Não foi possível enviar o arquivo. Será algum problema com as permissões?

Essa é uma revisão anterior do documento!


Curso em análise de experimentos com afastamento das pressuposições

Curso em análise de experimentos com afastamento das pressuposições

Descrição

Curso ministrado pelo Professor M.Sc. Walmes Marques Zeviani aos Pesquisadores da Embrapa Agropecuária Oeste. O Curso tem o objetivo de apresentar o programa R e sua aplicação na análise de dados de experimentos agronômicos dando enfase no tratamento de experimentos não regulares, ou seja, aqueles que apresentam desvios de pressupostos do modelo de análise de variância/regressão. O Curso será ministrado na sede Embrapa Arroz e Feijão no período de 25 à 29 de junho de 2012, das 08:00 às 11:00 e 13:00 às 16 horas, perfazendo um total de 30 horas de Curso.


Justificativa

O Curso será importante para aprofundar a teoria de planejamento e análise de experimentos além de instrumentalizar os participantes com as funcionalidades do aplicativo estatístico R e expandir o conhecimento em métodos de análise de dados.


Conteúdo

  • Revisão sobre download, instalação do programa e da interface gráfica;
  • Revisão sobre manipulação de objetos e funções no R: definição de objeto, tipos de objeto, criação, acesso e modificação de objetos, criação e aplicação de funções;
  • Importação de dados e análise exploratória: entrada de dados por arquivo externo, análise gráfica exploratória;
  • Estatística básica: estatísticas descritivas de posição, dispersão, assimetria, curtose, gráficos de distribuição de frequência, teste de normalidade, teste de aderência, geração de números aleatórios, teste de hipótese e intervalos de confiança para médias, proporções, variâncias e correlações.
  • Regressão linear: preparação dos dados, definição do modelo e pressuposições, estimação dos parâmetros, interpretação dos parâmetros, análise de resíduos e checagem das pressuposições do modelo, medidas de influência, inferência para os parâmetros (teste de hipótese, intervalos de confiança, regiões de confiança), predição de valores, elaboração de gráficos, procedimento stepwise, critério de AIC e BIC, remoção de outliers, transformação de dados;
  • Regressão não linear: definição, exemplos, preparação dos dados, definição do modelo, estimação dos parâmetros, análise de resíduos, inferência para os parâmetros (teste de hipótese, intervalos de confiança, teste da razão de verossimilhança), comparação de curvas ajustadas, ajuste de modelos com restrição na estimação dos parâmetros, predição de valores, elaboração de gráficos;
  • Análise de experimentos balanceados: experimento em delineamento inteiramente casualizado com fator qualitativo (um fator e fatorial duplo), experimento em blocos casualizados com fator qualitativo (um fator e fatorial duplo), experimento fatorial duplo com tratamentos adicionais (testemunhas), análise de covariância, modelos de regressão polinomial na análise de variância (fatorial qualitativo x quantitativo), fatorial com fatores quantitativos (modelos de superfície de resposta), experimento em parcela subdividida e subsubdividida, faixa e medida repetida no tempo, análise de resíduos, checagem das pressuposições do modelo, transformação de dados, testes de médias e contrastes,
  • Análise de experimentos não balanceados/ortogonais: experimento com um fator em delineamento inteiramente casualizado e blocos casualizados, anova e teste de médias, análise de experimento em blocos incompletos, alfa-látices, análise de experimentos com fator de efeito aleatório, inclusão de co-variáveis nos modelos,
  • Introdução a análise de experimentos com respostas não normais: definição de modelo linear generalizado, estimação de parâmetros, métodos de inferência, análise respostas do tipo proporção, análise de respostas do tipo contagem;

Materiais do curso

PÁGINA EM CONSTRUÇÃO

Abordar os modelos loess, gam. Usar o livro do Faraway - Extending. Using R for statistical analyses - Non-parametric stats


QR Code
QR Code pessoais:walmes:cursorcpao (generated for current page)