, mu,sd) b0_n <- b0 b1_n <- b1 sigma_n <- sigma b01_n <- b0 * u b11_n <- b1 * u b21_n <- u sigma1_n <- sigma * (u^2) } if (model == 2){ u <- b21 b0_n <- b01 / u b1_n <- b11 / u sigma_n <- sigma1 / (u^2) b01_n <- b01 b11_n <- b11 b21_n <- b21 sigma1_n <- sigma1 } num <- (sum(dnorm(y,b0_n+b1_n*x,sigma_n,log=TRUE))#+ #sum(dnorm(b0_n,mu0[1],V0[1,1],log=TRUE))+ #sum(dnorm(b1_n,mu0[1],V0[2,2],log=TRUE))+ #sum(log(dinvgamma(sigma_n,v0,tau0))) ) * u^4 den <- (sum(dnorm(y,b01_n+b11_n*x+b21_n*x^2,sigma1_n,log=TRUE))#+ # sum(dnorm(b01_n,mu02[1],V02[1,1],log=TRUE))+ # sum(dnorm(b11_n,mu02[2],V02[2,2],log=TRUE))+ # sum(dnorm(b21_n,mu02[3],V02[3,3],log=TRUE))+ # sum(log(dinvgamma(sigma1_n,v02,tau02))) ) * dnorm(u,0,2) u = runif(1, 0, 1) if (model == 1) { aceita = min(1, num/den) if (u < aceita) { model = 2 b0 <- b0_n b1 <- b1_n sigma <- sigma_n } } if (model == 2){ aceita = min(1, den/num) if (u < aceita) { model = 1 b01 <- b01_n b11 <- b11_n b21 <- b21_n sigma1 <- sigma1_n } } if (model == 1){return(list(model = model,b0=b0,b1=b1,sigma=sigma))} if (model == 2){return(list(model = model,b01=b01,b11=b11,b21=b21,sigma1=sigma1))} } rjmcmc <- function(nI, x,y,burnIN,mu=mu,sd=sd) { chain = matrix(NA, nrow = nI, ncol = 8) nv <- c(0,0) chain[1,1:8] = c(1) model = 1 n <- length(y) ###----------------------------------------------------------### ###MOdel 1 X <- model.matrix(~x) k<-ncol(X) #beta mu0<-rep(0,k) V0<-100*diag(k) #sigma2 v0<-3 tau0<-100 #Valores iniciais chain[1,3] <-sig2draw<- 3 invV0 <- solve(V0) XtX <- crossprod(X,X) Xty <- crossprod(X,y) invV0_mu0 <- invV0 %*% mu0 ###----------------------------------------------------------### # Model 2 X2 <- cbind(1,x,x^2) k2<-ncol(X2) #beta mu02<-rep(0,k2) V02<-100*diag(k2) #sigma2 v02<-3 tau02<-100 #Valores iniciais chain[1,7] <- sig2draw2<- 3 invV02 <- solve(V02) XtX2 <- crossprod(X2,X2) Xty2 <- crossprod(X2,y) invV0_mu02 <- invV02 %*% mu02 ###----------------------------------------------------------### for (i in 2:nI) { if (model == 1){ # Model 1 #beta invsig2draw <- 1/sig2draw V1<-solve(invV0+(invsig2draw) * XtX) mu1<-V1 %*% (invV0_mu0 + (invsig2draw)* Xty) chain[i,1:2]<-mvrnorm(n=1,mu1,V1) # sigma v1<-(n+2*v0)/2 yXb <- (y-X %*% chain[i,1:2]) tyXb <-t(yXb) tau1<-(0.5)*(tyXb %*% yXb+2*tau0) chain[i,3] <- sig2draw <- sqrt(rinvgamma(1,v1,tau1)) } if (model == 2){ # Model 2 #beta invsig2draw2 <- 1/sig2draw2 V12<-solve(invV02+(invsig2draw2) * XtX2) mu12<-V12 %*% (invV0_mu02 + (invsig2draw2)* Xty2) chain[i,4:6]<-mvrnorm(n=1,mu12,V12) # sigma v12<-(n+2*v02)/2 yXb2 <- (y-X2 %*% chain[i,4:6]) tyXb2 <-t(yXb2) tau12<-(0.5)*(tyXb2 %*% yXb2+2*tau02) chain[i,7] <- sig2draw2 <- sqrt(rinvgamma(1,v12,tau12)) } new <- rj.modelo(y,x,chain[i,1],chain[i,2],chain[i,3],chain[i,4],chain[i,5],chain[i,6],chain[i,7],model,mu=mu,sd=sd) model <- new$model if (model == 1) { chain[i, 1] = new$b0 chain[i, 2] = new$b1 chain[i, 3] = new$sigma nv[1] = nv[1] + 1 } if (model == 2) { chain[i, 4] = new$b01 chain[i, 5] = new$b11 chain[i, 6] = new$b21 chain[i, 7] = new$sigma1 nv[2] = nv[2] + 1 } } chain[,8] <- 1 chain[is.na(chain[,1]),8] <- 2 chain <- chain[- c(1:burnIN),] colnames(chain) <- c('b0_1','b1_1','sigma_1','b0_2','b1_2','b2_2','sigma_2','model') return(list(as.mcmc(na.omit(chain[,1:3])), as.mcmc(na.omit(chain[,4:7])), as.mcmc(na.omit(chain[,8])))) } x <- 1:10 y <- 10+2*x^1+rnorm(x,0,5) plot(x,y) res <- rjmcmc(5000,x,y,1,mu=0,sd=100) lapply(res,summary) plot(res[[1]]) summary(lm(y~1+I(x))) plot(res[[2]]) summary(lm(y~1+I(x)+I(x^2))) plot(res[[3]]) ##------------------------------------------------------------------### ###-----------------------------------------------------------------### ### Regressão Beta ### pacote oficial require(betareg) data("FoodExpenditure", package = "betareg") fe_beta <- betareg(I(food/income) ~ income + persons , data = FoodExpenditure) summary(fe_beta) ###-----------------------------------------------------------------### ### log vero da regressão beta com duas covariaveis, log.vero <- function(par,y,x1,x2){ mu <- exp((par[1] + par[2] * x1 + par[3] * x2))/(1+exp((par[1] + par[2] * x1 + par[3] * x2)))##logit^-1 ll <- sum(dbeta(y, mu* par[4], (1-mu)*par[4],log = TRUE)) return(ll) } ###-----------------------------------------------------------------### opt <- optim(c(B0=-0.5,B1=-0.51,B2=0.11,phi=35),log.vero,y=FoodExpenditure$food/FoodExpenditure$income, x1=FoodExpenditure$income, x2=FoodExpenditure$persons, hessian = TRUE, control=(list(fnscale=-1))) opt opt$par sqrt(-diag(solve(opt$hessian))) summary(fe_beta) ###-----------------------------------------------------------------### log.veroP <- function(par,phi,y,x1,x2){ mu <- exp((par[1] + par[2] * x1 + par[3] * x2))/(1+exp((par[1] + par[2] * x1 + par[3] * x2)))##logit^-1 ll <- sum(dbeta(y, mu* phi, (1-mu)*phi,log = TRUE)) return(ll) } opt <- grid.phi <- seq(20,60,l=150) con <- 1 for (i in grid.phi){ opt[con] <- optim(c(B0=-0.5,B1=-0.51,B2=0.11),log.veroP,phi=i,y=FoodExpenditure$food/FoodExpenditure$income, x1=FoodExpenditure$income, x2=FoodExpenditure$persons, hessian = TRUE, control=(list(fnscale=-1)))$value con <- con+1 } plot(grid.phi,2*(max(opt)-opt),type='l') abline(h=3.84)